summaryrefslogtreecommitdiff
path: root/llama.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'llama.cpp')
-rw-r--r--llama.cpp14
1 files changed, 7 insertions, 7 deletions
diff --git a/llama.cpp b/llama.cpp
index a0d7e513..a6429a4e 100644
--- a/llama.cpp
+++ b/llama.cpp
@@ -262,12 +262,12 @@ static size_t checked_div(size_t a, size_t b) {
}
static std::string llama_format_tensor_shape(const std::vector<uint32_t> & ne) {
- std::string ret = "[" + std::to_string(ne.at(0));
+ char buf[256];
+ snprintf(buf, sizeof(buf), "%5u", ne.at(0));
for (size_t i = 1; i < ne.size(); i++) {
- ret += " x " + std::to_string(ne.at(i));
+ snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), " x %5u", ne.at(i));
}
- ret += "]";
- return ret;
+ return buf;
}
static size_t llama_calc_tensor_size(const std::vector<uint32_t> & ne, enum ggml_type type) {
@@ -942,8 +942,8 @@ static void llama_model_load_internal(
ml->ggml_ctx = ctx;
model.tok_embeddings = ml->get_tensor("tok_embeddings.weight", {n_embd, n_vocab});
- model.norm = ml->get_tensor("norm.weight", {n_embd});
- model.output = ml->get_tensor("output.weight", {n_embd, n_vocab});
+ model.norm = ml->get_tensor("norm.weight", {n_embd});
+ model.output = ml->get_tensor("output.weight", {n_embd, n_vocab});
model.layers.resize(n_layer);
for (uint32_t i = 0; i < n_layer; ++i) {
@@ -1570,7 +1570,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
tensor.data = read_data.addr;
model_loader->load_data_for(tensor);
- printf("[%zu/%zu] %36s - %s, type = %6s, ",
+ printf("[%4zu/%4zu] %36s - %16s, type = %6s, ",
++idx, model_loader->tensors_map.tensors.size(),
tensor.name.c_str(), llama_format_tensor_shape(tensor.ne).c_str(),
ggml_type_name(tensor.type));