diff options
Diffstat (limited to 'gguf-py/gguf/quants.py')
-rw-r--r-- | gguf-py/gguf/quants.py | 109 |
1 files changed, 109 insertions, 0 deletions
diff --git a/gguf-py/gguf/quants.py b/gguf-py/gguf/quants.py new file mode 100644 index 00000000..e7fc0eae --- /dev/null +++ b/gguf-py/gguf/quants.py @@ -0,0 +1,109 @@ +from __future__ import annotations +from typing import Callable + +from numpy.typing import DTypeLike + +from .constants import GGML_QUANT_SIZES, GGMLQuantizationType +from .lazy import LazyNumpyTensor + +import numpy as np + + +# same as ggml_compute_fp32_to_bf16 in ggml-impl.h +def __compute_fp32_to_bf16(n: np.ndarray) -> np.ndarray: + n = n.astype(np.float32, copy=False).view(np.int32) + # force nan to quiet + n = np.where((n & 0x7fffffff) > 0x7f800000, (n & 0xffff0000) | (64 << 16), n) + # flush subnormals to zero + n = np.where((n & 0x7f800000) == 0, n & 0x80000000, n) + # round to nearest even + n = (n + (0x7fff + ((n >> 16) & 1))) >> 16 + return n.astype(np.int16) + + +# This is faster than np.vectorize and np.apply_along_axis because it works on more than one row at a time +def __apply_over_grouped_rows(func: Callable[[np.ndarray], np.ndarray], arr: np.ndarray, otype: DTypeLike, oshape: tuple[int, ...]) -> np.ndarray: + rows = arr.reshape((-1, arr.shape[-1])) + osize = 1 + for dim in oshape: + osize *= dim + out = np.empty(shape=osize, dtype=otype) + # compute over groups of 16 rows (arbitrary, but seems good for performance) + n_groups = rows.shape[0] // 16 + np.concatenate([func(group).ravel() for group in np.array_split(rows, n_groups)], axis=0, out=out) + return out.reshape(oshape) + + +def __quantize_bf16_array(n: np.ndarray) -> np.ndarray: + return __apply_over_grouped_rows(__compute_fp32_to_bf16, arr=n, otype=np.int16, oshape=n.shape) + + +__quantize_bf16_lazy = LazyNumpyTensor._wrap_fn(__quantize_bf16_array, meta_noop=np.int16) + + +def quantize_bf16(n: np.ndarray): + if type(n) is LazyNumpyTensor: + return __quantize_bf16_lazy(n) + else: + return __quantize_bf16_array(n) + + +__q8_block_size, __q8_type_size = GGML_QUANT_SIZES[GGMLQuantizationType.Q8_0] + + +def can_quantize_to_q8_0(n: np.ndarray) -> bool: + return n.shape[-1] % __q8_block_size == 0 + + +# round away from zero +# ref: https://stackoverflow.com/a/59143326/22827863 +def np_roundf(n: np.ndarray) -> np.ndarray: + a = abs(n) + floored = np.floor(a) + b = floored + np.floor(2 * (a - floored)) + return np.sign(n) * b + + +def __quantize_q8_0_shape_change(s: tuple[int, ...]) -> tuple[int, ...]: + return (*s[:-1], s[-1] // __q8_block_size * __q8_type_size) + + +# Implementation of Q8_0 with bit-exact same results as reference implementation in ggml-quants.c +def __quantize_q8_0_rows(n: np.ndarray) -> np.ndarray: + shape = n.shape + assert shape[-1] % __q8_block_size == 0 + + n_blocks = n.size // __q8_block_size + + blocks = n.reshape((n_blocks, __q8_block_size)).astype(np.float32, copy=False) + + d = abs(blocks).max(axis=1, keepdims=True) / 127 + with np.errstate(divide="ignore"): + id = np.where(d == 0, 0, 1 / d) + qs = np_roundf(blocks * id) + + # (n_blocks, 2) + d = d.astype(np.float16).view(np.uint8) + # (n_blocks, block_size) + qs = qs.astype(np.int8).view(np.uint8) + + assert d.shape[1] + qs.shape[1] == __q8_type_size + + return np.concatenate([d, qs], axis=1).reshape(__quantize_q8_0_shape_change(shape)) + + +def __quantize_q8_0_array(n: np.ndarray) -> np.ndarray: + return __apply_over_grouped_rows(__quantize_q8_0_rows, arr=n, otype=np.uint8, oshape=__quantize_q8_0_shape_change(n.shape)) + + +__quantize_q8_0_lazy = LazyNumpyTensor._wrap_fn( + __quantize_q8_0_array, + meta_noop=(np.uint8, __quantize_q8_0_shape_change), +) + + +def quantize_q8_0(data: np.ndarray): + if type(data) is LazyNumpyTensor: + return __quantize_q8_0_lazy(data) + else: + return __quantize_q8_0_array(data) |