summaryrefslogtreecommitdiff
path: root/llama.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'llama.cpp')
-rw-r--r--llama.cpp67
1 files changed, 45 insertions, 22 deletions
diff --git a/llama.cpp b/llama.cpp
index 99d29a1e..e4c414c2 100644
--- a/llama.cpp
+++ b/llama.cpp
@@ -24,6 +24,9 @@
#include <memory>
#include <algorithm>
#include <initializer_list>
+#include <thread>
+#include <atomic>
+#include <mutex>
#define LLAMA_USE_SCRATCH
#define LLAMA_MAX_SCRATCH_BUFFERS 16
@@ -1572,7 +1575,7 @@ static llama_vocab::id llama_sample_top_p_top_k(
// quantization
//
-static void llama_model_quantize_internal(const std::string & fname_inp, const std::string & fname_out, enum llama_ftype ftype) {
+static void llama_model_quantize_internal(const std::string & fname_inp, const std::string & fname_out, enum llama_ftype ftype, int nthread) {
ggml_type quantized_type;
switch (ftype) {
case LLAMA_FTYPE_MOSTLY_Q4_0: quantized_type = GGML_TYPE_Q4_0; break;
@@ -1582,6 +1585,10 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
default: throw format("invalid output file type %d\n", ftype);
};
+ if (nthread <= 0) {
+ nthread = std::thread::hardware_concurrency();
+ }
+
std::unique_ptr<llama_model_loader> model_loader(new llama_model_loader(fname_inp.c_str(), /*use_mmap*/ false,
/*vocab_only*/ false));
llama_file_saver file_saver(fname_out.c_str(), model_loader->file_loaders.at(0).get(), ftype);
@@ -1590,6 +1597,9 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
size_t total_size_new = 0;
std::vector<int64_t> hist_all(1 << 4, 0);
+ std::vector<std::thread> workers;
+ std::mutex mutex;
+
size_t idx = 0;
for (llama_load_tensor & tensor : model_loader->tensors_map.tensors) {
llama_buffer read_data;
@@ -1643,25 +1653,37 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
new_data = work.addr;
std::vector<int64_t> hist_cur(1 << 4, 0);
- switch (new_type) {
- case GGML_TYPE_Q4_0:
- {
- new_size = ggml_quantize_q4_0(f32_data, new_data, nelements, (int) tensor.ne.at(0), hist_cur.data());
- } break;
- case GGML_TYPE_Q4_1:
- {
- new_size = ggml_quantize_q4_1(f32_data, new_data, nelements, (int) tensor.ne.at(0), hist_cur.data());
- } break;
- case GGML_TYPE_Q4_2:
- {
- new_size = ggml_quantize_q4_2(f32_data, new_data, nelements, (int) tensor.ne.at(0), hist_cur.data());
- } break;
- case GGML_TYPE_Q4_3:
- {
- new_size = ggml_quantize_q4_3(f32_data, new_data, nelements, (int) tensor.ne.at(0), hist_cur.data());
- } break;
- default:
- LLAMA_ASSERT(false);
+ int chunk_size = 32 * 512;
+ const int nchunk = (nelements + chunk_size - 1)/chunk_size;
+ const int nthread_use = nthread > 1 ? std::max(1, std::min(nthread, nchunk)) : 1;
+ if (nthread_use < 2) {
+ new_size = ggml_quantize_chunk(new_type, f32_data, new_data, 0, nelements, hist_cur.data());
+ } else {
+ size_t counter = 0;
+ new_size = 0;
+ auto compute = [&mutex, &counter, &hist_cur, &new_size, new_type, f32_data, new_data, nelements, chunk_size] () {
+ std::vector<int64_t> local_hist;
+ size_t local_size = 0;
+ while (true) {
+ std::unique_lock<std::mutex> lock(mutex);
+ size_t first = counter; counter += chunk_size;
+ if (first >= nelements) {
+ if (!local_hist.empty()) {
+ for (int j=0; j<int(local_hist.size()); ++j) hist_cur[j] += local_hist[j];
+ new_size += local_size;
+ }
+ break;
+ }
+ lock.unlock();
+ size_t last = std::min(nelements, first + chunk_size);
+ if (local_hist.empty()) local_hist.resize(hist_cur.size(), 0);
+ local_size += ggml_quantize_chunk(new_type, f32_data, new_data, first, last - first, local_hist.data());
+ }
+ };
+ if (int(workers.size()) < nthread_use - 1) workers.resize(nthread_use - 1);
+ for (int it = 0; it < nthread_use - 1; ++it) workers[it] = std::thread(compute);
+ compute();
+ for (int it = 0; it < nthread_use - 1; ++it) workers[it].join();
}
printf("size = %8.2f MB -> %8.2f MB | hist: ", tensor.size/1024.0/1024.0, new_size/1024.0/1024.0);
@@ -1783,9 +1805,10 @@ void llama_free(struct llama_context * ctx) {
int llama_model_quantize(
const char * fname_inp,
const char * fname_out,
- enum llama_ftype ftype) {
+ enum llama_ftype ftype,
+ int nthread) {
try {
- llama_model_quantize_internal(fname_inp, fname_out, ftype);
+ llama_model_quantize_internal(fname_inp, fname_out, ftype, nthread);
return 0;
} catch (const std::string & err) {
fprintf(stderr, "%s: failed to quantize: %s\n", __func__, err.c_str());