diff options
Diffstat (limited to 'gguf-py/scripts/gguf_dump.py')
-rwxr-xr-x | gguf-py/scripts/gguf_dump.py | 454 |
1 files changed, 454 insertions, 0 deletions
diff --git a/gguf-py/scripts/gguf_dump.py b/gguf-py/scripts/gguf_dump.py new file mode 100755 index 00000000..1b654654 --- /dev/null +++ b/gguf-py/scripts/gguf_dump.py @@ -0,0 +1,454 @@ +#!/usr/bin/env python3 +from __future__ import annotations + +import logging +import argparse +import os +import re +import sys +from pathlib import Path +from typing import Any + +import numpy as np + +# Necessary to load the local gguf package +if "NO_LOCAL_GGUF" not in os.environ and (Path(__file__).parent.parent.parent / 'gguf-py').exists(): + sys.path.insert(0, str(Path(__file__).parent.parent)) + +from gguf import GGUFReader, GGUFValueType, ReaderTensor # noqa: E402 + +logger = logging.getLogger("gguf-dump") + + +def get_file_host_endian(reader: GGUFReader) -> tuple[str, str]: + host_endian = 'LITTLE' if np.uint32(1) == np.uint32(1).newbyteorder("<") else 'BIG' + if reader.byte_order == 'S': + file_endian = 'BIG' if host_endian == 'LITTLE' else 'LITTLE' + else: + file_endian = host_endian + return (host_endian, file_endian) + + +# For more information about what field.parts and field.data represent, +# please see the comments in the modify_gguf.py example. +def dump_metadata(reader: GGUFReader, args: argparse.Namespace) -> None: + host_endian, file_endian = get_file_host_endian(reader) + print(f'* File is {file_endian} endian, script is running on a {host_endian} endian host.') # noqa: NP100 + print(f'* Dumping {len(reader.fields)} key/value pair(s)') # noqa: NP100 + for n, field in enumerate(reader.fields.values(), 1): + if not field.types: + pretty_type = 'N/A' + elif field.types[0] == GGUFValueType.ARRAY: + nest_count = len(field.types) - 1 + pretty_type = '[' * nest_count + str(field.types[-1].name) + ']' * nest_count + else: + pretty_type = str(field.types[-1].name) + + log_message = f' {n:5}: {pretty_type:10} | {len(field.data):8} | {field.name}' + if len(field.types) == 1: + curr_type = field.types[0] + if curr_type == GGUFValueType.STRING: + log_message += ' = {0}'.format(repr(str(bytes(field.parts[-1]), encoding='utf-8')[:60])) + elif field.types[0] in reader.gguf_scalar_to_np: + log_message += ' = {0}'.format(field.parts[-1][0]) + print(log_message) # noqa: NP100 + if args.no_tensors: + return + print(f'* Dumping {len(reader.tensors)} tensor(s)') # noqa: NP100 + for n, tensor in enumerate(reader.tensors, 1): + prettydims = ', '.join('{0:5}'.format(d) for d in list(tensor.shape) + [1] * (4 - len(tensor.shape))) + print(f' {n:5}: {tensor.n_elements:10} | {prettydims} | {tensor.tensor_type.name:7} | {tensor.name}') # noqa: NP100 + + +def dump_metadata_json(reader: GGUFReader, args: argparse.Namespace) -> None: + import json + host_endian, file_endian = get_file_host_endian(reader) + metadata: dict[str, Any] = {} + tensors: dict[str, Any] = {} + result = { + "filename": args.model, + "endian": file_endian, + "metadata": metadata, + "tensors": tensors, + } + for idx, field in enumerate(reader.fields.values()): + curr: dict[str, Any] = { + "index": idx, + "type": field.types[0].name if field.types else 'UNKNOWN', + "offset": field.offset, + } + metadata[field.name] = curr + if field.types[:1] == [GGUFValueType.ARRAY]: + curr["array_types"] = [t.name for t in field.types][1:] + if not args.json_array: + continue + itype = field.types[-1] + if itype == GGUFValueType.STRING: + curr["value"] = [str(bytes(field.parts[idx]), encoding="utf-8") for idx in field.data] + else: + curr["value"] = [pv for idx in field.data for pv in field.parts[idx].tolist()] + elif field.types[0] == GGUFValueType.STRING: + curr["value"] = str(bytes(field.parts[-1]), encoding="utf-8") + else: + curr["value"] = field.parts[-1].tolist()[0] + if not args.no_tensors: + for idx, tensor in enumerate(reader.tensors): + tensors[tensor.name] = { + "index": idx, + "shape": tensor.shape.tolist(), + "type": tensor.tensor_type.name, + "offset": tensor.field.offset, + } + json.dump(result, sys.stdout) + + +def markdown_table_with_alignment_support(header_map: list[dict[str, str]], data: list[dict[str, Any]]): + # JSON to Markdown table formatting: https://stackoverflow.com/a/72983854/2850957 + + # Alignment Utility Function + def strAlign(padding: int, alignMode: str | None, strVal: str): + if alignMode == 'center': + return strVal.center(padding) + elif alignMode == 'right': + return strVal.rjust(padding - 1) + ' ' + elif alignMode == 'left': + return ' ' + strVal.ljust(padding - 1) + else: # default left + return ' ' + strVal.ljust(padding - 1) + + def dashAlign(padding: int, alignMode: str | None): + if alignMode == 'center': + return ':' + '-' * (padding - 2) + ':' + elif alignMode == 'right': + return '-' * (padding - 1) + ':' + elif alignMode == 'left': + return ':' + '-' * (padding - 1) + else: # default left + return '-' * (padding) + + # Calculate Padding For Each Column Based On Header and Data Length + rowsPadding = {} + for index, columnEntry in enumerate(header_map): + padCount = max([len(str(v)) for d in data for k, v in d.items() if k == columnEntry['key_name']], default=0) + 2 + headerPadCount = len(columnEntry['header_name']) + 2 + rowsPadding[index] = headerPadCount if padCount <= headerPadCount else padCount + + # Render Markdown Header + rows = [] + rows.append('|'.join(strAlign(rowsPadding[index], columnEntry.get('align'), str(columnEntry['header_name'])) for index, columnEntry in enumerate(header_map))) + rows.append('|'.join(dashAlign(rowsPadding[index], columnEntry.get('align')) for index, columnEntry in enumerate(header_map))) + + # Render Tabular Data + for item in data: + rows.append('|'.join(strAlign(rowsPadding[index], columnEntry.get('align'), str(item[columnEntry['key_name']])) for index, columnEntry in enumerate(header_map))) + + # Convert Tabular String Rows Into String + tableString = "" + for row in rows: + tableString += f'|{row}|\n' + + return tableString + + +def element_count_rounded_notation(count: int) -> str: + if count > 1e15 : + # Quadrillion + scaled_amount = count * 1e-15 + scale_suffix = "Q" + elif count > 1e12 : + # Trillions + scaled_amount = count * 1e-12 + scale_suffix = "T" + elif count > 1e9 : + # Billions + scaled_amount = count * 1e-9 + scale_suffix = "B" + elif count > 1e6 : + # Millions + scaled_amount = count * 1e-6 + scale_suffix = "M" + elif count > 1e3 : + # Thousands + scaled_amount = count * 1e-3 + scale_suffix = "K" + else: + # Under Thousands + scaled_amount = count + scale_suffix = "" + return f"{'~' if count > 1e3 else ''}{round(scaled_amount)}{scale_suffix}" + + +def translate_tensor_name(name): + words = name.split(".") + + # Source: https://github.com/ggerganov/ggml/blob/master/docs/gguf.md#standardized-tensor-names + abbreviation_dictionary = { + 'token_embd': 'Token embedding', + 'pos_embd': 'Position embedding', + 'output_norm': 'Output normalization', + 'output': 'Output', + 'attn_norm': 'Attention normalization', + 'attn_norm_2': 'Attention normalization', + 'attn_qkv': 'Attention query-key-value', + 'attn_q': 'Attention query', + 'attn_k': 'Attention key', + 'attn_v': 'Attention value', + 'attn_output': 'Attention output', + 'ffn_norm': 'Feed-forward network normalization', + 'ffn_up': 'Feed-forward network "up"', + 'ffn_gate': 'Feed-forward network "gate"', + 'ffn_down': 'Feed-forward network "down"', + 'ffn_gate_inp': 'Expert-routing layer for the Feed-forward network in Mixture of Expert models', + 'ffn_gate_exp': 'Feed-forward network "gate" layer per expert in Mixture of Expert models', + 'ffn_down_exp': 'Feed-forward network "down" layer per expert in Mixture of Expert models', + 'ffn_up_exp': 'Feed-forward network "up" layer per expert in Mixture of Expert models', + 'ssm_in': 'State space model input projections', + 'ssm_conv1d': 'State space model rolling/shift', + 'ssm_x': 'State space model selective parametrization', + 'ssm_a': 'State space model state compression', + 'ssm_d': 'State space model skip connection', + 'ssm_dt': 'State space model time step', + 'ssm_out': 'State space model output projection', + 'blk': 'Block', + 'enc': 'Encoder', + 'dec': 'Decoder', + } + + expanded_words = [] + for word in words: + word_norm = word.strip().lower() + if word_norm in abbreviation_dictionary: + expanded_words.append(abbreviation_dictionary[word_norm].title()) + else: + expanded_words.append(word.title()) + + return ' '.join(expanded_words) + + +def dump_markdown_metadata(reader: GGUFReader, args: argparse.Namespace) -> None: + host_endian, file_endian = get_file_host_endian(reader) + markdown_content = "" + markdown_content += f'# {args.model} - GGUF Internal File Dump\n\n' + markdown_content += f'- Endian: {file_endian} endian\n' + markdown_content += '\n' + markdown_content += '## Key Value Metadata Store\n\n' + markdown_content += f'There are {len(reader.fields)} key-value pairs in this file\n' + markdown_content += '\n' + + kv_dump_table: list[dict[str, str | int]] = [] + for n, field in enumerate(reader.fields.values(), 1): + if not field.types: + pretty_type = 'N/A' + elif field.types[0] == GGUFValueType.ARRAY: + nest_count = len(field.types) - 1 + pretty_type = '[' * nest_count + str(field.types[-1].name) + ']' * nest_count + else: + pretty_type = str(field.types[-1].name) + + def escape_markdown_inline_code(value_string): + # Find the longest contiguous sequence of backticks in the string then + # wrap string with appropriate number of backticks required to escape it + max_backticks = max((len(match.group(0)) for match in re.finditer(r'`+', value_string)), default=0) + inline_code_marker = '`' * (max_backticks + 1) + + # If the string starts or ends with a backtick, add a space at the beginning and end + if value_string.startswith('`') or value_string.endswith('`'): + value_string = f" {value_string} " + + return f"{inline_code_marker}{value_string}{inline_code_marker}" + + total_elements = len(field.data) + value = "" + if len(field.types) == 1: + curr_type = field.types[0] + if curr_type == GGUFValueType.STRING: + truncate_length = 60 + value_string = str(bytes(field.parts[-1]), encoding='utf-8') + if len(value_string) > truncate_length: + head = escape_markdown_inline_code(value_string[:truncate_length // 2]) + tail = escape_markdown_inline_code(value_string[-truncate_length // 2:]) + value = "{head}...{tail}".format(head=head, tail=tail) + else: + value = escape_markdown_inline_code(value_string) + elif curr_type in reader.gguf_scalar_to_np: + value = str(field.parts[-1][0]) + else: + if field.types[0] == GGUFValueType.ARRAY: + curr_type = field.types[1] + array_elements = [] + + if curr_type == GGUFValueType.STRING: + render_element = min(5, total_elements) + for element_pos in range(render_element): + truncate_length = 30 + value_string = str(bytes(field.parts[-1 - (total_elements - element_pos - 1) * 2]), encoding='utf-8') + if len(value_string) > truncate_length: + head = escape_markdown_inline_code(value_string[:truncate_length // 2]) + tail = escape_markdown_inline_code(value_string[-truncate_length // 2:]) + value = "{head}...{tail}".format(head=head, tail=tail) + else: + value = escape_markdown_inline_code(value_string) + array_elements.append(value) + + elif curr_type in reader.gguf_scalar_to_np: + render_element = min(7, total_elements) + for element_pos in range(render_element): + array_elements.append(str(field.parts[-1 - (total_elements - element_pos - 1)][0])) + + value = f'[ {", ".join(array_elements).strip()}{", ..." if total_elements > len(array_elements) else ""} ]' + + kv_dump_table.append({"n":n, "pretty_type":pretty_type, "total_elements":total_elements, "field_name":field.name, "value":value}) + + kv_dump_table_header_map = [ + {'key_name':'n', 'header_name':'POS', 'align':'right'}, + {'key_name':'pretty_type', 'header_name':'TYPE', 'align':'left'}, + {'key_name':'total_elements', 'header_name':'Count', 'align':'right'}, + {'key_name':'field_name', 'header_name':'Key', 'align':'left'}, + {'key_name':'value', 'header_name':'Value', 'align':'left'}, + ] + + markdown_content += markdown_table_with_alignment_support(kv_dump_table_header_map, kv_dump_table) + + markdown_content += "\n" + + if not args.no_tensors: + # Group tensors by their prefix and maintain order + tensor_prefix_order: list[str] = [] + tensor_name_to_key: dict[str, int] = {} + tensor_groups: dict[str, list[ReaderTensor]] = {} + total_elements = sum(tensor.n_elements for tensor in reader.tensors) + + # Parsing Tensors Record + for key, tensor in enumerate(reader.tensors): + tensor_components = tensor.name.split('.') + + # Classify Tensor Group + tensor_group_name = "base" + if tensor_components[0] == 'blk': + tensor_group_name = f"{tensor_components[0]}.{tensor_components[1]}" + elif tensor_components[0] in ['enc', 'dec'] and tensor_components[1] == 'blk': + tensor_group_name = f"{tensor_components[0]}.{tensor_components[1]}.{tensor_components[2]}" + elif tensor_components[0] in ['enc', 'dec']: + tensor_group_name = f"{tensor_components[0]}" + + # Check if new Tensor Group + if tensor_group_name not in tensor_groups: + tensor_groups[tensor_group_name] = [] + tensor_prefix_order.append(tensor_group_name) + + # Record Tensor and Tensor Position + tensor_groups[tensor_group_name].append(tensor) + tensor_name_to_key[tensor.name] = key + + # Tensors Mapping Dump + markdown_content += f'## Tensors Overview {element_count_rounded_notation(total_elements)} Elements\n\n' + markdown_content += f'Total number of elements in all tensors: {total_elements} Elements\n' + markdown_content += '\n' + + for group in tensor_prefix_order: + tensors = tensor_groups[group] + group_elements = sum(tensor.n_elements for tensor in tensors) + markdown_content += f"- [{translate_tensor_name(group)} Tensor Group - {element_count_rounded_notation(group_elements)} Elements](#{group.replace('.', '_')})\n" + + markdown_content += "\n" + + markdown_content += "### Tensor Data Offset\n" + markdown_content += '\n' + markdown_content += 'This table contains the offset and data segment relative to start of file\n' + markdown_content += '\n' + + tensor_mapping_table: list[dict[str, str | int]] = [] + for key, tensor in enumerate(reader.tensors): + data_offset_pretty = '{0:#16x}'.format(tensor.data_offset) + data_size_pretty = '{0:#16x}'.format(tensor.n_bytes) + tensor_mapping_table.append({"t_id":key, "layer_name":tensor.name, "data_offset":data_offset_pretty, "data_size":data_size_pretty}) + + tensors_mapping_table_header_map = [ + {'key_name':'t_id', 'header_name':'T_ID', 'align':'right'}, + {'key_name':'layer_name', 'header_name':'Tensor Layer Name', 'align':'left'}, + {'key_name':'data_offset', 'header_name':'Data Offset (B)', 'align':'right'}, + {'key_name':'data_size', 'header_name':'Data Size (B)', 'align':'right'}, + ] + + markdown_content += markdown_table_with_alignment_support(tensors_mapping_table_header_map, tensor_mapping_table) + markdown_content += "\n" + + for group in tensor_prefix_order: + tensors = tensor_groups[group] + group_elements = sum(tensor.n_elements for tensor in tensors) + group_percentage = group_elements / total_elements * 100 + markdown_content += f"### <a name=\"{group.replace('.', '_')}\">{translate_tensor_name(group)} Tensor Group : {element_count_rounded_notation(group_elements)} Elements</a>\n\n" + + # Precalculate column sizing for visual consistency + prettify_element_est_count_size: int = 1 + prettify_element_count_size: int = 1 + prettify_dimension_max_widths: dict[int, int] = {} + for tensor in tensors: + prettify_element_est_count_size = max(prettify_element_est_count_size, len(str(element_count_rounded_notation(tensor.n_elements)))) + prettify_element_count_size = max(prettify_element_count_size, len(str(tensor.n_elements))) + for i, dimension_size in enumerate(list(tensor.shape) + [1] * (4 - len(tensor.shape))): + prettify_dimension_max_widths[i] = max(prettify_dimension_max_widths.get(i,1), len(str(dimension_size))) + + # Generate Tensor Layer Table Content + tensor_dump_table: list[dict[str, str | int]] = [] + for tensor in tensors: + human_friendly_name = translate_tensor_name(tensor.name.replace(".weight", ".(W)").replace(".bias", ".(B)")) + pretty_dimension = ' x '.join(f'{str(d):>{prettify_dimension_max_widths[i]}}' for i, d in enumerate(list(tensor.shape) + [1] * (4 - len(tensor.shape)))) + element_count_est = f"({element_count_rounded_notation(tensor.n_elements):>{prettify_element_est_count_size}})" + element_count_string = f"{element_count_est} {tensor.n_elements:>{prettify_element_count_size}}" + type_name_string = f"{tensor.tensor_type.name}" + tensor_dump_table.append({"t_id":tensor_name_to_key[tensor.name], "layer_name":tensor.name, "human_layer_name":human_friendly_name, "element_count":element_count_string, "pretty_dimension":pretty_dimension, "tensor_type":type_name_string}) + + tensor_dump_table_header_map = [ + {'key_name':'t_id', 'header_name':'T_ID', 'align':'right'}, + {'key_name':'layer_name', 'header_name':'Tensor Layer Name', 'align':'left'}, + {'key_name':'human_layer_name', 'header_name':'Human Friendly Tensor Layer Name', 'align':'left'}, + {'key_name':'element_count', 'header_name':'Elements', 'align':'left'}, + {'key_name':'pretty_dimension', 'header_name':'Shape', 'align':'left'}, + {'key_name':'tensor_type', 'header_name':'Type', 'align':'left'}, + ] + + markdown_content += markdown_table_with_alignment_support(tensor_dump_table_header_map, tensor_dump_table) + + markdown_content += "\n" + markdown_content += f"- Total elements in {group}: ({element_count_rounded_notation(group_elements):>4}) {group_elements}\n" + markdown_content += f"- Percentage of total elements: {group_percentage:.2f}%\n" + markdown_content += "\n\n" + + print(markdown_content) # noqa: NP100 + + +def main() -> None: + parser = argparse.ArgumentParser(description="Dump GGUF file metadata") + parser.add_argument("model", type=str, help="GGUF format model filename") + parser.add_argument("--no-tensors", action="store_true", help="Don't dump tensor metadata") + parser.add_argument("--json", action="store_true", help="Produce JSON output") + parser.add_argument("--json-array", action="store_true", help="Include full array values in JSON output (long)") + parser.add_argument("--data-offset", action="store_true", help="Start of data offset") + parser.add_argument("--data-alignment", action="store_true", help="Data alignment applied globally to data field") + parser.add_argument("--markdown", action="store_true", help="Produce markdown output") + parser.add_argument("--verbose", action="store_true", help="increase output verbosity") + + args = parser.parse_args(None if len(sys.argv) > 1 else ["--help"]) + + logging.basicConfig(level=logging.DEBUG if args.verbose else logging.INFO) + + if not args.json and not args.markdown and not args.data_offset and not args.data_alignment: + logger.info(f'* Loading: {args.model}') + + reader = GGUFReader(args.model, 'r') + + if args.json: + dump_metadata_json(reader, args) + elif args.markdown: + dump_markdown_metadata(reader, args) + elif args.data_offset: + print(reader.data_offset) # noqa: NP100 + elif args.data_alignment: + print(reader.alignment) # noqa: NP100 + else: + dump_metadata(reader, args) + + +if __name__ == '__main__': + main() |