diff options
Diffstat (limited to 'gguf-py/gguf/gguf.py')
-rw-r--r-- | gguf-py/gguf/gguf.py | 161 |
1 files changed, 102 insertions, 59 deletions
diff --git a/gguf-py/gguf/gguf.py b/gguf-py/gguf/gguf.py index a2c570d7..fb677a6e 100644 --- a/gguf-py/gguf/gguf.py +++ b/gguf-py/gguf/gguf.py @@ -85,6 +85,7 @@ class MODEL_ARCH(IntEnum): GPTNEOX : int = auto() MPT : int = auto() STARCODER : int = auto() + PERSIMMON : int = auto() REFACT : int = auto() BERT : int = auto() @@ -108,6 +109,8 @@ class MODEL_TENSOR(IntEnum): FFN_DOWN : int = auto() FFN_UP : int = auto() FFN_NORM : int = auto() + ATTN_Q_NORM : int = auto() + ATTN_K_NORM : int = auto() MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = { @@ -119,6 +122,7 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = { MODEL_ARCH.GPTNEOX: "gptneox", MODEL_ARCH.MPT: "mpt", MODEL_ARCH.STARCODER: "starcoder", + MODEL_ARCH.PERSIMMON: "persimmon", MODEL_ARCH.REFACT: "refact", MODEL_ARCH.BERT: "bert", } @@ -130,7 +134,6 @@ TENSOR_NAMES: dict[MODEL_TENSOR, str] = { MODEL_TENSOR.OUTPUT_NORM: "output_norm", MODEL_TENSOR.OUTPUT: "output", MODEL_TENSOR.ROPE_FREQS: "rope_freqs", - MODEL_TENSOR.ATTN_NORM: "blk.{bid}.attn_norm", MODEL_TENSOR.ATTN_NORM_2: "blk.{bid}.attn_norm_2", MODEL_TENSOR.ATTN_QKV: "blk.{bid}.attn_qkv", @@ -139,6 +142,8 @@ TENSOR_NAMES: dict[MODEL_TENSOR, str] = { MODEL_TENSOR.ATTN_V: "blk.{bid}.attn_v", MODEL_TENSOR.ATTN_OUT: "blk.{bid}.attn_output", MODEL_TENSOR.ATTN_ROT_EMBD: "blk.{bid}.attn_rot_embd", + MODEL_TENSOR.ATTN_Q_NORM: "blk.{bid}.attn_q_norm", + MODEL_TENSOR.ATTN_K_NORM: "blk.{bid}.attn_k_norm", MODEL_TENSOR.FFN_NORM: "blk.{bid}.ffn_norm", MODEL_TENSOR.FFN_GATE: "blk.{bid}.ffn_gate", MODEL_TENSOR.FFN_DOWN: "blk.{bid}.ffn_down", @@ -249,6 +254,20 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = { MODEL_TENSOR.FFN_DOWN, MODEL_TENSOR.FFN_UP, ], + MODEL_ARCH.PERSIMMON: [ + MODEL_TENSOR.TOKEN_EMBD, + MODEL_TENSOR.OUTPUT, + MODEL_TENSOR.OUTPUT_NORM, + MODEL_TENSOR.ATTN_NORM, + MODEL_TENSOR.ATTN_QKV, + MODEL_TENSOR.ATTN_OUT, + MODEL_TENSOR.FFN_NORM, + MODEL_TENSOR.FFN_DOWN, + MODEL_TENSOR.FFN_UP, + MODEL_TENSOR.ATTN_Q_NORM, + MODEL_TENSOR.ATTN_K_NORM, + MODEL_TENSOR.ATTN_ROT_EMBD, + ], MODEL_ARCH.REFACT: [ MODEL_TENSOR.TOKEN_EMBD, MODEL_TENSOR.OUTPUT_NORM, @@ -279,6 +298,9 @@ MODEL_TENSOR_SKIP: dict[MODEL_ARCH, list[MODEL_TENSOR]] = { MODEL_TENSOR.ROPE_FREQS, MODEL_TENSOR.ATTN_ROT_EMBD, ], + MODEL_ARCH.PERSIMMON: [ + MODEL_TENSOR.ROPE_FREQS, + ] } @@ -286,12 +308,13 @@ class TensorNameMap: mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = { # Token embeddings MODEL_TENSOR.TOKEN_EMBD: ( - "gpt_neox.embed_in", # gptneox - "transformer.wte", # gpt2 gpt-j mpt refact - "transformer.word_embeddings", # falcon - "model.embed_tokens", # llama-hf - "tok_embeddings", # llama-pth - "embeddings.word_embeddings", # bert + "gpt_neox.embed_in", # gptneox + "transformer.wte", # gpt2 gpt-j mpt refact + "transformer.word_embeddings", # falcon + "model.embed_tokens", # llama-hf + "tok_embeddings", # llama-pth + "embeddings.word_embeddings", # bert + "language_model.embedding.word_embeddings", # persimmon ), # Token type embeddings @@ -307,20 +330,22 @@ class TensorNameMap: # Output MODEL_TENSOR.OUTPUT: ( - "embed_out", # gptneox - "lm_head", # gpt2 gpt-j mpt falcon llama-hf baichuan - "output", # llama-pth + "embed_out", # gptneox + "lm_head", # gpt2 mpt falcon llama-hf baichuan + "output", # llama-pth + "word_embeddings_for_head", # persimmon ), # Output norm MODEL_TENSOR.OUTPUT_NORM: ( - "gpt_neox.final_layer_norm", # gptneox - "transformer.ln_f", # gpt2 gpt-j falcon - "model.norm", # llama-hf baichuan - "norm", # llama-pth - "embeddings.LayerNorm", # bert - "transformer.norm_f", # mpt - "ln_f", # refact + "gpt_neox.final_layer_norm", # gptneox + "transformer.ln_f", # gpt2 gpt-j falcon + "model.norm", # llama-hf baichuan + "norm", # llama-pth + "embeddings.LayerNorm", # bert + "transformer.norm_f", # mpt + "ln_f", # refact + "language_model.encoder.final_layernorm", # persimmon ), # Rope frequencies @@ -332,14 +357,15 @@ class TensorNameMap: block_mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = { # Attention norm MODEL_TENSOR.ATTN_NORM: ( - "gpt_neox.layers.{bid}.input_layernorm", # gptneox - "transformer.h.{bid}.ln_1", # gpt2 gpt-j refact - "transformer.blocks.{bid}.norm_1", # mpt - "transformer.h.{bid}.input_layernorm", # falcon7b - "transformer.h.{bid}.ln_mlp", # falcon40b - "model.layers.{bid}.input_layernorm", # llama-hf - "layers.{bid}.attention_norm", # llama-pth - "encoder.layer.{bid}.attention.output.LayerNorm", # bert + "gpt_neox.layers.{bid}.input_layernorm", # gptneox + "transformer.h.{bid}.ln_1", # gpt2 gpt-j refact + "transformer.blocks.{bid}.norm_1", # mpt + "transformer.h.{bid}.input_layernorm", # falcon7b + "transformer.h.{bid}.ln_mlp", # falcon40b + "model.layers.{bid}.input_layernorm", # llama-hf + "layers.{bid}.attention_norm", # llama-pth + "encoder.layer.{bid}.attention.output.LayerNorm", # bert + "language_model.encoder.layers.{bid}.input_layernorm", # persimmon ), # Attention norm 2 @@ -349,10 +375,11 @@ class TensorNameMap: # Attention query-key-value MODEL_TENSOR.ATTN_QKV: ( - "gpt_neox.layers.{bid}.attention.query_key_value", # gptneox - "transformer.h.{bid}.attn.c_attn", # gpt2 - "transformer.blocks.{bid}.attn.Wqkv", # mpt - "transformer.h.{bid}.self_attention.query_key_value", # falcon + "gpt_neox.layers.{bid}.attention.query_key_value", # gptneox + "transformer.h.{bid}.attn.c_attn", # gpt2 + "transformer.blocks.{bid}.attn.Wqkv", # mpt + "transformer.h.{bid}.self_attention.query_key_value", # falcon + "language_model.encoder.layers.{bid}.self_attention.query_key_value", # persimmon ), # Attention query @@ -381,14 +408,15 @@ class TensorNameMap: # Attention output MODEL_TENSOR.ATTN_OUT: ( - "gpt_neox.layers.{bid}.attention.dense", # gptneox - "transformer.h.{bid}.attn.c_proj", # gpt2 refact - "transformer.blocks.{bid}.attn.out_proj", # mpt - "transformer.h.{bid}.self_attention.dense", # falcon - "model.layers.{bid}.self_attn.o_proj", # llama-hf - "layers.{bid}.attention.wo", # llama-pth - "encoder.layer.{bid}.attention.output.dense", # bert - "transformer.h.{bid}.attn.out_proj", # gpt-j + "gpt_neox.layers.{bid}.attention.dense", # gptneox + "transformer.h.{bid}.attn.c_proj", # gpt2 refact + "transformer.blocks.{bid}.attn.out_proj", # mpt + "transformer.h.{bid}.self_attention.dense", # falcon + "model.layers.{bid}.self_attn.o_proj", # llama-hf + "layers.{bid}.attention.wo", # llama-pth + "encoder.layer.{bid}.attention.output.dense", # bert + "transformer.h.{bid}.attn.out_proj", # gpt-j + "language_model.encoder.layers.{bid}.self_attention.dense" # persimmon ), # Rotary embeddings @@ -399,24 +427,26 @@ class TensorNameMap: # Feed-forward norm MODEL_TENSOR.FFN_NORM: ( - "gpt_neox.layers.{bid}.post_attention_layernorm", # gptneox - "transformer.h.{bid}.ln_2", # gpt2 refact - "transformer.blocks.{bid}.norm_2", # mpt - "model.layers.{bid}.post_attention_layernorm", # llama-hf - "layers.{bid}.ffn_norm", # llama-pth - "encoder.layer.{bid}.output.LayerNorm", # bert + "gpt_neox.layers.{bid}.post_attention_layernorm", # gptneox + "transformer.h.{bid}.ln_2", # gpt2 refact + "transformer.blocks.{bid}.norm_2", # mpt + "model.layers.{bid}.post_attention_layernorm", # llama-hf + "layers.{bid}.ffn_norm", # llama-pth + "encoder.layer.{bid}.output.LayerNorm", # bert + "language_model.encoder.layers.{bid}.post_attention_layernorm", # persimmon ), # Feed-forward up MODEL_TENSOR.FFN_UP: ( - "gpt_neox.layers.{bid}.mlp.dense_h_to_4h", # gptneox - "transformer.h.{bid}.mlp.c_fc", # gpt2 - "transformer.blocks.{bid}.ffn.up_proj", # mpt - "transformer.h.{bid}.mlp.dense_h_to_4h", # falcon - "model.layers.{bid}.mlp.up_proj", # llama-hf refact - "layers.{bid}.feed_forward.w3", # llama-pth - "encoder.layer.{bid}.intermediate.dense", # bert - "transformer.h.{bid}.mlp.fc_in", # gpt-j + "gpt_neox.layers.{bid}.mlp.dense_h_to_4h", # gptneox + "transformer.h.{bid}.mlp.c_fc", # gpt2 + "transformer.blocks.{bid}.ffn.up_proj", # mpt + "transformer.h.{bid}.mlp.dense_h_to_4h", # falcon + "model.layers.{bid}.mlp.up_proj", # llama-hf refact + "layers.{bid}.feed_forward.w3", # llama-pth + "encoder.layer.{bid}.intermediate.dense", # bert + "transformer.h.{bid}.mlp.fc_in", # gpt-j + "language_model.encoder.layers.{bid}.mlp.dense_h_to_4h", # persimmon ), # Feed-forward gate @@ -427,15 +457,28 @@ class TensorNameMap: # Feed-forward down MODEL_TENSOR.FFN_DOWN: ( - "gpt_neox.layers.{bid}.mlp.dense_4h_to_h", # gptneox - "transformer.h.{bid}.mlp.c_proj", # gpt2 refact - "transformer.blocks.{bid}.ffn.down_proj", # mpt - "transformer.h.{bid}.mlp.dense_4h_to_h", # falcon - "model.layers.{bid}.mlp.down_proj", # llama-hf - "layers.{bid}.feed_forward.w2", # llama-pth - "encoder.layer.{bid}.output.dense", # bert - "transformer.h.{bid}.mlp.fc_out", # gpt-j + "gpt_neox.layers.{bid}.mlp.dense_4h_to_h", # gptneox + "transformer.h.{bid}.mlp.c_proj", # gpt2 refact + "transformer.blocks.{bid}.ffn.down_proj", # mpt + "transformer.h.{bid}.mlp.dense_4h_to_h", # falcon + "model.layers.{bid}.mlp.down_proj", # llama-hf + "layers.{bid}.feed_forward.w2", # llama-pth + "encoder.layer.{bid}.output.dense", # bert + "transformer.h.{bid}.mlp.fc_out", # gpt-j + "language_model.encoder.layers.{bid}.mlp.dense_4h_to_h", # persimmon + ), + + MODEL_TENSOR.ATTN_Q_NORM: ( + "language_model.encoder.layers.{bid}.self_attention.q_layernorm", ), + + MODEL_TENSOR.ATTN_K_NORM: ( + "language_model.encoder.layers.{bid}.self_attention.k_layernorm", + ), + + MODEL_TENSOR.ROPE_FREQS: ( + "language_model.encoder.layers.{bid}.self_attention.rotary_emb.inv_freq", # persimmon + ) } mapping: dict[str, tuple[MODEL_TENSOR, str]] |