summaryrefslogtreecommitdiff
path: root/include/llama.h
diff options
context:
space:
mode:
Diffstat (limited to 'include/llama.h')
-rw-r--r--include/llama.h7
1 files changed, 7 insertions, 0 deletions
diff --git a/include/llama.h b/include/llama.h
index 89526276..f1645228 100644
--- a/include/llama.h
+++ b/include/llama.h
@@ -1216,6 +1216,13 @@ extern "C" {
float threshold,
size_t min_keep);
+ /// @details Top n sigma sampling as described in academic paper "Top-nσ: Not All Logits Are You Need" https://arxiv.org/pdf/2411.07641
+ LLAMA_API void llama_sample_top_n_sigma(
+ struct llama_context * ctx,
+ llama_token_data_array * candidates_p,
+ float top_n_sigma);
+
+
/// @details Mirostat 1.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
/// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
/// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.