summaryrefslogtreecommitdiff
path: root/iqk_mul_mat.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'iqk_mul_mat.cpp')
-rw-r--r--iqk_mul_mat.cpp108
1 files changed, 60 insertions, 48 deletions
diff --git a/iqk_mul_mat.cpp b/iqk_mul_mat.cpp
index 8f0b9816..9934d2e6 100644
--- a/iqk_mul_mat.cpp
+++ b/iqk_mul_mat.cpp
@@ -2153,7 +2153,7 @@ struct Q5_1_Unpacker final : public Q_Unpacker<block_q5_1, ScaleHelperQ_1, Q5_1_
inline static int block_size() { return QK4_1; }
};
-struct QF32Base {
+struct QFBase {
#ifdef __AVX512F__
constexpr static int k_step = 16;
using Data = __m512;
@@ -2186,57 +2186,56 @@ struct QF32Base {
}
#endif
};
-template <int nrc> struct QF32y final : public QF32Base {
- constexpr static int nrc_y = nrc;
- QF32y(const DataInfo& info) {
- for (int iy = 0; iy < nrc_y; ++iy) y[iy] = (const float *)info.src1_row(iy);
+template <typename Float, int nrc_in> struct QFT final : public QFBase {
+ constexpr static int nrc = nrc_in;
+ QFT(const DataInfo& info) {
+ for (int iy = 0; iy < nrc; ++iy) y[iy] = (const Float *)info.src1_row(iy);
}
- IQK_ALWAYS_INLINE Data load1(int iy, int i) const { return load(y[iy] + k_step*i); }
- const float * y[nrc_y];
-};
-template <int nrc> struct QF32x final : public QF32Base {
- constexpr static int nrc_x = nrc;
- QF32x(const char * cx, size_t bx) {
- for (int ix = 0; ix < nrc_x; ++ix) x[ix] = (const ggml_half *)(cx + ix*bx);
+ QFT(const char * cx, size_t bx) {
+ for (int iy = 0; iy < nrc; ++iy) y[iy] = (const Float *)(cx + iy*bx);
}
- IQK_ALWAYS_INLINE Data load1(int ix, int i) const { return load(x[ix] + k_step*i); }
- const ggml_half * x[nrc_x];
-};
-
-template <int nrc_y, int nrc_x>
-IQK_NOINLINE void mul_mat_f16_f32_MxN(int n, const char * cx, size_t bx, int ix0, const DataInfo& info) {
- assert(n%QF16Base::k_step == 0);
- int nb = n/QF32Base::k_step;
- QF32y<nrc_y> y(info);
- QF32x<nrc_x> x(cx + ix0*bx, bx);
- QF32Base::Data xv[nrc_x];
- QF32Base::Acc acc[nrc_x*nrc_y];
+ IQK_ALWAYS_INLINE Data load1(int iy, int i) const { return load(y[iy] + k_step*i); }
+ const Float * y[nrc];
+};
+//template <int nrc_y> using QF32 = QFT<float, nrc_y>;
+//template <int nrc_y> using QF16 = QFT<ggml_half, nrc_y>;
+
+template <typename Qy, typename Qx>
+IQK_NOINLINE void mul_mat_Qx_Qy_MxN(int n, const char * cx, size_t bx, int ix0, const DataInfo& info) {
+ assert(n%QFBase::k_step == 0);
+ int nb = n/QFBase::k_step;
+ Qy y(info);
+ Qx x(cx + ix0*bx, bx);
+ QFBase::Data xv[Qx::nrc];
+ QFBase::Acc acc[Qx::nrc*Qy::nrc];
auto yv = y.load1(0, 0);
- for (int ix = 0; ix < nrc_x; ++ix) {
+ for (int ix = 0; ix < Qx::nrc; ++ix) {
xv[ix] = x.load1(ix, 0);
- acc[ix] = QF32Base::acc_first(yv, xv[ix]);
+ acc[ix] = QFBase::acc_first(yv, xv[ix]);
}
- for (int iy = 1; iy < nrc_y; ++iy) {
+ for (int iy = 1; iy < Qy::nrc; ++iy) {
yv = y.load1(iy, 0);
- for (int ix = 0; ix < nrc_x; ++ix) acc[nrc_x*iy + ix] = QF32Base::acc_first(yv, xv[ix]);
+ for (int ix = 0; ix < Qx::nrc; ++ix) acc[Qx::nrc*iy + ix] = QFBase::acc_first(yv, xv[ix]);
}
for (int i = 1; i < nb; ++i) {
yv = y.load1(0, i);
- for (int ix = 0; ix < nrc_x; ++ix) {
+ for (int ix = 0; ix < Qx::nrc; ++ix) {
xv[ix] = x.load1(ix, i);
- acc[ix] = QF32Base::acc(acc[ix], yv, xv[ix]);
+ acc[ix] = QFBase::acc(acc[ix], yv, xv[ix]);
}
- for (int iy = 1; iy < nrc_y; ++iy) {
+ for (int iy = 1; iy < Qy::nrc; ++iy) {
yv = y.load1(iy, i);
- for (int ix = 0; ix < nrc_x; ++ix) acc[nrc_x*iy + ix] = QF32Base::acc(acc[nrc_x*iy + ix], yv, xv[ix]);
+ for (int ix = 0; ix < Qx::nrc; ++ix) acc[Qx::nrc*iy + ix] = QFBase::acc(acc[Qx::nrc*iy + ix], yv, xv[ix]);
}
}
- for (int iy = 0; iy < nrc_y; ++iy) for (int ix = 0; ix < nrc_x; ++ix) info.store(ix0+ix, iy, QF32Base::hsum(acc[nrc_x*iy+ix]));
+ for (int iy = 0; iy < Qy::nrc; ++iy) for (int ix = 0; ix < Qx::nrc; ++ix) info.store(ix0+ix, iy, QFBase::hsum(acc[Qx::nrc*iy+ix]));
}
-
-template <int nrc_y>
-void mul_mat_f16_f32_T(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) {
- assert(n%QF32Base::k_step == 0);
+// This will handle any of f16 x f32, f32 x f16, f16 x f16, f32 x f32, with computations done
+// in f32 (i.e., f16 is first converted to f32). It is easy to extend to computations done in
+// f16, but I don't have a CPU capable of f16 vector arithmetic, so not doing it for now.
+template <int nrc_y, typename FloatX, typename FloatY>
+void mul_mat_fX_fY_T(int n, const void * vx, size_t bx, const DataInfo& info, int nrc_x) {
+ assert(n%QFBase::k_step == 0);
#ifdef __AVX512F__
constexpr int k_nx = 5;
#else
@@ -2244,17 +2243,17 @@ void mul_mat_f16_f32_T(int n, const void * vx, size_t bx, const DataInfo& info,
#endif
const char * cx = (const char *)vx;
for (int ix = 0; ix < nrc_x/k_nx; ++ix) {
- mul_mat_f16_f32_MxN<nrc_y, k_nx>(n, cx, bx, ix*k_nx, info);
+ mul_mat_Qx_Qy_MxN<QFT<FloatY, nrc_y>, QFT<FloatX, k_nx>>(n, cx, bx, ix*k_nx, info);
}
int last_x = k_nx*(nrc_x/k_nx);
if (last_x == nrc_x) return;
int nx = nrc_x - last_x;
switch (nx) {
- case 1: mul_mat_f16_f32_MxN<nrc_y, 1>(n, cx, bx, last_x, info); break;
+ case 1: mul_mat_Qx_Qy_MxN<QFT<FloatY, nrc_y>, QFT<FloatX, 1>>(n, cx, bx, last_x, info); break;
#ifdef __AVX512F__
- case 2: mul_mat_f16_f32_MxN<nrc_y, 2>(n, cx, bx, last_x, info); break;
- case 3: mul_mat_f16_f32_MxN<nrc_y, 3>(n, cx, bx, last_x, info); break;
- case 4: mul_mat_f16_f32_MxN<nrc_y, 4>(n, cx, bx, last_x, info); break;
+ case 2: mul_mat_Qx_Qy_MxN<QFT<FloatY, nrc_y>, QFT<FloatX, 2>>(n, cx, bx, last_x, info); break;
+ case 3: mul_mat_Qx_Qy_MxN<QFT<FloatY, nrc_y>, QFT<FloatX, 3>>(n, cx, bx, last_x, info); break;
+ case 4: mul_mat_Qx_Qy_MxN<QFT<FloatY, nrc_y>, QFT<FloatX, 4>>(n, cx, bx, last_x, info); break;
#endif
}
}
@@ -2404,17 +2403,30 @@ bool MulMat::set_mul_mat(int typeA, int ne00, MulMat& mm, int& row_size_q8, int
if (typeA == GGML_TYPE_F16) {
for (auto& f : mm.funcs) f = nullptr;
- mm.funcs[0] = mul_mat_f16_f32_T<1>;
- mm.funcs[1] = mul_mat_f16_f32_T<2>;
- mm.funcs[2] = mul_mat_f16_f32_T<3>;
- mm.funcs[3] = mul_mat_f16_f32_T<4>;
- mm.funcs[4] = mul_mat_f16_f32_T<5>;
+ mm.funcs[0] = mul_mat_fX_fY_T<1, ggml_half, float>;
+ mm.funcs[1] = mul_mat_fX_fY_T<2, ggml_half, float>;
+ mm.funcs[2] = mul_mat_fX_fY_T<3, ggml_half, float>;
+ mm.funcs[3] = mul_mat_fX_fY_T<4, ggml_half, float>;
+ mm.funcs[4] = mul_mat_fX_fY_T<5, ggml_half, float>;
#ifndef __AVX512F__
- mm.funcs[5] = mul_mat_f16_f32_T<6>;
+ mm.funcs[5] = mul_mat_fX_fY_T<6, ggml_half, float>;
#endif
row_size_q8 = ggml_row_size(GGML_TYPE_F32, ne00);
return true;
}
+ if (typeA == GGML_TYPE_F32) {
+ for (auto& f : mm.funcs) f = nullptr;
+ mm.funcs[0] = mul_mat_fX_fY_T<1, float, ggml_half>;
+ mm.funcs[1] = mul_mat_fX_fY_T<2, float, ggml_half>;
+ mm.funcs[2] = mul_mat_fX_fY_T<3, float, ggml_half>;
+ mm.funcs[3] = mul_mat_fX_fY_T<4, float, ggml_half>;
+ mm.funcs[4] = mul_mat_fX_fY_T<5, float, ggml_half>;
+#ifndef __AVX512F__
+ mm.funcs[5] = mul_mat_fX_fY_T<6, float, ggml_half>;
+#endif
+ row_size_q8 = ggml_row_size(GGML_TYPE_F16, ne00);
+ return true;
+ }
// Using the standard legacy quant template is slightly faster than tiling
// as implemented in mul_mat_q80_q80_T
// if (typeA == GGML_TYPE_Q8_0) {