diff options
Diffstat (limited to 'llama.cpp')
-rw-r--r-- | llama.cpp | 332 |
1 files changed, 236 insertions, 96 deletions
@@ -426,9 +426,12 @@ enum llm_tensor { LLM_TENSOR_FFN_DOWN, LLM_TENSOR_FFN_UP, LLM_TENSOR_FFN_ACT, - LLM_TENSOR_FFN_DOWN_EXP, + LLM_TENSOR_FFN_DOWN_EXP, // split experts for backward compatibility LLM_TENSOR_FFN_GATE_EXP, LLM_TENSOR_FFN_UP_EXP, + LLM_TENSOR_FFN_DOWN_EXPS, // merged experts + LLM_TENSOR_FFN_GATE_EXPS, + LLM_TENSOR_FFN_UP_EXPS, LLM_TENSOR_ATTN_Q_NORM, LLM_TENSOR_ATTN_K_NORM, LLM_TENSOR_LAYER_OUT_NORM, @@ -463,6 +466,9 @@ static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NA { LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" }, { LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" }, { LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" }, + { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" }, + { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" }, + { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" }, }, }, { @@ -516,6 +522,9 @@ static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NA { LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" }, { LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" }, { LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" }, + { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" }, + { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" }, + { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" }, { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" }, { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" }, }, @@ -1864,9 +1873,9 @@ struct llama_layer { // ff MoE struct ggml_tensor * ffn_gate_inp; - struct ggml_tensor * ffn_gate_exp[LLAMA_MAX_EXPERTS]; - struct ggml_tensor * ffn_down_exp[LLAMA_MAX_EXPERTS]; - struct ggml_tensor * ffn_up_exp [LLAMA_MAX_EXPERTS]; + struct ggml_tensor * ffn_gate_exps; + struct ggml_tensor * ffn_down_exps; + struct ggml_tensor * ffn_up_exps ; // ff bias struct ggml_tensor * ffn_down_b; // b2 @@ -2868,19 +2877,19 @@ struct llama_model_loader { llama_mmaps mappings; - // Holds information on a model weights - struct llama_tensor_weights { + // Holds information on a model weight + struct llama_tensor_weight { uint16_t idx; // source file index size_t offs; // tensor data offset in the original file ggml_tensor * tensor; - llama_tensor_weights(uint16_t idx, const char * name, const struct gguf_context * gguf_ctx, ggml_tensor * tensor) : idx(idx), tensor(tensor) { + llama_tensor_weight(uint16_t idx, const char * name, const struct gguf_context * gguf_ctx, ggml_tensor * tensor) : idx(idx), tensor(tensor) { const int tensor_idx = gguf_find_tensor(gguf_ctx, name); offs = gguf_get_data_offset(gguf_ctx) + gguf_get_tensor_offset(gguf_ctx, tensor_idx); } }; - std::vector<llama_tensor_weights> weights; + std::vector<llama_tensor_weight> weights; std::unordered_map<std::string, struct llama_model_kv_override> kv_overrides; @@ -2920,7 +2929,7 @@ struct llama_model_loader { // For subsidiary files, `meta` tensor data offset must not be used, // so we build a unified tensors index for weights. for (ggml_tensor * cur = ggml_get_first_tensor(ctx); cur; cur = ggml_get_next_tensor(ctx, cur)) { - weights.emplace_back(llama_tensor_weights(0, cur->name, meta, cur)); + weights.emplace_back(0, cur->name, meta, cur); } files.emplace_back(new llama_file(fname.c_str(), "rb")); contexts.emplace_back(ctx); @@ -2960,7 +2969,7 @@ struct llama_model_loader { // Save tensors data offset info of the shard. for (ggml_tensor * cur = ggml_get_first_tensor(ctx); cur; cur = ggml_get_next_tensor(ctx, cur)) { - weights.emplace_back(llama_tensor_weights(idx, cur->name, ctx_gguf, cur)); + weights.emplace_back(idx, cur->name, ctx_gguf, cur); } files.emplace_back(new llama_file(split_path, "rb")); contexts.emplace_back(ctx); @@ -3164,21 +3173,37 @@ struct llama_model_loader { return weights.at(i).tensor->name; } - const llama_tensor_weights & get_weights(const char * name) const { + const llama_tensor_weight * get_weight(const char * name) const { for (const auto & weight : weights) { if (strcmp(name, weight.tensor->name) == 0) { - return weight; + return &weight; } } - throw std::runtime_error(format("tensor %s not found", name)); + return nullptr; + } + + const llama_tensor_weight & require_weight(const char * name) const { + const llama_tensor_weight * weight = get_weight(name); + if (!weight) { + throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name)); + } + return *weight; } struct ggml_tensor * get_tensor_meta(const char * name) const { - try { - return get_weights(name).tensor; - } catch (const std::runtime_error & e) { - return NULL; + const auto * weight = get_weight(name); + if (!weight) { + return nullptr; + } + return weight->tensor; + } + + struct ggml_tensor * require_tensor_meta(const char * name) const { + struct ggml_tensor * tensor = get_tensor_meta(name); + if (!tensor) { + throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name)); } + return tensor; } struct ggml_tensor * get_tensor_meta(int i) const { @@ -3194,7 +3219,7 @@ struct llama_model_loader { return tensor; } - struct ggml_tensor * create_tensor(struct ggml_context * ctx, const std::string & name, const std::vector<int64_t> & ne, bool required = true) { + const struct ggml_tensor * check_tensor_dims(const std::string & name, const std::vector<int64_t> & ne, bool required) const { const struct ggml_tensor * cur = get_tensor_meta(name.c_str()); if (cur == NULL) { @@ -3206,8 +3231,8 @@ struct llama_model_loader { { bool is_ok = true; - for (size_t i = 0; i < ne.size(); ++i) { - if (ne[i] != cur->ne[i]) { + for (size_t i = 0; i < GGML_MAX_DIMS; ++i) { + if ((i < ne.size() && ne[i] != cur->ne[i]) || (i >= ne.size() && cur->ne[i] != 1)) { is_ok = false; break; } @@ -3221,9 +3246,47 @@ struct llama_model_loader { } } + return cur; + } + + struct ggml_tensor * create_tensor(struct ggml_context * ctx, const std::string & name, const std::vector<int64_t> & ne, bool required = true) { + const struct ggml_tensor * cur = check_tensor_dims(name, ne, required); + + if (cur == NULL) { + return NULL; + } + return create_tensor_for(ctx, cur); } + struct ggml_tensor * create_tensor_as_view(struct ggml_context * ctx, struct ggml_tensor * base, const std::string & name, const std::vector<int64_t> & ne, size_t offset, bool required = true) { + const struct ggml_tensor * cur = check_tensor_dims(name, ne, required); + + if (cur == NULL) { + return NULL; + } + + if (cur->type != base->type) { + throw std::runtime_error(format("%s: tensor '%s' has wrong type; expected %s, got %s", __func__, name.c_str(), ggml_type_name(base->type), ggml_type_name(cur->type))); + } + + std::array<int64_t, GGML_MAX_DIMS> dims; + for (size_t i = 0; i < GGML_MAX_DIMS; ++i) { + dims[i] = i < ne.size() ? ne[i] : 1; + } + + struct ggml_tensor * tensor = ggml_view_4d(ctx, base, + dims[0], dims[1], dims[2], dims[3], + cur->nb[1], cur->nb[2], cur->nb[3], + offset); + + ggml_set_name(tensor, name.c_str()); + + n_created++; + + return tensor; + } + void done_getting_tensors() const { if (n_created != n_tensors) { throw std::runtime_error(format("%s: wrong number of tensors; expected %d, got %d", __func__, n_tensors, n_created)); @@ -3236,7 +3299,7 @@ struct llama_model_loader { mmaps_used.reserve(files.size()); for (const auto & file : files) { std::unique_ptr<llama_mmap> mapping(new llama_mmap(file.get(), prefetch ? -1 : 0, ggml_is_numa())); - mmaps_used.emplace_back(std::make_pair(mapping->size, 0)); + mmaps_used.emplace_back(mapping->size, 0); if (mlock_mmaps) { std::unique_ptr<llama_mlock> mlock_mmap(new llama_mlock()); mlock_mmap->init(mapping->addr); @@ -3260,18 +3323,25 @@ struct llama_model_loader { *last = 0; *addr = mapping->addr; for (ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor; tensor = ggml_get_next_tensor(ctx, tensor)) { - const auto & w = get_weights(ggml_get_name(tensor)); - if (w.idx != idx) { - continue; + try { + const auto * weight = get_weight(ggml_get_name(tensor)); + if (!weight) { + continue; + } + if (weight->idx != idx) { + continue; + } + *first = std::min(*first, weight->offs); + *last = std::max(*last, weight->offs + ggml_nbytes(tensor)); + } catch(...) { + // the tensor is not in the model } - *first = std::min(*first, w.offs); - *last = std::max(*last, w.offs + ggml_nbytes(tensor)); } } // for backwards compatibility, does not support ggml-backend void load_data_for(struct ggml_tensor * cur) const { - const auto & w = get_weights(ggml_get_name(cur)); + const auto & w = require_weight(ggml_get_name(cur)); if (use_mmap) { const auto & mapping = mappings.at(w.idx); @@ -3304,44 +3374,49 @@ struct llama_model_loader { std::vector<no_init<uint8_t>> read_buf; for (struct ggml_tensor * cur = ggml_get_first_tensor(ctx); cur != NULL; cur = ggml_get_next_tensor(ctx, cur)) { + const auto * weight = get_weight(ggml_get_name(cur)); + if (weight == nullptr) { + // this can happen with split experts models + continue; + } + if (progress_callback) { if (!progress_callback((float) size_done / size_data, progress_callback_user_data)) { return false; } } - const auto & w = get_weights(ggml_get_name(cur)); size_t n_size = ggml_nbytes(cur); if (use_mmap) { - const auto & mapping = mappings.at(w.idx); + const auto & mapping = mappings.at(weight->idx); ggml_backend_buffer_t buf_mmap = nullptr; - if (bufs_mmap.count(w.idx)) { - buf_mmap = bufs_mmap.at(w.idx); + if (bufs_mmap.count(weight->idx)) { + buf_mmap = bufs_mmap.at(weight->idx); } GGML_ASSERT(buf_mmap || cur->data); // either we have a buffer to allocate the tensor in, or it is already allocated if (buf_mmap && cur->data == nullptr) { - ggml_backend_tensor_alloc(buf_mmap, cur, (uint8_t *) mapping->addr + w.offs); + ggml_backend_tensor_alloc(buf_mmap, cur, (uint8_t *) mapping->addr + weight->offs); if (lmlocks) { - const auto & lmlock = lmlocks->at(w.idx); - lmlock->grow_to(w.offs + ggml_nbytes(cur)); + const auto & lmlock = lmlocks->at(weight->idx); + lmlock->grow_to(weight->offs + ggml_nbytes(cur)); } - auto & mmap_used = mmaps_used[w.idx]; - mmap_used.first = std::min(mmap_used.first, w.offs); - mmap_used.second = std::max(mmap_used.second, w.offs + n_size); + auto & mmap_used = mmaps_used[weight->idx]; + mmap_used.first = std::min(mmap_used.first, weight->offs); + mmap_used.second = std::max(mmap_used.second, weight->offs + n_size); } else { - ggml_backend_tensor_set(cur, (uint8_t *) mapping->addr + w.offs, 0, n_size); + ggml_backend_tensor_set(cur, (uint8_t *) mapping->addr + weight->offs, 0, n_size); } } else { - GGML_ASSERT(w.idx < files.size()); - const auto & file = files.at(w.idx); + GGML_ASSERT(weight->idx < files.size()); + const auto & file = files.at(weight->idx); if (ggml_backend_buffer_is_host(cur->buffer)) { - file->seek(w.offs, SEEK_SET); + file->seek(weight->offs, SEEK_SET); file->read_raw(cur->data, ggml_nbytes(cur)); } else { read_buf.resize(ggml_nbytes(cur)); - file->seek(w.offs, SEEK_SET); + file->seek(weight->offs, SEEK_SET); file->read_raw(read_buf.data(), ggml_nbytes(cur)); ggml_backend_tensor_set(cur, read_buf.data(), 0, n_size); } @@ -4270,6 +4345,7 @@ static bool llm_load_tensors( const int64_t n_layer = hparams.n_layer; const int64_t i_gpu_start = std::max((int64_t) hparams.n_layer - n_gpu_layers, (int64_t) 0); + bool use_mmap_buffer = true; // there is very little benefit to offloading the input layer, so always keep it on the CPU model.buft_input = llama_default_buffer_type_cpu(true); @@ -4358,6 +4434,10 @@ static bool llm_load_tensors( // create one context per buffer type size_t ctx_size = ggml_tensor_overhead()*(ml.n_tensors + 1); // +1 for models where tok_embd is duplicated as output + + // for moe merged tensors + ctx_size += ggml_tensor_overhead()*hparams.n_expert*n_layer; + std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map; for (auto & it : buft_layer_count) { struct ggml_init_params params = { @@ -4384,6 +4464,11 @@ static bool llm_load_tensors( const int64_t n_vocab = hparams.n_vocab; const int64_t n_vocab_type = hparams.n_vocab_type; const int64_t n_ff = hparams.n_ff; + const int64_t n_expert = hparams.n_expert; + + if (n_expert > 0 && hparams.n_expert_used == 0) { + throw std::runtime_error("model has expert layers but no expert layers are used"); + } GGML_ASSERT(n_embd_gqa == n_embd_k_gqa); @@ -4438,30 +4523,50 @@ static bool llm_load_tensors( layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}); - layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd}, false); - - if (layer.ffn_gate_inp == nullptr) { - GGML_ASSERT(hparams.n_expert == 0); - GGML_ASSERT(hparams.n_expert_used == 0); - + if (n_expert == 0) { layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}); layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}); layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); } else { - GGML_ASSERT(hparams.n_expert > 0); - GGML_ASSERT(hparams.n_expert_used > 0); - - // MoE branch - for (uint32_t x = 0; x < hparams.n_expert; ++x) { - layer.ffn_gate_exp[x] = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, x), {n_embd, n_ff}); - layer.ffn_down_exp[x] = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, x), { n_ff, n_embd}); - layer.ffn_up_exp[x] = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, x), {n_embd, n_ff}); + layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}); + + layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, false); + if (layer.ffn_gate_exps) { + layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert}); + layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}); + } else { + // merge split expert into a single tensor for compatibility with older models + // requires disabling mmap + use_mmap_buffer = false; + + ggml_type type_gate = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, 0).c_str())->type; + ggml_type type_down = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, 0).c_str())->type; + ggml_type type_up = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, 0).c_str())->type; + + layer.ffn_gate_exps = ggml_new_tensor_3d(ctx_split, type_gate, n_embd, n_ff, n_expert); + layer.ffn_down_exps = ggml_new_tensor_3d(ctx_split, type_down, n_ff, n_embd, n_expert); + layer.ffn_up_exps = ggml_new_tensor_3d(ctx_split, type_up, n_embd, n_ff, n_expert); + + ggml_set_name(layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i).c_str()); + ggml_set_name(layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i).c_str()); + ggml_set_name(layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i).c_str()); + + for (uint32_t x = 0; x < n_expert; ++x) { + // the individual experts are loaded into a view of the merged tensor + ml.create_tensor_as_view(ctx_split, layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_gate_exps->nb[2]*x); + ml.create_tensor_as_view(ctx_split, layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, x), { n_ff, n_embd }, layer.ffn_down_exps->nb[2]*x); + ml.create_tensor_as_view(ctx_split, layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_up_exps->nb[2]*x); + } } } } } break; case LLM_ARCH_GROK: { + if (n_expert == 0) { + throw std::runtime_error("Grok model cannot have zero experts"); + } + model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); // output @@ -4493,16 +4598,35 @@ static bool llm_load_tensors( layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}); - layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd}); + layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}); - GGML_ASSERT(hparams.n_expert > 0); - GGML_ASSERT(hparams.n_expert_used > 0); - - // MoE branch - for (uint32_t x = 0; x < hparams.n_expert; ++x) { - layer.ffn_gate_exp[x] = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, x), {n_embd, n_ff}); - layer.ffn_down_exp[x] = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, x), { n_ff, n_embd}); - layer.ffn_up_exp[x] = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, x), {n_embd, n_ff}); + layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, false); + if (layer.ffn_gate_exps) { + layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert}); + layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}); + } else { + // merge split expert into a single tensor for compatibility with older models + // requires disabling mmap + use_mmap_buffer = false; + + ggml_type type_gate = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, 0).c_str())->type; + ggml_type type_down = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, 0).c_str())->type; + ggml_type type_up = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, 0).c_str())->type; + + layer.ffn_gate_exps = ggml_new_tensor_3d(ctx_split, type_gate, n_embd, n_ff, n_expert); + layer.ffn_down_exps = ggml_new_tensor_3d(ctx_split, type_down, n_ff, n_embd, n_expert); + layer.ffn_up_exps = ggml_new_tensor_3d(ctx_split, type_up, n_embd, n_ff, n_expert); + + ggml_set_name(layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i).c_str()); + ggml_set_name(layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i).c_str()); + ggml_set_name(layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i).c_str()); + + for (uint32_t x = 0; x < n_expert; ++x) { + // the individual experts are loaded into a view of the merged tensor + ml.create_tensor_as_view(ctx_split, layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_gate_exps->nb[2]*x); + ml.create_tensor_as_view(ctx_split, layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, x), { n_ff, n_embd }, layer.ffn_down_exps->nb[2]*x); + ml.create_tensor_as_view(ctx_split, layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_up_exps->nb[2]*x); + } } layer.layer_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd}); @@ -5308,7 +5432,7 @@ static bool llm_load_tensors( // only the mmap region containing the tensors in the model is mapped to the backend buffer // this is important for metal with apple silicon: if the entire model could be mapped to a metal buffer, then we could just use metal for all layers // this allows using partial offloading when the model size exceeds the metal buffer size, but not the RAM size - if (ml.use_mmap && buft == llama_default_buffer_type_cpu(true)) { + if (ml.use_mmap && use_mmap_buffer && buft == llama_default_buffer_type_cpu(true)) { for (uint32_t idx = 0; idx < ml.files.size(); idx++) { void * addr = nullptr; size_t first, last; @@ -5332,7 +5456,7 @@ static bool llm_load_tensors( } } #ifdef GGML_USE_METAL - else if (ml.use_mmap && buft == ggml_backend_metal_buffer_type()) { + else if (ml.use_mmap && use_mmap_buffer && buft == ggml_backend_metal_buffer_type()) { for (uint32_t idx = 0; idx < ml.files.size(); idx++) { const size_t max_size = ggml_get_max_tensor_size(ctx); void * addr = nullptr; @@ -5415,8 +5539,10 @@ static bool llm_load_tensors( } } - for (auto & mapping : ml.mappings) { - model.mappings.emplace_back(std::move(mapping)); + if (use_mmap_buffer) { + for (auto & mapping : ml.mappings) { + model.mappings.emplace_back(std::move(mapping)); + } } // loading time will be recalculate after the first eval, so @@ -6284,19 +6410,19 @@ struct llm_build_context { for (int i = 0; i < n_expert_used; ++i) { ggml_tensor * cur_expert; - ggml_tensor * cur_up = ggml_mul_mat_id(ctx0, model.layers[il].ffn_up_exp, n_expert, selected_experts, i, cur); + ggml_tensor * cur_up = ggml_mul_mat_id(ctx0, model.layers[il].ffn_up_exps, selected_experts, i, cur); cb(cur_up, "ffn_moe_up", il); - ggml_tensor * cur_gate = ggml_mul_mat_id(ctx0, model.layers[il].ffn_gate_exp, n_expert, selected_experts, i, cur); + ggml_tensor * cur_gate = ggml_mul_mat_id(ctx0, model.layers[il].ffn_gate_exps, selected_experts, i, cur); cb(cur_gate, "ffn_moe_gate", il); cur_gate = ggml_silu(ctx0, cur_gate); cb(cur_gate, "ffn_moe_silu", il); - cur_expert = ggml_mul(ctx0, cur_up, cur_gate); // [n_tokens, n_embd] + cur_expert = ggml_mul(ctx0, cur_up, cur_gate); cb(cur_expert, "ffn_moe_gate_par", il); - cur_expert = ggml_mul_mat_id(ctx0, model.layers[il].ffn_down_exp, n_expert, selected_experts, i, cur_expert); // [n_tokens, n_embd] + cur_expert = ggml_mul_mat_id(ctx0, model.layers[il].ffn_down_exps, selected_experts, i, cur_expert); // [n_tokens, n_embd] cb(cur_expert, "ffn_moe_down", il); cur_expert = ggml_mul(ctx0, cur_expert, @@ -6818,20 +6944,20 @@ struct llm_build_context { for (int i = 0; i < n_expert_used; ++i) { ggml_tensor * cur_expert; - ggml_tensor * cur_up = ggml_mul_mat_id(ctx0, model.layers[il].ffn_up_exp, n_expert, selected_experts, i, cur); + ggml_tensor * cur_up = ggml_mul_mat_id(ctx0, model.layers[il].ffn_up_exps, selected_experts, i, cur); cb(cur_up, "ffn_moe_up", il); - ggml_tensor * cur_gate = ggml_mul_mat_id(ctx0, model.layers[il].ffn_gate_exp, n_expert, selected_experts, i, cur); + ggml_tensor * cur_gate = ggml_mul_mat_id(ctx0, model.layers[il].ffn_gate_exps, selected_experts, i, cur); cb(cur_gate, "ffn_moe_gate", il); //GeLU cur_gate = ggml_gelu(ctx0, cur_gate); cb(cur_gate, "ffn_moe_gelu", il); - cur_expert = ggml_mul(ctx0, cur_up, cur_gate); // [n_tokens, n_embd] + cur_expert = ggml_mul(ctx0, cur_up, cur_gate); cb(cur_expert, "ffn_moe_gate_par", il); - cur_expert = ggml_mul_mat_id(ctx0, model.layers[il].ffn_down_exp, n_expert, selected_experts, i, cur_expert); // [n_tokens, n_embd] + cur_expert = ggml_mul_mat_id(ctx0, model.layers[il].ffn_down_exps, selected_experts, i, cur_expert); // [n_tokens, n_embd] cb(cur_expert, "ffn_moe_down", il); cur_expert = ggml_mul(ctx0, cur_expert, @@ -12902,7 +13028,6 @@ static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type n // sprinkled in the model. Hence, simply dividing i_ffn_down by n_expert does not work // for getting the current layer as I initially thought, and we need to resort to parsing the // tensor name. - n_layer /= n_expert; if (sscanf(name, "blk.%d.", &i_layer) != 1) { throw std::runtime_error(format("Failed to determine layer for tensor %s", name)); } @@ -13264,7 +13389,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s kv_overrides = v->data(); } llama_model_loader ml(fname_inp, use_mmap, kv_overrides); - ml.init_mappings(false); // no prefetching? + ml.init_mappings(false); // no prefetching llama_model model; llm_load_arch(ml, model); @@ -13316,20 +13441,15 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s // TODO: avoid hardcoded tensor names - use the TN_* constants if (name.find("attn_v.weight") != std::string::npos || name.find("attn_qkv.weight") != std::string::npos) { ++qs.n_attention_wv; - } else if (name.find("ffn_down") != std::string::npos) { - ++qs.n_ffn_down; - } else if (name.find("ffn_gate") != std::string::npos) { - ++qs.n_ffn_gate; - } else if (name.find("ffn_up") != std::string::npos) { - ++qs.n_ffn_up; } else if (name == LLM_TN(model.arch)(LLM_TENSOR_OUTPUT, "weight")) { qs.has_output = true; } } - if (qs.n_attention_wv != qs.n_ffn_down || (uint32_t) qs.n_attention_wv != model.hparams.n_layer) { - LLAMA_LOG_WARN("%s ============ Strange model: n_attention_wv = %d, n_ffn_down = %d, hparams.n_layer = %d\n", - __func__, qs.n_attention_wv, qs.n_ffn_down, model.hparams.n_layer); - } + + qs.n_ffn_down = qs.n_ffn_gate = qs.n_ffn_up = (int)model.hparams.n_layer; + + // sanity checks + GGML_ASSERT(qs.n_attention_wv == (int)model.hparams.n_layer && "n_attention_wv != n_layer is unexpected"); size_t total_size_org = 0; size_t total_size_new = 0; @@ -13359,6 +13479,8 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s // placeholder for the meta data ::zeros(fout, meta_size); + const auto tn = LLM_TN(model.arch); + for (int i = 0; i < ml.n_tensors; ++i) { struct ggml_tensor * tensor = ml.get_tensor_meta(i); @@ -13381,8 +13503,8 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s // This used to be a regex, but <regex> has an extreme cost to compile times. bool quantize = name.rfind("weight") == name.size() - 6; // ends with 'weight'? - // quantize only 2D tensors - quantize &= (ggml_n_dims(tensor) == 2); + // quantize only 2D and 3D tensors (experts) + quantize &= (ggml_n_dims(tensor) >= 2); quantize &= params->quantize_output_tensor || name != "output.weight"; quantize &= !params->only_copy; @@ -13437,11 +13559,20 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s if (it == imatrix_data->end()) { LLAMA_LOG_INFO("\n====== %s: did not find weights for %s\n", __func__, tensor->name); } else { - if (it->second.size() == (size_t)tensor->ne[0]) { + if (it->second.size() == (size_t)tensor->ne[0]*tensor->ne[2]) { imatrix = it->second.data(); } else { LLAMA_LOG_INFO("\n====== %s: imatrix size %d is different from tensor size %d for %s\n", __func__, - int(it->second.size()), int(tensor->ne[0]), tensor->name); + int(it->second.size()), int(tensor->ne[0]*tensor->ne[2]), tensor->name); + + // this can happen when quantizing an old mixtral model with split tensors with a new incompatible imatrix + // this is a significant error and it may be good idea to abort the process if this happens, + // since many people will miss the error and not realize that most of the model is being quantized without an imatrix + // tok_embd should be ignored in this case, since it always causes this warning + if (name != tn(LLM_TENSOR_TOKEN_EMBD, "weight")) { + throw std::runtime_error(format("imatrix size %d is different from tensor size %d for %s", + int(it->second.size()), int(tensor->ne[0]*tensor->ne[2]), tensor->name)); + } } } } @@ -13478,15 +13609,24 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s new_data = work.data(); const int n_per_row = tensor->ne[0]; - const int nrows = nelements / n_per_row; + const int nrows = tensor->ne[1]; static const int min_chunk_size = 32 * 512; const int chunk_size = n_per_row >= min_chunk_size ? n_per_row : n_per_row * ((min_chunk_size + n_per_row - 1)/n_per_row); - const int nchunk = (nelements + chunk_size - 1)/chunk_size; + const int nelements_matrix = tensor->ne[0] * tensor->ne[1]; + const int nchunk = (nelements_matrix + chunk_size - 1)/chunk_size; const int nthread_use = nthread > 1 ? std::max(1, std::min(nthread, nchunk)) : 1; - new_size = llama_tensor_quantize_internal(new_type, f32_data, new_data, chunk_size, nrows, n_per_row, imatrix, workers, nthread_use); + // quantize each expert separately since they have different importance matrices + new_size = 0; + for (int64_t i03 = 0; i03 < tensor->ne[2]; ++i03) { + const float * f32_data_03 = f32_data + i03 * nelements_matrix; + void * new_data_03 = (char *)new_data + ggml_row_size(new_type, n_per_row) * i03 * nrows; + const float * imatrix_03 = imatrix ? imatrix + i03 * n_per_row : nullptr; + + new_size += llama_tensor_quantize_internal(new_type, f32_data_03, new_data_03, chunk_size, nrows, n_per_row, imatrix_03, workers, nthread_use); + } LLAMA_LOG_INFO("size = %8.2f MiB -> %8.2f MiB\n", ggml_nbytes(tensor)/1024.0/1024.0, new_size/1024.0/1024.0); } total_size_org += ggml_nbytes(tensor); |