diff options
Diffstat (limited to 'iqk-quantize.cpp')
-rw-r--r-- | iqk-quantize.cpp | 437 |
1 files changed, 437 insertions, 0 deletions
diff --git a/iqk-quantize.cpp b/iqk-quantize.cpp new file mode 100644 index 00000000..8b071a3e --- /dev/null +++ b/iqk-quantize.cpp @@ -0,0 +1,437 @@ +#include "ggml-quants.h" +#include "ggml-impl.h" +#define GGML_COMMON_IMPL_C +#include "ggml-common.h" + +#include <vector> +#include <utility> +#include <cstdint> +#include <cmath> +#include <array> +#include <algorithm> +#include <cstring> +#include <mutex> + +namespace { + +inline int nearest_int(float fval) { + assert(fval <= 4194303.f); + float val = fval + 12582912.f; + int i; memcpy(&i, &val, sizeof(int)); + return (i & 0x007fffff) - 0x00400000; +} + +struct IQ1BNData { + IQ1BNData(); + std::vector<std::pair<int16_t, bool>> map; + std::vector<uint16_t> rmap; +}; + +const IQ1BNData& get_iq1bn_data() { + static std::mutex mutex; + std::lock_guard<std::mutex> lock(mutex); + static IQ1BNData iq1bn; + return iq1bn; +} + +IQ1BNData::IQ1BNData() { + map.resize(1 << 16, {int16_t(-1), false}); + uint64_t aux64; + uint8_t * aux8 = (uint8_t *)&aux64; + std::vector<uint64_t> values; + values.reserve(6561); + rmap.reserve(6561); + for (int i = 0; i < (1 << 16); ++i) { + bool is_good = true; + for (int j = 0; j < 8; ++j) { + aux8[j] = (i >> 2*j) & 3; + if (aux8[j] == 3u) { is_good = false; break; } + } + if (!is_good) continue; + auto orig = aux64; + for (int j = 0; j < 8; ++j) aux8[j] = 2 - aux8[j]; + int k = 0; + for (; k < int(values.size()); ++k) { + if (values[k] == aux64) break; + } + if (k < int(values.size())) { + map[i] = {k, true}; + } else { + map[i].first = values.size(); + values.push_back(orig); + rmap.push_back(i); + } + } + printf("==================== %s: initialized %d grid points\n", __func__, int(rmap.size())); +} + +struct IQ1BNQuantizer { + typedef union { + float f; + uint32_t i; + } scale_t; + constexpr static int block_size = QK_IQ1BN; + int8_t L[QK_IQ1BN]; + void quantize_one_row(const float * src, block_iq1_bn * y, int n_per_row, const float * imatrix); +}; + +void IQ1BNQuantizer::quantize_one_row(const float * src, block_iq1_bn * y, int n_per_row, const float * imatrix) { + + (void)imatrix; + + constexpr int Nk = block_size/8; + + const int nblock = n_per_row/QK_IQ1BN; + + const auto& iq1bn = get_iq1bn_data(); + + float max_in_row = 0; + for (int j = 0; j < n_per_row; ++j) { + float ax = fabsf(src[j]); + max_in_row = std::max(max_in_row, ax); + } + + max_in_row *= 1.03125f; // i.e., round to nearest in our fp8 representation + scale_t s; + uint8_t u = 0; + if (max_in_row > 1.9074e-06f && max_in_row < 0.12109f) { + s.f = max_in_row; + u = ((((s.i >> 23) + 132) & 0xf) << 4) | ((s.i >> 19) & 0xf); + s.i = ((((u >> 4) | 0xf0) - 132) << 23) | ((u & 0x0f) << 19); + } else { + // outside the allowed range. Small values we can habdle via quants set to zero, so we only warn about too large values + if (max_in_row >= 0.12109f) { + u = 255; + fprintf(stderr, "%s: found scale %g, which is outside the range of out fp8 representation\n", __func__, max_in_row); + } else{ + u = 0; + } + } + + for (int ib = 0; ib < nblock; ++ib) { + std::memset(&y[ib], 0, sizeof(block_iq1_bn)); + auto xb = src + QK_IQ1BN*ib; + for (int j = 0; j < QK_IQ1BN; ++j) { + L[j] = fabsf(xb[j]) < 1e-6f ? 1 : xb[j] < 0 ? 0 : 2; + } + auto ql = y[ib].ql; + auto qh = y[ib].qh; + uint16_t extra = 0; + for (int k = 0; k < Nk; ++k) { + auto Lk = L + 8*k; + uint16_t u = 0; + for (int j = 0; j < 8; ++j) u |= (Lk[j] << 2*j); + auto& val = iq1bn.map[u]; + GGML_ASSERT(val.first >= 0); + ql[k] = val.first & 255; + qh[k/2] |= (val.first >> 8) << 4*(k%2); + if (val.second) extra |= (1 << k); + } + + y[ib].extra = u | (extra << 8); + + } +} +} + +void iq1bn_init_impl(void) { + get_iq1bn_data(); +} + +size_t quantize_iq1_bn(const float * src, void * dst, int64_t nrows, int64_t n_per_row, const float * imatrix) { + IQ1BNQuantizer iq1bn; + int nblock = n_per_row/QK_IQ1BN; + block_iq1_bn * y = (block_iq1_bn *)dst; + for (int row = 0; row < nrows; ++row) { + iq1bn.quantize_one_row(src + row*n_per_row, y, n_per_row, imatrix); + y += nblock; + } + return sizeof(block_iq1_bn)*nblock*nrows; +} + +void quantize_row_iq1_bn_reference(const float * x, block_iq1_bn * y, int64_t k) { + quantize_iq1_bn(x, y, 1, k, nullptr); +} + +void quantize_row_iq1_bn(const float * x, void * y, int64_t k) { + quantize_iq1_bn(x, y, 1, k, nullptr); +} + +void dequantize_row_iq1_bn(const block_iq1_bn * x, float * y, int64_t k) { + assert(k%QK_IQ1BN == 0); + int nblock = k / QK_IQ1BN; + + IQ1BNQuantizer::scale_t s; + + for (int i = 0; i < nblock; ++i) { + uint16_t u = x[i].extra & 0xff; + s.i = ((((u >> 4) | 0xf0) - 132) << 23) | ((u & 0x0f) << 19); + float d = s.f; + uint8_t extra = x[i].extra >> 8; + auto qh = x[i].qh; + auto ql = x[i].ql; + for (int k = 0; k < QK_IQ1BN/8; ++k) { + uint16_t idx = ql[k] | ((qh[k/2] << (8 - 4*(k%2))) & 0x0f00); + uint16_t val = iq1bn_grid_u16[idx]; + float dls = extra & (1 << k) ? -d : d; + for (int j = 0; j < 8; ++j) y[j] = dls * (((val >> 2*j) & 3) - 1); + y += 8; + } + } +} + +#if __AVX__ || __AVX2__ || __AVX512F__ +// horizontally add 8 floats +static inline float hsum_float_8(const __m256 x) { + __m128 res = _mm256_extractf128_ps(x, 1); + res = _mm_add_ps(res, _mm256_castps256_ps128(x)); + res = _mm_add_ps(res, _mm_movehl_ps(res, res)); + res = _mm_add_ss(res, _mm_movehdup_ps(res)); + return _mm_cvtss_f32(res); +} +#endif + +void ggml_vec_dot_iq1_bn_q8_0 (int n, float * s, size_t bs, const void * vx, size_t bx, const void * vy, size_t by, int nrc) { + + GGML_UNUSED(bs); + GGML_UNUSED(bx); + GGML_UNUSED(by); + GGML_UNUSED(nrc); + + static_assert(QK_IQ1BN == 64, "This dot product implementation for iq1_bn requires a block size of 64"); + + const block_iq1_bn * x = (const block_iq1_bn *)vx; + const block_q8_0 * y = (const block_q8_0 *)vy; + int nblock = n / QK_IQ1BN; + + float sumf = 0; + IQ1BNQuantizer::scale_t scale; + +#if defined __AVX2__ + + const auto m1_8 = _mm256_set1_epi8(1); + const auto shuff1 = _mm256_set_epi64x(0x0808080808080808, 0x0000000000000000, 0x0808080808080808, 0x0000000000000000); + const auto shuff2 = _mm256_add_epi8(shuff1, m1_8); + const auto shuff3 = _mm256_set_epi64x(0x0303030303030303, 0x0202020202020202, 0x0101010101010101, 0x0000000000000000); + const auto shuff4 = _mm256_set_epi64x(0x0707070707070707, 0x0606060606060606, 0x0505050505050505, 0x0404040404040404); + const auto mask1 = _mm256_set1_epi64x(0x8040201008040201); +#if !(defined __AVX512VNNI__ && defined __AVX512VL__) + const auto m1_16 = _mm256_set1_epi16(1); +#endif + + __m256 acc1 = _mm256_setzero_ps(); + __m256 acc2 = _mm256_setzero_ps(); + + // All scales are the same in BitNet! + uint16_t u = x[0].extra & 0xff; + scale.i = ((((u >> 4) | 0xf0) - 132) << 23) | ((u & 0x0f) << 19); + + for (int i = 0; i < nblock; ++i) { + // We would uncomment this if we wanted to use this implementation for a model that has per block scales + //uint16_t u = x[i].extra & 0xff; + //scale.i = ((((u >> 4) | 0xf0) - 132) << 23) | ((u & 0x0f) << 19); + auto signs = _mm256_set1_epi8(x[i].extra >> 8); + // signs for groups of 8 ordered as 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7, ... + // To use these to sign the q8 values we need + // 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 amd the same for 4...7 + signs = _mm256_or_si256(_mm256_cmpeq_epi8(_mm256_and_si256(signs, mask1), mask1), m1_8); + auto q8_1 = _mm256_sign_epi8(_mm256_loadu_si256((const __m256i *)y[2*i+0].qs), _mm256_shuffle_epi8(signs, shuff3)); + auto q8_2 = _mm256_sign_epi8(_mm256_loadu_si256((const __m256i *)y[2*i+1].qs), _mm256_shuffle_epi8(signs, shuff4)); + + auto ql = x[i].ql; + auto qh = x[i].qh; + auto aux1 = _mm256_set_epi64x(iq1bn_grid_xxx[ql[3] | ((qh[1] << 4) & 0x0f00)], iq1bn_grid_xxx[ql[2] | ((qh[1] << 8) & 0x0f00)], + iq1bn_grid_xxx[ql[1] | ((qh[0] << 4) & 0x0f00)], iq1bn_grid_xxx[ql[0] | ((qh[0] << 8) & 0x0f00)]); + auto aux2 = _mm256_set_epi64x(iq1bn_grid_xxx[ql[7] | ((qh[3] << 4) & 0x0f00)], iq1bn_grid_xxx[ql[6] | ((qh[3] << 8) & 0x0f00)], + iq1bn_grid_xxx[ql[5] | ((qh[2] << 4) & 0x0f00)], iq1bn_grid_xxx[ql[4] | ((qh[2] << 8) & 0x0f00)]); + + auto v1_p = _mm256_cmpeq_epi8(_mm256_and_si256(_mm256_shuffle_epi8(aux1, shuff1), mask1), mask1); + auto v1_m = _mm256_cmpeq_epi8(_mm256_and_si256(_mm256_shuffle_epi8(aux1, shuff2), mask1), mask1); + auto v2_p = _mm256_cmpeq_epi8(_mm256_and_si256(_mm256_shuffle_epi8(aux2, shuff1), mask1), mask1); + auto v2_m = _mm256_cmpeq_epi8(_mm256_and_si256(_mm256_shuffle_epi8(aux2, shuff2), mask1), mask1); + + auto dot1 = _mm256_sub_epi8(_mm256_sign_epi8(q8_1, v1_m), _mm256_sign_epi8(q8_1, v1_p)); + auto dot2 = _mm256_sub_epi8(_mm256_sign_epi8(q8_2, v2_m), _mm256_sign_epi8(q8_2, v2_p)); + +#if defined __AVX512VNNI__ && defined __AVX512VL__ + dot1 = _mm256_dpbusd_epi32(_mm256_setzero_si256(), m1_8, dot1); + dot2 = _mm256_dpbusd_epi32(_mm256_setzero_si256(), m1_8, dot2); +#else + dot1 = _mm256_madd_epi16(m1_16, _mm256_maddubs_epi16(m1_8, dot1)); + dot2 = _mm256_madd_epi16(m1_16, _mm256_maddubs_epi16(m1_8, dot2)); +#endif + + // We would uncomment this if we wanted to use this implementation for a model that has per block scales + //acc1 = _mm256_fmadd_ps(_mm256_set1_ps(scale.f*GGML_FP16_TO_FP32(y[2*i+0].d)), _mm256_cvtepi32_ps(dot1), acc1); + //acc2 = _mm256_fmadd_ps(_mm256_set1_ps(scale.f*GGML_FP16_TO_FP32(y[2*i+1].d)), _mm256_cvtepi32_ps(dot2), acc2); + // All scales are the same for BitNet! + // This is slower + //uint32_t aux32 = y[2*i+0].d | (y[2*i+1].d << 16); + //auto d8 = _mm256_cvtph_ps(_mm_set1_epi32(aux32)); + //acc1 = _mm256_fmadd_ps(_mm256_permute_ps(d8, 0x00), _mm256_cvtepi32_ps(dot1), acc1); + //acc2 = _mm256_fmadd_ps(_mm256_permute_ps(d8, 0x55), _mm256_cvtepi32_ps(dot2), acc2); + acc1 = _mm256_fmadd_ps(_mm256_set1_ps(GGML_FP16_TO_FP32(y[2*i+0].d)), _mm256_cvtepi32_ps(dot1), acc1); + acc2 = _mm256_fmadd_ps(_mm256_set1_ps(GGML_FP16_TO_FP32(y[2*i+1].d)), _mm256_cvtepi32_ps(dot2), acc2); + + } + + //sumf = hsum_float_8(_mm256_add_ps(acc1, acc2)); + sumf = scale.f * hsum_float_8(_mm256_add_ps(acc1, acc2)); + +#else + + for (int i = 0; i < nblock; ++i) { + uint16_t u = x[i].extra & 0xff; + scale.i = ((((u >> 4) | 0xf0) - 132) << 23) | ((u & 0x0f) << 19); + uint8_t extra = x[i].extra >> 8; + auto qh = x[i].qh; + auto ql = x[i].ql; + auto q8 = y[2*i+0].qs; + int16_t sumi1 = 0; + for (int k = 0; k < 4; ++k) { + uint16_t idx = ql[k] | ((qh[k/2] << (8 - 4*(k%2))) & 0x0f00); + uint16_t val = iq1bn_grid_u16[idx]; + int16_t sl = 0; + for (int j = 0; j < 8; ++j) sl += q8[j] * (((val >> 2*j) & 3) - 1); + sumi1 += extra & (1 << k) ? -sl : sl; + q8 += 8; + } + q8 = y[2*i+1].qs; + int16_t sumi2 = 0; + for (int k = 4; k < 8; ++k) { + uint16_t idx = ql[k] | ((qh[k/2] << (8 - 4*(k%2))) & 0x0f00); + uint16_t val = iq1bn_grid_u16[idx]; + int16_t sl = 0; + for (int j = 0; j < 8; ++j) sl += q8[j] * (((val >> 2*j) & 3) - 1); + sumi2 += extra & (1 << k) ? -sl : sl; + q8 += 8; + } + sumf += scale.f * (GGML_FP16_TO_FP32(y[2*i+0].d) * sumi1 + GGML_FP16_TO_FP32(y[2*i+1].d) * sumi2); + } + +#endif + + *s = sumf; + +} + +void ggml_vec_dot_iq1_bn_q8_K64(int n, float * s, size_t bs, const void * vx, size_t bx, const void * vy, size_t by, int nrc) { + + GGML_UNUSED(bs); + GGML_UNUSED(bx); + GGML_UNUSED(by); + GGML_UNUSED(nrc); + + static_assert(QK_IQ1BN == 64, "This dot product implementation for iq1_bn requires a block size of 64"); + + const block_iq1_bn * x = (const block_iq1_bn *)vx; + const block_q8_K64 * y = (const block_q8_K64 *)vy; + int nblock = n / QK_IQ1BN; + + float sumf = 0; + IQ1BNQuantizer::scale_t scale; + +#if defined __AVX2__ + + const auto m1_8 = _mm256_set1_epi8(1); + const auto shuff1 = _mm256_set_epi64x(0x0808080808080808, 0x0000000000000000, 0x0808080808080808, 0x0000000000000000); + const auto shuff2 = _mm256_add_epi8(shuff1, m1_8); + const auto shuff3 = _mm256_set_epi64x(0x0303030303030303, 0x0202020202020202, 0x0101010101010101, 0x0000000000000000); + const auto shuff4 = _mm256_set_epi64x(0x0707070707070707, 0x0606060606060606, 0x0505050505050505, 0x0404040404040404); + const auto mask1 = _mm256_set1_epi64x(0x8040201008040201); +#if !(defined __AVX512VNNI__ && defined __AVX512VL__) + const auto m1_16 = _mm256_set1_epi16(1); +#endif + + __m256 acc = _mm256_setzero_ps(); + + // All scales are the same in BitNet! + uint16_t u = x[0].extra & 0xff; + scale.i = ((((u >> 4) | 0xf0) - 132) << 23) | ((u & 0x0f) << 19); + + for (int i = 0; i < nblock; ++i) { + // We would uncomment this if we wanted to use this implementation for a model that has per block scales + //uint16_t u = x[i].extra & 0xff; + //scale.i = ((((u >> 4) | 0xf0) - 132) << 23) | ((u & 0x0f) << 19); + auto signs = _mm256_set1_epi8(x[i].extra >> 8); + // signs for groups of 8 ordered as 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7, ... + // To use these to sign the q8 values we need + // 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 amd the same for 4...7 + signs = _mm256_or_si256(_mm256_cmpeq_epi8(_mm256_and_si256(signs, mask1), mask1), m1_8); + auto q8_1 = _mm256_sign_epi8(_mm256_loadu_si256((const __m256i *)y[i].qs+0), _mm256_shuffle_epi8(signs, shuff3)); + auto q8_2 = _mm256_sign_epi8(_mm256_loadu_si256((const __m256i *)y[i].qs+1), _mm256_shuffle_epi8(signs, shuff4)); + + auto ql = x[i].ql; + auto qh = x[i].qh; + auto aux1 = _mm256_set_epi64x(iq1bn_grid_xxx[ql[3] | ((qh[1] << 4) & 0x0f00)], iq1bn_grid_xxx[ql[2] | ((qh[1] << 8) & 0x0f00)], + iq1bn_grid_xxx[ql[1] | ((qh[0] << 4) & 0x0f00)], iq1bn_grid_xxx[ql[0] | ((qh[0] << 8) & 0x0f00)]); + auto aux2 = _mm256_set_epi64x(iq1bn_grid_xxx[ql[7] | ((qh[3] << 4) & 0x0f00)], iq1bn_grid_xxx[ql[6] | ((qh[3] << 8) & 0x0f00)], + iq1bn_grid_xxx[ql[5] | ((qh[2] << 4) & 0x0f00)], iq1bn_grid_xxx[ql[4] | ((qh[2] << 8) & 0x0f00)]); + + auto v1_p = _mm256_cmpeq_epi8(_mm256_and_si256(_mm256_shuffle_epi8(aux1, shuff1), mask1), mask1); + auto v1_m = _mm256_cmpeq_epi8(_mm256_and_si256(_mm256_shuffle_epi8(aux1, shuff2), mask1), mask1); + auto v2_p = _mm256_cmpeq_epi8(_mm256_and_si256(_mm256_shuffle_epi8(aux2, shuff1), mask1), mask1); + auto v2_m = _mm256_cmpeq_epi8(_mm256_and_si256(_mm256_shuffle_epi8(aux2, shuff2), mask1), mask1); + + auto dot1 = _mm256_sub_epi8(_mm256_sign_epi8(q8_1, v1_m), _mm256_sign_epi8(q8_1, v1_p)); + auto dot2 = _mm256_sub_epi8(_mm256_sign_epi8(q8_2, v2_m), _mm256_sign_epi8(q8_2, v2_p)); + +#if defined __AVX512VNNI__ && defined __AVX512VL__ + dot1 = _mm256_dpbusd_epi32(_mm256_setzero_si256(), m1_8, dot1); + dot2 = _mm256_dpbusd_epi32(_mm256_setzero_si256(), m1_8, dot2); +#else + dot1 = _mm256_madd_epi16(m1_16, _mm256_maddubs_epi16(m1_8, dot1)); + dot2 = _mm256_madd_epi16(m1_16, _mm256_maddubs_epi16(m1_8, dot2)); +#endif + + // We would uncomment this if we wanted to use this implementation for a model that has per block scales + //acc1 = _mm256_fmadd_ps(_mm256_set1_ps(scale.f*GGML_FP16_TO_FP32(y[2*i+0].d)), _mm256_cvtepi32_ps(dot1), acc1); + //acc2 = _mm256_fmadd_ps(_mm256_set1_ps(scale.f*GGML_FP16_TO_FP32(y[2*i+1].d)), _mm256_cvtepi32_ps(dot2), acc2); + // All scales are the same for BitNet! + // This is slower + //uint32_t aux32 = y[2*i+0].d | (y[2*i+1].d << 16); + //auto d8 = _mm256_cvtph_ps(_mm_set1_epi32(aux32)); + //acc1 = _mm256_fmadd_ps(_mm256_permute_ps(d8, 0x00), _mm256_cvtepi32_ps(dot1), acc1); + //acc2 = _mm256_fmadd_ps(_mm256_permute_ps(d8, 0x55), _mm256_cvtepi32_ps(dot2), acc2); + acc = _mm256_fmadd_ps(_mm256_set1_ps(y[i].d), _mm256_cvtepi32_ps(_mm256_add_epi32(dot1, dot2)), acc); + + } + + sumf = scale.f * hsum_float_8(acc); + +#else + + for (int i = 0; i < nblock; ++i) { + uint16_t u = x[i].extra & 0xff; + scale.i = ((((u >> 4) | 0xf0) - 132) << 23) | ((u & 0x0f) << 19); + uint8_t extra = x[i].extra >> 8; + auto qh = x[i].qh; + auto ql = x[i].ql; + auto q8 = y[2*i+0].qs; + int16_t sumi1 = 0; + for (int k = 0; k < 4; ++k) { + uint16_t idx = ql[k] | ((qh[k/2] << (8 - 4*(k%2))) & 0x0f00); + uint16_t val = iq1bn_grid_u16[idx]; + int16_t sl = 0; + for (int j = 0; j < 8; ++j) sl += q8[j] * (((val >> 2*j) & 3) - 1); + sumi1 += extra & (1 << k) ? -sl : sl; + q8 += 8; + } + q8 = y[2*i+1].qs; + int16_t sumi2 = 0; + for (int k = 4; k < 8; ++k) { + uint16_t idx = ql[k] | ((qh[k/2] << (8 - 4*(k%2))) & 0x0f00); + uint16_t val = iq1bn_grid_u16[idx]; + int16_t sl = 0; + for (int j = 0; j < 8; ++j) sl += q8[j] * (((val >> 2*j) & 3) - 1); + sumi2 += extra & (1 << k) ? -sl : sl; + q8 += 8; + } + sumf += scale.f * (GGML_FP16_TO_FP32(y[2*i+0].d) * sumi1 + GGML_FP16_TO_FP32(y[2*i+1].d) * sumi2); + } + +#endif + + *s = sumf; + +} |