diff options
Diffstat (limited to 'gguf-py/gguf/gguf.py')
-rw-r--r-- | gguf-py/gguf/gguf.py | 1149 |
1 files changed, 9 insertions, 1140 deletions
diff --git a/gguf-py/gguf/gguf.py b/gguf-py/gguf/gguf.py index 7e495cb1..651a81eb 100644 --- a/gguf-py/gguf/gguf.py +++ b/gguf-py/gguf/gguf.py @@ -1,1146 +1,15 @@ -#!/usr/bin/env python3 -from __future__ import annotations +# This file left for compatibility. If you want to use the GGUF API from Python +# then don't import gguf/gguf.py directly. If you're looking for examples, see the +# examples/ directory for gguf-py -import json -import os -import shutil -import struct +import importlib import sys -import tempfile -from enum import Enum, IntEnum, auto -from io import BufferedWriter from pathlib import Path -from typing import IO, Any, BinaryIO, Callable, Sequence -import numpy as np +sys.path.insert(0, str(Path(__file__).parent.parent)) -# -# constants -# +# Compatibility for people trying to import gguf/gguf.py directly instead of as a package. +importlib.invalidate_caches() +import gguf # noqa: E402 -GGUF_MAGIC = 0x46554747 -GGUF_VERSION = 3 -GGUF_DEFAULT_ALIGNMENT = 32 - - -# general -KEY_GENERAL_ARCHITECTURE = "general.architecture" -KEY_GENERAL_QUANTIZATION_VERSION = "general.quantization_version" -KEY_GENERAL_ALIGNMENT = "general.alignment" -KEY_GENERAL_NAME = "general.name" -KEY_GENERAL_AUTHOR = "general.author" -KEY_GENERAL_URL = "general.url" -KEY_GENERAL_DESCRIPTION = "general.description" -KEY_GENERAL_LICENSE = "general.license" -KEY_GENERAL_SOURCE_URL = "general.source.url" -KEY_GENERAL_SOURCE_HF_REPO = "general.source.huggingface.repository" -KEY_GENERAL_FILE_TYPE = "general.file_type" - -# LLM -KEY_CONTEXT_LENGTH = "{arch}.context_length" -KEY_EMBEDDING_LENGTH = "{arch}.embedding_length" -KEY_BLOCK_COUNT = "{arch}.block_count" -KEY_FEED_FORWARD_LENGTH = "{arch}.feed_forward_length" -KEY_USE_PARALLEL_RESIDUAL = "{arch}.use_parallel_residual" -KEY_TENSOR_DATA_LAYOUT = "{arch}.tensor_data_layout" - -# attention -KEY_ATTENTION_HEAD_COUNT = "{arch}.attention.head_count" -KEY_ATTENTION_HEAD_COUNT_KV = "{arch}.attention.head_count_kv" -KEY_ATTENTION_MAX_ALIBI_BIAS = "{arch}.attention.max_alibi_bias" -KEY_ATTENTION_CLAMP_KQV = "{arch}.attention.clamp_kqv" -KEY_ATTENTION_LAYERNORM_EPS = "{arch}.attention.layer_norm_epsilon" -KEY_ATTENTION_LAYERNORM_RMS_EPS = "{arch}.attention.layer_norm_rms_epsilon" - -# RoPE -KEY_ROPE_DIMENSION_COUNT = "{arch}.rope.dimension_count" -KEY_ROPE_FREQ_BASE = "{arch}.rope.freq_base" -KEY_ROPE_SCALING_TYPE = "{arch}.rope.scaling.type" -KEY_ROPE_SCALING_FACTOR = "{arch}.rope.scaling.factor" -KEY_ROPE_SCALING_ORIG_CTX_LEN = "{arch}.rope.scaling.original_context_length" -KEY_ROPE_SCALING_FINETUNED = "{arch}.rope.scaling.finetuned" - -# tokenization -KEY_TOKENIZER_MODEL = "tokenizer.ggml.model" -KEY_TOKENIZER_LIST = "tokenizer.ggml.tokens" -KEY_TOKENIZER_TOKEN_TYPE = "tokenizer.ggml.token_type" -KEY_TOKENIZER_SCORES = "tokenizer.ggml.scores" -KEY_TOKENIZER_MERGES = "tokenizer.ggml.merges" -KEY_TOKENIZER_BOS_ID = "tokenizer.ggml.bos_token_id" -KEY_TOKENIZER_EOS_ID = "tokenizer.ggml.eos_token_id" -KEY_TOKENIZER_UNK_ID = "tokenizer.ggml.unknown_token_id" -KEY_TOKENIZER_SEP_ID = "tokenizer.ggml.seperator_token_id" -KEY_TOKENIZER_PAD_ID = "tokenizer.ggml.padding_token_id" -KEY_TOKENIZER_HF_JSON = "tokenizer.huggingface.json" -KEY_TOKENIZER_RWKV = "tokenizer.rwkv.world" - - -# -# recommended mapping of model tensor names for storage in gguf -# - - -class MODEL_ARCH(IntEnum): - LLAMA : int = auto() - FALCON : int = auto() - BAICHUAN : int = auto() - GPT2 : int = auto() - GPTJ : int = auto() - GPTNEOX : int = auto() - MPT : int = auto() - STARCODER : int = auto() - PERSIMMON : int = auto() - REFACT : int = auto() - BERT : int = auto() - BLOOM : int = auto() - - -class MODEL_TENSOR(IntEnum): - TOKEN_EMBD : int = auto() - TOKEN_EMBD_NORM : int = auto() - TOKEN_TYPES : int = auto() - POS_EMBD : int = auto() - OUTPUT : int = auto() - OUTPUT_NORM : int = auto() - ROPE_FREQS : int = auto() - ATTN_Q : int = auto() - ATTN_K : int = auto() - ATTN_V : int = auto() - ATTN_QKV : int = auto() - ATTN_OUT : int = auto() - ATTN_NORM : int = auto() - ATTN_NORM_2 : int = auto() - ATTN_ROT_EMBD : int = auto() - FFN_GATE : int = auto() - FFN_DOWN : int = auto() - FFN_UP : int = auto() - FFN_NORM : int = auto() - ATTN_Q_NORM : int = auto() - ATTN_K_NORM : int = auto() - - -MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = { - MODEL_ARCH.LLAMA: "llama", - MODEL_ARCH.FALCON: "falcon", - MODEL_ARCH.BAICHUAN: "baichuan", - MODEL_ARCH.GPT2: "gpt2", - MODEL_ARCH.GPTJ: "gptj", - MODEL_ARCH.GPTNEOX: "gptneox", - MODEL_ARCH.MPT: "mpt", - MODEL_ARCH.STARCODER: "starcoder", - MODEL_ARCH.PERSIMMON: "persimmon", - MODEL_ARCH.REFACT: "refact", - MODEL_ARCH.BERT: "bert", - MODEL_ARCH.BLOOM: "bloom", -} - -TENSOR_NAMES: dict[MODEL_TENSOR, str] = { - MODEL_TENSOR.TOKEN_EMBD: "token_embd", - MODEL_TENSOR.TOKEN_EMBD_NORM: "token_embd_norm", - MODEL_TENSOR.TOKEN_TYPES: "token_types", - MODEL_TENSOR.POS_EMBD: "position_embd", - MODEL_TENSOR.OUTPUT_NORM: "output_norm", - MODEL_TENSOR.OUTPUT: "output", - MODEL_TENSOR.ROPE_FREQS: "rope_freqs", - MODEL_TENSOR.ATTN_NORM: "blk.{bid}.attn_norm", - MODEL_TENSOR.ATTN_NORM_2: "blk.{bid}.attn_norm_2", - MODEL_TENSOR.ATTN_QKV: "blk.{bid}.attn_qkv", - MODEL_TENSOR.ATTN_Q: "blk.{bid}.attn_q", - MODEL_TENSOR.ATTN_K: "blk.{bid}.attn_k", - MODEL_TENSOR.ATTN_V: "blk.{bid}.attn_v", - MODEL_TENSOR.ATTN_OUT: "blk.{bid}.attn_output", - MODEL_TENSOR.ATTN_ROT_EMBD: "blk.{bid}.attn_rot_embd", - MODEL_TENSOR.ATTN_Q_NORM: "blk.{bid}.attn_q_norm", - MODEL_TENSOR.ATTN_K_NORM: "blk.{bid}.attn_k_norm", - MODEL_TENSOR.FFN_NORM: "blk.{bid}.ffn_norm", - MODEL_TENSOR.FFN_GATE: "blk.{bid}.ffn_gate", - MODEL_TENSOR.FFN_DOWN: "blk.{bid}.ffn_down", - MODEL_TENSOR.FFN_UP: "blk.{bid}.ffn_up", -} - -MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = { - MODEL_ARCH.LLAMA: [ - MODEL_TENSOR.TOKEN_EMBD, - MODEL_TENSOR.OUTPUT_NORM, - MODEL_TENSOR.OUTPUT, - MODEL_TENSOR.ROPE_FREQS, - MODEL_TENSOR.ATTN_NORM, - MODEL_TENSOR.ATTN_Q, - MODEL_TENSOR.ATTN_K, - MODEL_TENSOR.ATTN_V, - MODEL_TENSOR.ATTN_OUT, - MODEL_TENSOR.ATTN_ROT_EMBD, - MODEL_TENSOR.FFN_NORM, - MODEL_TENSOR.FFN_GATE, - MODEL_TENSOR.FFN_DOWN, - MODEL_TENSOR.FFN_UP, - ], - MODEL_ARCH.GPTNEOX: [ - MODEL_TENSOR.TOKEN_EMBD, - MODEL_TENSOR.OUTPUT_NORM, - MODEL_TENSOR.OUTPUT, - MODEL_TENSOR.ATTN_NORM, - MODEL_TENSOR.ATTN_QKV, - MODEL_TENSOR.ATTN_OUT, - MODEL_TENSOR.FFN_NORM, - MODEL_TENSOR.FFN_DOWN, - MODEL_TENSOR.FFN_UP, - ], - MODEL_ARCH.FALCON: [ - MODEL_TENSOR.TOKEN_EMBD, - MODEL_TENSOR.OUTPUT_NORM, - MODEL_TENSOR.OUTPUT, - MODEL_TENSOR.ATTN_NORM, - MODEL_TENSOR.ATTN_NORM_2, - MODEL_TENSOR.ATTN_QKV, - MODEL_TENSOR.ATTN_OUT, - MODEL_TENSOR.FFN_DOWN, - MODEL_TENSOR.FFN_UP, - ], - MODEL_ARCH.BAICHUAN: [ - MODEL_TENSOR.TOKEN_EMBD, - MODEL_TENSOR.OUTPUT_NORM, - MODEL_TENSOR.OUTPUT, - MODEL_TENSOR.ROPE_FREQS, - MODEL_TENSOR.ATTN_NORM, - MODEL_TENSOR.ATTN_Q, - MODEL_TENSOR.ATTN_K, - MODEL_TENSOR.ATTN_V, - MODEL_TENSOR.ATTN_OUT, - MODEL_TENSOR.ATTN_ROT_EMBD, - MODEL_TENSOR.FFN_NORM, - MODEL_TENSOR.FFN_GATE, - MODEL_TENSOR.FFN_DOWN, - MODEL_TENSOR.FFN_UP, - ], - MODEL_ARCH.STARCODER: [ - MODEL_TENSOR.TOKEN_EMBD, - MODEL_TENSOR.POS_EMBD, - MODEL_TENSOR.OUTPUT_NORM, - MODEL_TENSOR.OUTPUT, - MODEL_TENSOR.ATTN_NORM, - MODEL_TENSOR.ATTN_QKV, - MODEL_TENSOR.ATTN_OUT, - MODEL_TENSOR.FFN_NORM, - MODEL_TENSOR.FFN_DOWN, - MODEL_TENSOR.FFN_UP, - ], - MODEL_ARCH.BERT: [ - MODEL_TENSOR.TOKEN_EMBD, - MODEL_TENSOR.TOKEN_TYPES, - MODEL_TENSOR.POS_EMBD, - MODEL_TENSOR.OUTPUT_NORM, - MODEL_TENSOR.ATTN_NORM, - MODEL_TENSOR.ATTN_Q, - MODEL_TENSOR.ATTN_K, - MODEL_TENSOR.ATTN_V, - MODEL_TENSOR.ATTN_OUT, - MODEL_TENSOR.FFN_NORM, - MODEL_TENSOR.FFN_DOWN, - MODEL_TENSOR.FFN_UP, - ], - MODEL_ARCH.MPT: [ - MODEL_TENSOR.TOKEN_EMBD, - MODEL_TENSOR.OUTPUT_NORM, - MODEL_TENSOR.OUTPUT, - MODEL_TENSOR.ATTN_NORM, - MODEL_TENSOR.ATTN_QKV, - MODEL_TENSOR.ATTN_OUT, - MODEL_TENSOR.FFN_NORM, - MODEL_TENSOR.FFN_DOWN, - MODEL_TENSOR.FFN_UP, - ], - MODEL_ARCH.GPTJ: [ - MODEL_TENSOR.TOKEN_EMBD, - MODEL_TENSOR.OUTPUT_NORM, - MODEL_TENSOR.OUTPUT, - MODEL_TENSOR.ATTN_NORM, - MODEL_TENSOR.ATTN_Q, - MODEL_TENSOR.ATTN_K, - MODEL_TENSOR.ATTN_V, - MODEL_TENSOR.ATTN_OUT, - MODEL_TENSOR.FFN_DOWN, - MODEL_TENSOR.FFN_UP, - ], - MODEL_ARCH.PERSIMMON: [ - MODEL_TENSOR.TOKEN_EMBD, - MODEL_TENSOR.OUTPUT, - MODEL_TENSOR.OUTPUT_NORM, - MODEL_TENSOR.ATTN_NORM, - MODEL_TENSOR.ATTN_QKV, - MODEL_TENSOR.ATTN_OUT, - MODEL_TENSOR.FFN_NORM, - MODEL_TENSOR.FFN_DOWN, - MODEL_TENSOR.FFN_UP, - MODEL_TENSOR.ATTN_Q_NORM, - MODEL_TENSOR.ATTN_K_NORM, - MODEL_TENSOR.ATTN_ROT_EMBD, - ], - MODEL_ARCH.REFACT: [ - MODEL_TENSOR.TOKEN_EMBD, - MODEL_TENSOR.OUTPUT_NORM, - MODEL_TENSOR.OUTPUT, - MODEL_TENSOR.ATTN_NORM, - MODEL_TENSOR.ATTN_Q, - MODEL_TENSOR.ATTN_K, - MODEL_TENSOR.ATTN_V, - MODEL_TENSOR.ATTN_OUT, - MODEL_TENSOR.FFN_NORM, - MODEL_TENSOR.FFN_GATE, - MODEL_TENSOR.FFN_DOWN, - MODEL_TENSOR.FFN_UP, - ], - MODEL_ARCH.BLOOM: [ - MODEL_TENSOR.TOKEN_EMBD, - MODEL_TENSOR.TOKEN_EMBD_NORM, - MODEL_TENSOR.OUTPUT_NORM, - MODEL_TENSOR.OUTPUT, - MODEL_TENSOR.ATTN_NORM, - MODEL_TENSOR.ATTN_QKV, - MODEL_TENSOR.ATTN_OUT, - MODEL_TENSOR.FFN_NORM, - MODEL_TENSOR.FFN_DOWN, - MODEL_TENSOR.FFN_UP, - ], - MODEL_ARCH.GPT2: [ - # TODO - ], - # TODO -} - -# tensors that will not be serialized -MODEL_TENSOR_SKIP: dict[MODEL_ARCH, list[MODEL_TENSOR]] = { - MODEL_ARCH.LLAMA: [ - MODEL_TENSOR.ROPE_FREQS, - MODEL_TENSOR.ATTN_ROT_EMBD, - ], - MODEL_ARCH.BAICHUAN: [ - MODEL_TENSOR.ROPE_FREQS, - MODEL_TENSOR.ATTN_ROT_EMBD, - ], - MODEL_ARCH.PERSIMMON: [ - MODEL_TENSOR.ROPE_FREQS, - ] -} - - -class TensorNameMap: - mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = { - # Token embeddings - MODEL_TENSOR.TOKEN_EMBD: ( - "gpt_neox.embed_in", # gptneox - "transformer.wte", # gpt2 gpt-j mpt refact - "transformer.word_embeddings", # falcon - "word_embeddings", # bloom - "model.embed_tokens", # llama-hf - "tok_embeddings", # llama-pth - "embeddings.word_embeddings", # bert - "language_model.embedding.word_embeddings", # persimmon - ), - - # Token type embeddings - MODEL_TENSOR.TOKEN_TYPES: ( - "embeddings.token_type_embeddings", # bert - ), - - # Normalization of token embeddings - MODEL_TENSOR.TOKEN_EMBD_NORM: ( - "word_embeddings_layernorm", # bloom - ), - - # Position embeddings - MODEL_TENSOR.POS_EMBD: ( - "transformer.wpe", # gpt2 - "embeddings.position_embeddings", # bert - ), - - # Output - MODEL_TENSOR.OUTPUT: ( - "embed_out", # gptneox - "lm_head", # gpt2 mpt falcon llama-hf baichuan - "output", # llama-pth bloom - "word_embeddings_for_head", # persimmon - ), - - # Output norm - MODEL_TENSOR.OUTPUT_NORM: ( - "gpt_neox.final_layer_norm", # gptneox - "transformer.ln_f", # gpt2 gpt-j falcon - "model.norm", # llama-hf baichuan - "norm", # llama-pth - "embeddings.LayerNorm", # bert - "transformer.norm_f", # mpt - "ln_f", # refact bloom - "language_model.encoder.final_layernorm", # persimmon - ), - - # Rope frequencies - MODEL_TENSOR.ROPE_FREQS: ( - "rope.freqs", # llama-pth - ), - } - - block_mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = { - # Attention norm - MODEL_TENSOR.ATTN_NORM: ( - "gpt_neox.layers.{bid}.input_layernorm", # gptneox - "transformer.h.{bid}.ln_1", # gpt2 gpt-j refact - "transformer.blocks.{bid}.norm_1", # mpt - "transformer.h.{bid}.input_layernorm", # falcon7b - "h.{bid}.input_layernorm", # bloom - "transformer.h.{bid}.ln_mlp", # falcon40b - "model.layers.{bid}.input_layernorm", # llama-hf - "layers.{bid}.attention_norm", # llama-pth - "encoder.layer.{bid}.attention.output.LayerNorm", # bert - "language_model.encoder.layers.{bid}.input_layernorm", # persimmon - "model.layers.{bid}.ln1", # yi - ), - - # Attention norm 2 - MODEL_TENSOR.ATTN_NORM_2: ( - "transformer.h.{bid}.ln_attn", # falcon40b - ), - - # Attention query-key-value - MODEL_TENSOR.ATTN_QKV: ( - "gpt_neox.layers.{bid}.attention.query_key_value", # gptneox - "transformer.h.{bid}.attn.c_attn", # gpt2 - "transformer.blocks.{bid}.attn.Wqkv", # mpt - "transformer.h.{bid}.self_attention.query_key_value", # falcon - "h.{bid}.self_attention.query_key_value", # bloom - "language_model.encoder.layers.{bid}.self_attention.query_key_value", # persimmon - ), - - # Attention query - MODEL_TENSOR.ATTN_Q: ( - "model.layers.{bid}.self_attn.q_proj", # llama-hf - "layers.{bid}.attention.wq", # llama-pth - "encoder.layer.{bid}.attention.self.query", # bert - "transformer.h.{bid}.attn.q_proj", # gpt-j - ), - - # Attention key - MODEL_TENSOR.ATTN_K: ( - "model.layers.{bid}.self_attn.k_proj", # llama-hf - "layers.{bid}.attention.wk", # llama-pth - "encoder.layer.{bid}.attention.self.key", # bert - "transformer.h.{bid}.attn.k_proj", # gpt-j - ), - - # Attention value - MODEL_TENSOR.ATTN_V: ( - "model.layers.{bid}.self_attn.v_proj", # llama-hf - "layers.{bid}.attention.wv", # llama-pth - "encoder.layer.{bid}.attention.self.value", # bert - "transformer.h.{bid}.attn.v_proj", # gpt-j - ), - - # Attention output - MODEL_TENSOR.ATTN_OUT: ( - "gpt_neox.layers.{bid}.attention.dense", # gptneox - "transformer.h.{bid}.attn.c_proj", # gpt2 refact - "transformer.blocks.{bid}.attn.out_proj", # mpt - "transformer.h.{bid}.self_attention.dense", # falcon - "h.{bid}.self_attention.dense", # bloom - "model.layers.{bid}.self_attn.o_proj", # llama-hf - "layers.{bid}.attention.wo", # llama-pth - "encoder.layer.{bid}.attention.output.dense", # bert - "transformer.h.{bid}.attn.out_proj", # gpt-j - "language_model.encoder.layers.{bid}.self_attention.dense" # persimmon - ), - - # Rotary embeddings - MODEL_TENSOR.ATTN_ROT_EMBD: ( - "model.layers.{bid}.self_attn.rotary_emb.inv_freq", # llama-hf - "layers.{bid}.attention.inner_attention.rope.freqs", # llama-pth - ), - - # Feed-forward norm - MODEL_TENSOR.FFN_NORM: ( - "gpt_neox.layers.{bid}.post_attention_layernorm", # gptneox - "transformer.h.{bid}.ln_2", # gpt2 refact - "h.{bid}.post_attention_layernorm", # bloom - "transformer.blocks.{bid}.norm_2", # mpt - "model.layers.{bid}.post_attention_layernorm", # llama-hf - "layers.{bid}.ffn_norm", # llama-pth - "encoder.layer.{bid}.output.LayerNorm", # bert - "language_model.encoder.layers.{bid}.post_attention_layernorm", # persimmon - "model.layers.{bid}.ln2", # yi - ), - - # Feed-forward up - MODEL_TENSOR.FFN_UP: ( - "gpt_neox.layers.{bid}.mlp.dense_h_to_4h", # gptneox - "transformer.h.{bid}.mlp.c_fc", # gpt2 - "transformer.blocks.{bid}.ffn.up_proj", # mpt - "transformer.h.{bid}.mlp.dense_h_to_4h", # falcon - "h.{bid}.mlp.dense_h_to_4h", # bloom - "model.layers.{bid}.mlp.up_proj", # llama-hf refact - "layers.{bid}.feed_forward.w3", # llama-pth - "encoder.layer.{bid}.intermediate.dense", # bert - "transformer.h.{bid}.mlp.fc_in", # gpt-j - "language_model.encoder.layers.{bid}.mlp.dense_h_to_4h", # persimmon - ), - - # Feed-forward gate - MODEL_TENSOR.FFN_GATE: ( - "model.layers.{bid}.mlp.gate_proj", # llama-hf refact - "layers.{bid}.feed_forward.w1", # llama-pth - ), - - # Feed-forward down - MODEL_TENSOR.FFN_DOWN: ( - "gpt_neox.layers.{bid}.mlp.dense_4h_to_h", # gptneox - "transformer.h.{bid}.mlp.c_proj", # gpt2 refact - "transformer.blocks.{bid}.ffn.down_proj", # mpt - "transformer.h.{bid}.mlp.dense_4h_to_h", # falcon - "h.{bid}.mlp.dense_4h_to_h", # bloom - "model.layers.{bid}.mlp.down_proj", # llama-hf - "layers.{bid}.feed_forward.w2", # llama-pth - "encoder.layer.{bid}.output.dense", # bert - "transformer.h.{bid}.mlp.fc_out", # gpt-j - "language_model.encoder.layers.{bid}.mlp.dense_4h_to_h", # persimmon - ), - - MODEL_TENSOR.ATTN_Q_NORM: ( - "language_model.encoder.layers.{bid}.self_attention.q_layernorm", - ), - - MODEL_TENSOR.ATTN_K_NORM: ( - "language_model.encoder.layers.{bid}.self_attention.k_layernorm", - ), - - MODEL_TENSOR.ROPE_FREQS: ( - "language_model.encoder.layers.{bid}.self_attention.rotary_emb.inv_freq", # persimmon - ) - } - - mapping: dict[str, tuple[MODEL_TENSOR, str]] - - def __init__(self, arch: MODEL_ARCH, n_blocks: int): - self.mapping = {} - for tensor, keys in self.mappings_cfg.items(): - if tensor not in MODEL_TENSORS[arch]: - continue - tensor_name = TENSOR_NAMES[tensor] - self.mapping[tensor_name] = (tensor, tensor_name) - for key in keys: - self.mapping[key] = (tensor, tensor_name) - for bid in range(n_blocks): - for tensor, keys in self.block_mappings_cfg.items(): - if tensor not in MODEL_TENSORS[arch]: - continue - tensor_name = TENSOR_NAMES[tensor].format(bid = bid) - self.mapping[tensor_name] = (tensor, tensor_name) - for key in keys: - key = key.format(bid = bid) - self.mapping[key] = (tensor, tensor_name) - - def get_type_and_name(self, key: str, try_suffixes: Sequence[str] = ()) -> tuple[MODEL_TENSOR, str] | None: - result = self.mapping.get(key) - if result is not None: - return result - for suffix in try_suffixes: - if key.endswith(suffix): - result = self.mapping.get(key[:-len(suffix)]) - if result is not None: - return (result[0], result[1] + suffix) - return None - - def get_name(self, key: str, try_suffixes: Sequence[str] = ()) -> str | None: - result = self.get_type_and_name(key, try_suffixes = try_suffixes) - if result is None: - return None - return result[1] - - def get_type(self, key: str, try_suffixes: Sequence[str] = ()) -> MODEL_TENSOR | None: - result = self.get_type_and_name(key, try_suffixes = try_suffixes) - if result is None: - return None - return result[0] - - def __getitem__(self, key: str) -> str: - try: - return self.mapping[key][1] - except KeyError: - raise KeyError(key) - - def __contains__(self, key: str) -> bool: - return key in self.mapping - - def __repr__(self) -> str: - return repr(self.mapping) - -def get_tensor_name_map(arch: MODEL_ARCH, n_blocks: int) -> TensorNameMap: - return TensorNameMap(arch, n_blocks) - -class TokenType(IntEnum): - NORMAL = 1 - UNKNOWN = 2 - CONTROL = 3 - USER_DEFINED = 4 - UNUSED = 5 - BYTE = 6 - -class RopeScalingType(Enum): - NONE = 'none' - LINEAR = 'linear' - YARN = 'yarn' - -# -# implementation -# - - -class GGMLQuantizationType(IntEnum): - F32 = 0 - F16 = 1 - Q4_0 = 2 - Q4_1 = 3 - Q5_0 = 6 - Q5_1 = 7 - Q8_0 = 8 - Q8_1 = 9 - Q2_K = 10 - Q3_K = 11 - Q4_K = 12 - Q5_K = 13 - Q6_K = 14 - Q8_K = 15 - -class GGUFEndian(IntEnum): - LITTLE = 0 - BIG = 1 - - -class GGUFValueType(IntEnum): - UINT8 = 0 - INT8 = 1 - UINT16 = 2 - INT16 = 3 - UINT32 = 4 - INT32 = 5 - FLOAT32 = 6 - BOOL = 7 - STRING = 8 - ARRAY = 9 - UINT64 = 10 - INT64 = 11 - FLOAT64 = 12 - - @staticmethod - def get_type(val): - if isinstance(val, str) or isinstance(val, bytes) or isinstance(val, bytearray): - return GGUFValueType.STRING - elif isinstance(val, list): - return GGUFValueType.ARRAY - elif isinstance(val, float): - return GGUFValueType.FLOAT32 - elif isinstance(val, bool): - return GGUFValueType.BOOL - elif isinstance(val, int): - return GGUFValueType.INT32 - # TODO: need help with 64-bit types in Python - else: - print("Unknown type: "+str(type(val))) - sys.exit() - - -class WriterState(Enum): - EMPTY = auto() - HEADER = auto() - KV_DATA = auto() - TI_DATA = auto() - - -class GGUFWriter: - fout: BufferedWriter - temp_file: tempfile.SpooledTemporaryFile[bytes] | None - tensors: list[np.ndarray[Any, Any]] - - @property - def pack_prefix(self): - if self.endianess==GGUFEndian.LITTLE: - return "<" - else: - return ">" - - def __init__(self, path: os.PathLike[str] | str, arch: str, use_temp_file = True, endianess=GGUFEndian.LITTLE): - self.fout = open(path, "wb") - self.arch = arch - self.endianess = endianess - self._simple_value_packing = { - GGUFValueType.UINT8: f"{self.pack_prefix}B", - GGUFValueType.INT8: f"{self.pack_prefix}b", - GGUFValueType.UINT16: f"{self.pack_prefix}H", - GGUFValueType.INT16: f"{self.pack_prefix}h", - GGUFValueType.UINT32: f"{self.pack_prefix}I", - GGUFValueType.INT32: f"{self.pack_prefix}i", - GGUFValueType.FLOAT32: f"{self.pack_prefix}f", - GGUFValueType.UINT64: f"{self.pack_prefix}Q", - GGUFValueType.INT64: f"{self.pack_prefix}q", - GGUFValueType.FLOAT64: f"{self.pack_prefix}d", - GGUFValueType.BOOL: "?" , - } - self.offset_tensor = 0 - self.data_alignment = GGUF_DEFAULT_ALIGNMENT - self.kv_data = b"" - self.kv_data_count = 0 - self.ti_data = b"" - self.ti_data_count = 0 - self.use_temp_file = use_temp_file - self.temp_file = None - self.tensors = [] - endianess_str = "Big Endian" if self.endianess == GGUFEndian.BIG else "Little Endian" - print(f"This gguf file is for {endianess_str} only") - self.state = WriterState.EMPTY - - self.add_architecture() - - def write_header_to_file(self): - if self.state is not WriterState.EMPTY: - raise ValueError(f'Expected output file to be empty, got {self.state}') - - self.fout.write(struct.pack("<I", GGUF_MAGIC)) - self.fout.write(struct.pack(f"{self.pack_prefix}I", GGUF_VERSION)) - self.fout.write(struct.pack(f"{self.pack_prefix}Q", self.ti_data_count)) - self.fout.write(struct.pack(f"{self.pack_prefix}Q", self.kv_data_count)) - self.flush() - self.state = WriterState.HEADER - - def write_kv_data_to_file(self): - if self.state is not WriterState.HEADER: - raise ValueError(f'Expected output file to contain the header, got {self.state}') - - self.fout.write(self.kv_data) - self.flush() - self.state = WriterState.KV_DATA - - def write_ti_data_to_file(self): - if self.state is not WriterState.KV_DATA: - raise ValueError(f'Expected output file to contain KV data, got {self.state}') - - self.fout.write(self.ti_data) - self.flush() - self.state = WriterState.TI_DATA - - def add_key(self, key: str): - self.add_val(key, GGUFValueType.STRING, add_vtype=False) - - def add_uint8(self, key: str, val: int): - self.add_key(key) - self.add_val(val, GGUFValueType.UINT8) - - def add_int8(self, key: str, val: int): - self.add_key(key) - self.add_val(val, GGUFValueType.INT8) - - def add_uint16(self, key: str, val: int): - self.add_key(key) - self.add_val(val, GGUFValueType.UINT16) - - def add_int16(self, key: str, val: int): - self.add_key(key) - self.add_val(val, GGUFValueType.INT16) - - def add_uint32(self, key: str, val: int): - self.add_key(key) - self.add_val(val, GGUFValueType.UINT32) - - def add_int32(self, key: str, val: int): - self.add_key(key) - self.add_val(val, GGUFValueType.INT32) - - def add_float32(self, key: str, val: float): - self.add_key(key) - self.add_val(val, GGUFValueType.FLOAT32) - - def add_uint64(self, key: str, val: int): - self.add_key(key) - self.add_val(val, GGUFValueType.UINT64) - - def add_int64(self, key: str, val: int): - self.add_key(key) - self.add_val(val, GGUFValueType.INT64) - - def add_float64(self, key: str, val: float): - self.add_key(key) - self.add_val(val, GGUFValueType.FLOAT64) - - def add_bool(self, key: str, val: bool): - self.add_key(key) - self.add_val(val, GGUFValueType.BOOL) - - def add_string(self, key: str, val: str): - if len(val) == 0: - return - self.add_key(key) - self.add_val(val, GGUFValueType.STRING) - - def add_array(self, key: str, val: Sequence[Any]): - if not isinstance(val, Sequence): - raise ValueError("Value must be a sequence for array type") - - self.add_key(key) - self.add_val(val, GGUFValueType.ARRAY) - - def add_val(self, val: Any, vtype: GGUFValueType | None = None, add_vtype: bool = True): - if vtype is None: - vtype = GGUFValueType.get_type(val) - - if add_vtype: - self.kv_data += struct.pack(f"{self.pack_prefix}I", vtype) - self.kv_data_count += 1 - - pack_fmt = self._simple_value_packing.get(vtype) - if pack_fmt is not None: - self.kv_data += struct.pack(pack_fmt, val) - elif vtype == GGUFValueType.STRING: - encoded_val = val.encode("utf8") if isinstance(val, str) else val - self.kv_data += struct.pack(f"{self.pack_prefix}Q", len(encoded_val)) - self.kv_data += encoded_val - elif vtype == GGUFValueType.ARRAY and isinstance(val, Sequence) and len(val) > 0: - ltype = GGUFValueType.get_type(val[0]) - if not all(GGUFValueType.get_type(i) is ltype for i in val[1:]): - raise ValueError("All items in a GGUF array should be of the same type") - self.kv_data += struct.pack(f"{self.pack_prefix}I", ltype) - self.kv_data += struct.pack(f"{self.pack_prefix}Q", len(val)) - for item in val: - self.add_val(item, add_vtype=False) - else: - raise ValueError("Invalid GGUF metadata value type or value") - - @staticmethod - def ggml_pad(x: int, n: int) -> int: - return ((x + n - 1) // n) * n - - def add_tensor_info(self, name: str, tensor_shape: Sequence[int], tensor_dtype: np.dtype[np.float16] | np.dtype[np.float32], tensor_nbytes: int, raw_dtype: GGMLQuantizationType | None = None): - if self.state is not WriterState.EMPTY: - raise ValueError(f'Expected output file to be empty, got {self.state}') - - assert raw_dtype is not None or tensor_dtype in (np.float32, np.float16), "Only F32 and F16 tensors are supported for now" - - encoded_name = name.encode("utf8") - self.ti_data += struct.pack(f"{self.pack_prefix}Q", len(encoded_name)) - self.ti_data += encoded_name - n_dims = len(tensor_shape) - self.ti_data += struct.pack(f"{self.pack_prefix}I", n_dims) - for i in range(n_dims): - self.ti_data += struct.pack(f"{self.pack_prefix}Q", tensor_shape[n_dims - 1 - i]) - if raw_dtype is None: - dtype = GGMLQuantizationType.F32 if tensor_dtype == np.float32 else GGMLQuantizationType.F16 - else: - dtype = raw_dtype - self.ti_data += struct.pack(f"{self.pack_prefix}I", dtype) - self.ti_data += struct.pack(f"{self.pack_prefix}Q", self.offset_tensor) - self.offset_tensor += GGUFWriter.ggml_pad(tensor_nbytes, self.data_alignment) - self.ti_data_count += 1 - - def add_tensor(self, name: str, tensor: np.ndarray[Any, Any], raw_shape: Sequence[int] | None = None, raw_dtype: GGMLQuantizationType | None = None): - if self.endianess == GGUFEndian.BIG: - tensor.byteswap(inplace=True) - if self.use_temp_file and self.temp_file is None: - fp = tempfile.SpooledTemporaryFile(mode="w+b", max_size=256*1024*1024) - fp.seek(0) - self.temp_file = fp - - shape: Sequence[int] = raw_shape if raw_shape is not None else tensor.shape - self.add_tensor_info(name, shape, tensor.dtype, tensor.nbytes, raw_dtype = raw_dtype) - - if self.temp_file is None: - self.tensors.append(tensor) - return - - tensor.tofile(self.temp_file) - self.write_padding(self.temp_file, tensor.nbytes) - - def write_padding(self, fp: IO[bytes], n: int, align: int | None = None): - pad = GGUFWriter.ggml_pad(n, align if align is not None else self.data_alignment) - n - if pad != 0: - fp.write(bytes([0] * pad)) - - def write_tensor_data(self, tensor: np.ndarray[Any, Any]): - if self.state is not WriterState.TI_DATA: - raise ValueError(f'Expected output file to contain tensor info, got {self.state}') - - if self.endianess==GGUFEndian.BIG: - tensor.byteswap(inplace=True) - self.write_padding(self.fout, self.fout.tell()) - tensor.tofile(self.fout) - self.write_padding(self.fout, tensor.nbytes) - - def write_tensors_to_file(self): - self.write_ti_data_to_file() - - self.write_padding(self.fout, self.fout.tell()) - - if self.temp_file is None: - while True: - try: - tensor = self.tensors.pop(0) - except IndexError: - break - tensor.tofile(self.fout) - self.write_padding(self.fout, tensor.nbytes) - return - - self.temp_file.seek(0) - - shutil.copyfileobj(self.temp_file, self.fout) - self.flush() - self.temp_file.close() - - def flush(self): - self.fout.flush() - - def close(self): - self.fout.close() - - def add_architecture(self): - self.add_string(KEY_GENERAL_ARCHITECTURE, self.arch) - - def add_author(self, author: str): - self.add_string(KEY_GENERAL_AUTHOR, author) - - def add_tensor_data_layout(self, layout: str): - self.add_string(KEY_TENSOR_DATA_LAYOUT.format(arch=self.arch), layout) - - def add_url(self, url: str): - self.add_string(KEY_GENERAL_URL, url) - - def add_description(self, description: str): - self.add_string(KEY_GENERAL_DESCRIPTION, description) - - def add_source_url(self, url: str): - self.add_string(KEY_GENERAL_SOURCE_URL, url) - - def add_source_hf_repo(self, repo: str): - self.add_string(KEY_GENERAL_SOURCE_HF_REPO, repo) - - def add_file_type(self, ftype: int): - self.add_uint32(KEY_GENERAL_FILE_TYPE, ftype) - - def add_name(self, name: str): - self.add_string(KEY_GENERAL_NAME, name) - - def add_quantization_version(self, quantization_version: GGMLQuantizationType): - self.add_uint32( - KEY_GENERAL_QUANTIZATION_VERSION, quantization_version) - - def add_custom_alignment(self, alignment: int): - self.data_alignment = alignment - self.add_uint32(KEY_GENERAL_ALIGNMENT, alignment) - - def add_context_length(self, length: int): - self.add_uint32( - KEY_CONTEXT_LENGTH.format(arch=self.arch), length) - - def add_embedding_length(self, length: int): - self.add_uint32( - KEY_EMBEDDING_LENGTH.format(arch=self.arch), length) - - def add_block_count(self, length: int): - self.add_uint32( - KEY_BLOCK_COUNT.format(arch=self.arch), length) - - def add_feed_forward_length(self, length: int): - self.add_uint32( - KEY_FEED_FORWARD_LENGTH.format(arch=self.arch), length) - - def add_parallel_residual(self, use: bool): - self.add_bool( - KEY_USE_PARALLEL_RESIDUAL.format(arch=self.arch), use) - - def add_head_count(self, count: int): - self.add_uint32( - KEY_ATTENTION_HEAD_COUNT.format(arch=self.arch), count) - - def add_head_count_kv(self, count: int): - self.add_uint32( - KEY_ATTENTION_HEAD_COUNT_KV.format(arch=self.arch), count) - - def add_max_alibi_bias(self, bias: float): - self.add_float32( - KEY_ATTENTION_MAX_ALIBI_BIAS.format(arch=self.arch), bias) - - def add_clamp_kqv(self, value: float): - self.add_float32( - KEY_ATTENTION_CLAMP_KQV.format(arch=self.arch), value) - - def add_layer_norm_eps(self, value: float): - self.add_float32( - KEY_ATTENTION_LAYERNORM_EPS.format(arch=self.arch), value) - - def add_layer_norm_rms_eps(self, value: float): - self.add_float32( - KEY_ATTENTION_LAYERNORM_RMS_EPS.format(arch=self.arch), value) - - def add_rope_dimension_count(self, count: int): - self.add_uint32( - KEY_ROPE_DIMENSION_COUNT.format(arch=self.arch), count) - - def add_rope_freq_base(self, value: float): - self.add_float32(KEY_ROPE_FREQ_BASE.format(arch=self.arch), value) - - def add_rope_scaling_type(self, value: RopeScalingType): - self.add_string(KEY_ROPE_SCALING_TYPE.format(arch=self.arch), value.value) - - def add_rope_scaling_factor(self, value: float): - self.add_float32(KEY_ROPE_SCALING_FACTOR.format(arch=self.arch), value) - - def add_rope_scaling_orig_ctx_len(self, value: int): - self.add_uint32(KEY_ROPE_SCALING_ORIG_CTX_LEN.format(arch=self.arch), value) - - def add_rope_scaling_finetuned(self, value: bool): - self.add_bool(KEY_ROPE_SCALING_FINETUNED.format(arch=self.arch), value) - - def add_tokenizer_model(self, model: str): - self.add_string(KEY_TOKENIZER_MODEL, model) - - def add_token_list(self, tokens: Sequence[str] | Sequence[bytes] | Sequence[bytearray]): - self.add_array(KEY_TOKENIZER_LIST, tokens) - - def add_token_merges(self, merges: Sequence[str] | Sequence[bytes] | Sequence[bytearray]): - self.add_array(KEY_TOKENIZER_MERGES, merges) - - def add_token_types(self, types: Sequence[TokenType] | Sequence[int]): - self.add_array(KEY_TOKENIZER_TOKEN_TYPE, types) - - def add_token_scores(self, scores: Sequence[float]): - self.add_array(KEY_TOKENIZER_SCORES, scores) - - def add_bos_token_id(self, id: int): - self.add_uint32(KEY_TOKENIZER_BOS_ID, id) - - def add_eos_token_id(self, id: int): - self.add_uint32(KEY_TOKENIZER_EOS_ID, id) - - def add_unk_token_id(self, id: int): - self.add_uint32(KEY_TOKENIZER_UNK_ID, id) - - def add_sep_token_id(self, id: int): - self.add_uint32(KEY_TOKENIZER_SEP_ID, id) - - def add_pad_token_id(self, id: int): - self.add_uint32(KEY_TOKENIZER_PAD_ID, id) - - -class SpecialVocab: - merges: list[str] - special_token_ids: dict[str, int] - - def __init__( - self, path: str | os.PathLike[str], load_merges: bool = False, - special_token_types: tuple[str, ...] | None = None, - n_vocab: int | None = None, - ): - self.special_token_ids = {} - self.n_vocab = n_vocab - self.load_merges = load_merges - self.merges = [] - if special_token_types is not None: - self.special_token_types = special_token_types - else: - self.special_token_types = ('bos', 'eos', 'unk', 'sep', 'pad') - self._load(Path(path)) - - def _load(self, path: Path) -> None: - if not self._try_load_from_tokenizer_json(path): - self._try_load_from_config_json(path) - - def _set_special_token(self, typ: str, tid: Any): - if not isinstance(tid, int) or tid < 0: - return - if self.n_vocab is None or tid < self.n_vocab: - self.special_token_ids[typ] = tid - return - print(f'gguf: WARNING: Special token type {typ}, id {tid} out of range, must be under {self.n_vocab} - skipping', - file = sys.stderr) - - - def _try_load_from_tokenizer_json(self, path: Path) -> bool: - tokenizer_file = path / 'tokenizer.json' - if not tokenizer_file.is_file(): - return False - with open(tokenizer_file, encoding = 'utf-8') as f: - tokenizer = json.load(f) - if self.load_merges: - merges = tokenizer.get('model', {}).get('merges') - if isinstance(merges, list) and len(merges) > 0 and isinstance(merges[0], str): - self.merges = merges - tokenizer_config_file = path / 'tokenizer_config.json' - added_tokens = tokenizer.get('added_tokens') - if added_tokens is None or not tokenizer_config_file.is_file(): - return True - with open(tokenizer_config_file, encoding = 'utf-8') as f: - tokenizer_config = json.load(f) - for typ in self.special_token_types: - entry = tokenizer_config.get(f'{typ}_token') - if isinstance(entry, str): - tc_content = entry - elif isinstance(entry, dict): - entry_content = entry.get('content') - if not isinstance(entry_content, str): - continue - tc_content = entry_content - else: - continue - # We only need the first match here. - maybe_token_id = next(( - atok.get('id') for atok in added_tokens - if atok.get('content') == tc_content), None) - self._set_special_token(typ, maybe_token_id) - return True - - def _try_load_from_config_json(self, path: Path) -> bool: - config_file = path / 'config.json' - if not config_file.is_file(): - return False - with open(config_file, encoding = 'utf-8') as f: - config = json.load(f) - for typ in self.special_token_types: - self._set_special_token(typ, config.get(f'{typ}_token_id')) - return True - - def add_to_gguf(self, gw: GGUFWriter, quiet: bool = False) -> None: - if len(self.merges) > 0: - if not quiet: - print(f'gguf: Adding {len(self.merges)} merge(s).') - gw.add_token_merges(self.merges) - for typ, tokid in self.special_token_ids.items(): - handler: Callable[[int], None] | None = getattr(gw, f'add_{typ}_token_id', None) - if handler is None: - print(f'gguf: WARNING: No handler for special token type {typ} with id {tokid} - skipping', file = sys.stderr) - continue - if not quiet: - print(f'gguf: Setting special token type {typ} to {tokid}') - handler(tokid) - - def __repr__(self) -> str: - return f'<SpecialVocab with {len(self.merges)} merges and special tokens {self.special_token_ids or "unset"}>' - - -# Example usage: -if __name__ == "__main__": - # Example usage with a file - gguf_writer = GGUFWriter("example.gguf", "llama") - - gguf_writer.add_architecture() - gguf_writer.add_block_count(12) - gguf_writer.add_uint32("answer", 42) # Write a 32-bit integer - gguf_writer.add_float32("answer_in_float", 42.0) # Write a 32-bit float - gguf_writer.add_custom_alignment(64) - - tensor1 = np.ones((32,), dtype=np.float32) * 100.0 - tensor2 = np.ones((64,), dtype=np.float32) * 101.0 - tensor3 = np.ones((96,), dtype=np.float32) * 102.0 - - gguf_writer.add_tensor("tensor1", tensor1) - gguf_writer.add_tensor("tensor2", tensor2) - gguf_writer.add_tensor("tensor3", tensor3) - - gguf_writer.write_header_to_file() - gguf_writer.write_kv_data_to_file() - gguf_writer.write_tensors_to_file() - - gguf_writer.close() +importlib.reload(gguf) |