summaryrefslogtreecommitdiff
path: root/gguf-py/gguf/tensor_mapping.py
diff options
context:
space:
mode:
Diffstat (limited to 'gguf-py/gguf/tensor_mapping.py')
-rw-r--r--gguf-py/gguf/tensor_mapping.py18
1 files changed, 10 insertions, 8 deletions
diff --git a/gguf-py/gguf/tensor_mapping.py b/gguf-py/gguf/tensor_mapping.py
index 22ad8b8f..cc623601 100644
--- a/gguf-py/gguf/tensor_mapping.py
+++ b/gguf-py/gguf/tensor_mapping.py
@@ -10,7 +10,7 @@ class TensorNameMap:
# Token embeddings
MODEL_TENSOR.TOKEN_EMBD: (
"gpt_neox.embed_in", # gptneox
- "transformer.wte", # gpt2 gpt-j mpt refact
+ "transformer.wte", # gpt2 gpt-j mpt refact qwen
"transformer.word_embeddings", # falcon
"word_embeddings", # bloom
"model.embed_tokens", # llama-hf
@@ -38,7 +38,7 @@ class TensorNameMap:
# Output
MODEL_TENSOR.OUTPUT: (
"embed_out", # gptneox
- "lm_head", # gpt2 mpt falcon llama-hf baichuan
+ "lm_head", # gpt2 mpt falcon llama-hf baichuan qwen
"output", # llama-pth bloom
"word_embeddings_for_head", # persimmon
),
@@ -51,7 +51,7 @@ class TensorNameMap:
"norm", # llama-pth
"embeddings.LayerNorm", # bert
"transformer.norm_f", # mpt
- "ln_f", # refact bloom
+ "ln_f", # refact bloom qwen
"language_model.encoder.final_layernorm", # persimmon
),
@@ -65,7 +65,7 @@ class TensorNameMap:
# Attention norm
MODEL_TENSOR.ATTN_NORM: (
"gpt_neox.layers.{bid}.input_layernorm", # gptneox
- "transformer.h.{bid}.ln_1", # gpt2 gpt-j refact
+ "transformer.h.{bid}.ln_1", # gpt2 gpt-j refact qwen
"transformer.blocks.{bid}.norm_1", # mpt
"transformer.h.{bid}.input_layernorm", # falcon7b
"h.{bid}.input_layernorm", # bloom
@@ -85,7 +85,7 @@ class TensorNameMap:
# Attention query-key-value
MODEL_TENSOR.ATTN_QKV: (
"gpt_neox.layers.{bid}.attention.query_key_value", # gptneox
- "transformer.h.{bid}.attn.c_attn", # gpt2
+ "transformer.h.{bid}.attn.c_attn", # gpt2 qwen
"transformer.blocks.{bid}.attn.Wqkv", # mpt
"transformer.h.{bid}.self_attention.query_key_value", # falcon
"h.{bid}.self_attention.query_key_value", # bloom
@@ -119,7 +119,7 @@ class TensorNameMap:
# Attention output
MODEL_TENSOR.ATTN_OUT: (
"gpt_neox.layers.{bid}.attention.dense", # gptneox
- "transformer.h.{bid}.attn.c_proj", # gpt2 refact
+ "transformer.h.{bid}.attn.c_proj", # gpt2 refact qwen
"transformer.blocks.{bid}.attn.out_proj", # mpt
"transformer.h.{bid}.self_attention.dense", # falcon
"h.{bid}.self_attention.dense", # bloom
@@ -139,7 +139,7 @@ class TensorNameMap:
# Feed-forward norm
MODEL_TENSOR.FFN_NORM: (
"gpt_neox.layers.{bid}.post_attention_layernorm", # gptneox
- "transformer.h.{bid}.ln_2", # gpt2 refact
+ "transformer.h.{bid}.ln_2", # gpt2 refact qwen
"h.{bid}.post_attention_layernorm", # bloom
"transformer.blocks.{bid}.norm_2", # mpt
"model.layers.{bid}.post_attention_layernorm", # llama-hf
@@ -161,18 +161,20 @@ class TensorNameMap:
"encoder.layer.{bid}.intermediate.dense", # bert
"transformer.h.{bid}.mlp.fc_in", # gpt-j
"language_model.encoder.layers.{bid}.mlp.dense_h_to_4h", # persimmon
+ "transformer.h.{bid}.mlp.w1", # qwen
),
# Feed-forward gate
MODEL_TENSOR.FFN_GATE: (
"model.layers.{bid}.mlp.gate_proj", # llama-hf refact
"layers.{bid}.feed_forward.w1", # llama-pth
+ "transformer.h.{bid}.mlp.w2", # qwen
),
# Feed-forward down
MODEL_TENSOR.FFN_DOWN: (
"gpt_neox.layers.{bid}.mlp.dense_4h_to_h", # gptneox
- "transformer.h.{bid}.mlp.c_proj", # gpt2 refact
+ "transformer.h.{bid}.mlp.c_proj", # gpt2 refact qwen
"transformer.blocks.{bid}.ffn.down_proj", # mpt
"transformer.h.{bid}.mlp.dense_4h_to_h", # falcon
"h.{bid}.mlp.dense_4h_to_h", # bloom