diff options
Diffstat (limited to 'gguf-py/gguf/gguf.py')
-rw-r--r-- | gguf-py/gguf/gguf.py | 66 |
1 files changed, 34 insertions, 32 deletions
diff --git a/gguf-py/gguf/gguf.py b/gguf-py/gguf/gguf.py index de3edbc9..b1bc4205 100644 --- a/gguf-py/gguf/gguf.py +++ b/gguf-py/gguf/gguf.py @@ -1,16 +1,18 @@ #!/usr/bin/env python3 +from __future__ import annotations + +import json +import os import shutil -import sys import struct +import sys import tempfile -import numpy as np -import json -import os -from pathlib import Path - from enum import IntEnum, auto from io import BufferedWriter -from typing import Any, BinaryIO, Callable, IO, Dict, List, Optional, Sequence, Tuple, Union +from pathlib import Path +from typing import IO, Any, BinaryIO, Callable, Sequence + +import numpy as np # # constants @@ -103,7 +105,7 @@ class MODEL_TENSOR(IntEnum): FFN_NORM : int = auto() -MODEL_ARCH_NAMES: Dict[MODEL_ARCH, str] = { +MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = { MODEL_ARCH.LLAMA: "llama", MODEL_ARCH.FALCON: "falcon", MODEL_ARCH.GPT2: "gpt2", @@ -112,7 +114,7 @@ MODEL_ARCH_NAMES: Dict[MODEL_ARCH, str] = { MODEL_ARCH.MPT: "mpt", } -MODEL_TENSOR_NAMES: Dict[MODEL_ARCH, Dict[MODEL_TENSOR, str]] = { +MODEL_TENSOR_NAMES: dict[MODEL_ARCH, dict[MODEL_TENSOR, str]] = { MODEL_ARCH.LLAMA: { MODEL_TENSOR.TOKEN_EMBD: "token_embd", MODEL_TENSOR.OUTPUT_NORM: "output_norm", @@ -158,7 +160,7 @@ MODEL_TENSOR_NAMES: Dict[MODEL_ARCH, Dict[MODEL_TENSOR, str]] = { } # tensors that will not be serialized -MODEL_TENSOR_SKIP: Dict[MODEL_ARCH, List[MODEL_TENSOR]] = { +MODEL_TENSOR_SKIP: dict[MODEL_ARCH, list[MODEL_TENSOR]] = { MODEL_ARCH.LLAMA: [ MODEL_TENSOR.ROPE_FREQS, MODEL_TENSOR.ATTN_ROT_EMBD, @@ -167,7 +169,7 @@ MODEL_TENSOR_SKIP: Dict[MODEL_ARCH, List[MODEL_TENSOR]] = { class TensorNameMap: - mappings_cfg: Dict[MODEL_TENSOR, Tuple[str, ...]] = { + mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = { # Token embeddings MODEL_TENSOR.TOKEN_EMBD: ( "gpt_neox.embed_in", # gptneox @@ -203,7 +205,7 @@ class TensorNameMap: ), } - block_mappings_cfg: Dict[MODEL_TENSOR, Tuple[str, ...]] = { + block_mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = { # Attention norm MODEL_TENSOR.ATTN_NORM: ( "gpt_neox.layers.{bid}.input_layernorm", # gptneox @@ -298,9 +300,9 @@ class TensorNameMap: ), } - mapping: Dict[str, Tuple[MODEL_TENSOR, str]] + mapping: dict[str, tuple[MODEL_TENSOR, str]] - tensor_names: Dict[MODEL_TENSOR, str] + tensor_names: dict[MODEL_TENSOR, str] def __init__(self, arch: MODEL_ARCH, n_blocks: int): mapping = self.mapping = {} @@ -321,7 +323,7 @@ class TensorNameMap: key = key.format(bid = bid) mapping[key] = (tensor, tensor_name) - def get_type_and_name(self, key: str, try_suffixes: Sequence[str]) -> Optional[Tuple[MODEL_TENSOR, str]]: + def get_type_and_name(self, key: str, try_suffixes: Sequence[str]) -> tuple[MODEL_TENSOR, str] | None: result = self.mapping.get(key) if result is not None: return result @@ -332,13 +334,13 @@ class TensorNameMap: return (result[0], result[1] + suffix) return None - def get_name(self, key: str, try_suffixes: Sequence[str]) -> Optional[str]: + def get_name(self, key: str, try_suffixes: Sequence[str]) -> str | None: result = self.get_type_and_name(key, try_suffixes = try_suffixes) if result is None: return None return result[1] - def get_type(self, key: str, try_suffixes: Sequence[str]) -> Optional[MODEL_TENSOR]: + def get_type(self, key: str, try_suffixes: Sequence[str]) -> MODEL_TENSOR | None: result = self.get_type_and_name(key, try_suffixes = try_suffixes) if result is None: return None @@ -432,10 +434,10 @@ class GGUFWriter: ti_data = b"" ti_data_count = 0 use_temp_file: bool - temp_file: Optional[tempfile.SpooledTemporaryFile[bytes]] = None - tensors: List[Tuple[np.ndarray[Any, Any], int]] + temp_file: tempfile.SpooledTemporaryFile[bytes] | None = None + tensors: list[tuple[np.ndarray[Any, Any], int]] - def __init__(self, path: Union[os.PathLike[str], str], arch: str, use_temp_file = True): + def __init__(self, path: os.PathLike[str] | str, arch: str, use_temp_file = True): self.fout = open(path, "wb") self.arch = arch self.add_architecture() @@ -531,7 +533,7 @@ class GGUFWriter: GGUFValueType.FLOAT64: "<d", GGUFValueType.BOOL: "?" , } - def add_val(self, val: Any, vtype: Optional[GGUFValueType] = None, add_vtype: bool = True): + def add_val(self, val: Any, vtype: GGUFValueType | None = None, add_vtype: bool = True): if vtype is None: vtype = GGUFValueType.get_type(val) @@ -561,7 +563,7 @@ class GGUFWriter: def ggml_pad(x: int, n: int) -> int: return ((x + n - 1) // n) * n - def add_tensor_info(self, name: str, tensor_shape: Sequence[int], tensor_dtype: Union[np.dtype[np.float16], np.dtype[np.float32]], tensor_nbytes: int, raw_dtype: Optional[GGMLQuantizationType] = None): + def add_tensor_info(self, name: str, tensor_shape: Sequence[int], tensor_dtype: np.dtype[np.float16] | np.dtype[np.float32], tensor_nbytes: int, raw_dtype: GGMLQuantizationType | None = None): assert raw_dtype is not None or tensor_dtype in (np.float32, np.float16), "Only F32 and F16 tensors are supported for now" encoded_name = name.encode("utf8") @@ -580,7 +582,7 @@ class GGUFWriter: self.offset_tensor += GGUFWriter.ggml_pad(tensor_nbytes, self.data_alignment) self.ti_data_count += 1 - def add_tensor(self, name: str, tensor: np.ndarray[Any, Any], raw_shape: Optional[Sequence[int]] = None, raw_dtype: Optional[GGMLQuantizationType] = None): + def add_tensor(self, name: str, tensor: np.ndarray[Any, Any], raw_shape: Sequence[int] | None = None, raw_dtype: GGMLQuantizationType | None = None): if self.use_temp_file and self.temp_file is None: fp = tempfile.SpooledTemporaryFile(mode="w+b", max_size=256*1024*1024) fp.seek(0) @@ -600,7 +602,7 @@ class GGUFWriter: if pad != 0: self.temp_file.write(bytes([0] * pad)) - def write_padding(self, fp: BinaryIO, n: int, align: Optional[int] = None): + def write_padding(self, fp: BinaryIO, n: int, align: int | None = None): pad = GGUFWriter.ggml_pad(n, align if align is not None else self.data_alignment) - n if pad != 0: fp.write(bytes([0] * pad)) @@ -726,13 +728,13 @@ class GGUFWriter: def add_tokenizer_model(self, model: str): self.add_string(KEY_TOKENIZER_MODEL, model) - def add_token_list(self, tokens: Union[Sequence[str], Sequence[bytes], Sequence[bytearray]]): + def add_token_list(self, tokens: Sequence[str] | Sequence[bytes] | Sequence[bytearray]): self.add_array(KEY_TOKENIZER_LIST, tokens) - def add_token_merges(self, merges: Union[Sequence[str], Sequence[bytes], Sequence[bytearray]]): + def add_token_merges(self, merges: Sequence[str] | Sequence[bytes] | Sequence[bytearray]): self.add_array(KEY_TOKENIZER_MERGES, merges) - def add_token_types(self, types: Union[Sequence[TokenType], Sequence[int]]): + def add_token_types(self, types: Sequence[TokenType] | Sequence[int]): self.add_array(KEY_TOKENIZER_TOKEN_TYPE, types) def add_token_scores(self, scores: Sequence[float]): @@ -756,11 +758,11 @@ class GGUFWriter: class SpecialVocab: load_merges: bool = False - merges: List[str] = [] - special_token_types: Tuple[str, ...] = tuple(('bos', 'eos', 'unk', 'sep', 'pad')) - special_token_ids: Dict[str, int] = {} + merges: list[str] = [] + special_token_types: tuple[str, ...] = ('bos', 'eos', 'unk', 'sep', 'pad') + special_token_ids: dict[str, int] = {} - def __init__(self, path: Path, load_merges: bool = False, special_token_types: Optional[Tuple[str, ...]] = None): + def __init__(self, path: Path, load_merges: bool = False, special_token_types: tuple[str, ...] | None = None): self.special_token_ids = {} self.load_merges = load_merges if special_token_types is not None: @@ -821,7 +823,7 @@ class SpecialVocab: print(f'gguf: Adding {len(self.merges)} merge(s).') gw.add_token_merges(self.merges) for typ, tokid in self.special_token_ids.items(): - handler: Optional[Callable[[int], None]] = getattr(gw, f'add_{typ}_token_id', None) + handler: Callable[[int], None] | None = getattr(gw, f'add_{typ}_token_id', None) if handler is None: print(f'gguf: WARNING: No handler for special token type {typ} with id {tokid} - skipping') continue |