summaryrefslogtreecommitdiff
path: root/llama.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'llama.cpp')
-rw-r--r--llama.cpp368
1 files changed, 361 insertions, 7 deletions
diff --git a/llama.cpp b/llama.cpp
index 0cab1809..8c5b7472 100644
--- a/llama.cpp
+++ b/llama.cpp
@@ -160,17 +160,19 @@ enum llm_arch {
LLM_ARCH_GPTJ,
LLM_ARCH_GPTNEOX,
LLM_ARCH_MPT,
+ LLM_ARCH_STARCODER,
LLM_ARCH_UNKNOWN,
};
static std::map<llm_arch, std::string> LLM_ARCH_NAMES = {
- { LLM_ARCH_LLAMA, "llama" },
- { LLM_ARCH_FALCON, "falcon" },
- { LLM_ARCH_GPT2, "gpt2" },
- { LLM_ARCH_GPTJ, "gptj" },
- { LLM_ARCH_GPTNEOX, "gptneox" },
- { LLM_ARCH_MPT, "mpt" },
- { LLM_ARCH_BAICHUAN,"baichuan" },
+ { LLM_ARCH_LLAMA, "llama" },
+ { LLM_ARCH_FALCON, "falcon" },
+ { LLM_ARCH_GPT2, "gpt2" },
+ { LLM_ARCH_GPTJ, "gptj" },
+ { LLM_ARCH_GPTNEOX, "gptneox" },
+ { LLM_ARCH_MPT, "mpt" },
+ { LLM_ARCH_BAICHUAN, "baichuan" },
+ { LLM_ARCH_STARCODER, "starcoder" },
};
enum llm_kv {
@@ -377,6 +379,21 @@ static std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NAMES =
},
},
{
+ LLM_ARCH_STARCODER,
+ {
+ { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
+ { LLM_TENSOR_POS_EMBD, "position_embd" },
+ { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
+ { LLM_TENSOR_OUTPUT, "output" },
+ { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
+ { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
+ { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
+ { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
+ { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
+ { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
+ },
+ },
+ {
LLM_ARCH_UNKNOWN,
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
@@ -895,9 +912,11 @@ static llama_state g_state;
// available llama models
enum e_model {
MODEL_UNKNOWN,
+ MODEL_1B,
MODEL_3B,
MODEL_7B,
MODEL_13B,
+ MODEL_15B,
MODEL_30B,
MODEL_34B,
MODEL_40B,
@@ -966,13 +985,22 @@ struct llama_layer {
struct ggml_tensor * wo;
struct ggml_tensor * wqkv;
+ // attention bias
+ struct ggml_tensor * bo;
+ struct ggml_tensor * bqkv;
+
// normalization
struct ggml_tensor * ffn_norm;
+ struct ggml_tensor * ffn_norm_b;
// ff
struct ggml_tensor * w1; // ffn_gate
struct ggml_tensor * w2; // ffn_down
struct ggml_tensor * w3; // ffn_up
+
+ // ff bias
+ struct ggml_tensor * b2; // ffn_down
+ struct ggml_tensor * b3; // ffn_up
};
struct llama_kv_cache {
@@ -1050,6 +1078,7 @@ struct llama_model {
llama_vocab vocab;
struct ggml_tensor * tok_embeddings;
+ struct ggml_tensor * pos_embeddings;
struct ggml_tensor * output_norm;
struct ggml_tensor * output_norm_b;
@@ -1593,9 +1622,11 @@ std::string llama_model_ftype_name(enum llama_ftype ftype) {
static const char * llama_model_type_name(e_model type) {
switch (type) {
+ case MODEL_1B: return "1B";
case MODEL_3B: return "3B";
case MODEL_7B: return "7B";
case MODEL_13B: return "13B";
+ case MODEL_15B: return "15B";
case MODEL_30B: return "30B";
case MODEL_34B: return "34B";
case MODEL_40B: return "40B";
@@ -1713,6 +1744,17 @@ static void llm_load_hparams(
default: model.type = e_model::MODEL_UNKNOWN;
}
} break;
+ case LLM_ARCH_STARCODER:
+ {
+ GGUF_GET_KEY(ctx, hparams.f_norm_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, kv(LLM_KV_ATTENTION_LAYERNORM_EPS));
+ switch (hparams.n_layer) {
+ case 24: model.type = e_model::MODEL_1B; break;
+ case 36: model.type = e_model::MODEL_3B; break;
+ case 42: model.type = e_model::MODEL_7B; break;
+ case 40: model.type = e_model::MODEL_15B; break;
+ default: model.type = e_model::MODEL_UNKNOWN;
+ }
+ } break;
default: (void)0;
};
@@ -2166,6 +2208,85 @@ static void llm_load_tensors(
}
}
} break;
+ case LLM_ARCH_STARCODER:
+ {
+ model.tok_embeddings = ml.create_tensor(ctx, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, GGML_BACKEND_CPU);
+ model.pos_embeddings = ml.create_tensor(ctx, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train}, GGML_BACKEND_CPU);
+
+ // output
+ {
+ ggml_backend backend_norm;
+ ggml_backend backend_output;
+
+ if (n_gpu_layers > int(n_layer)) {
+ // norm is not performance relevant on its own but keeping it in VRAM reduces data copying
+ // on Windows however this is detrimental unless everything is on the GPU
+#ifndef _WIN32
+ backend_norm = low_vram ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD;
+#else
+ backend_norm = low_vram || n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD;
+#endif // _WIN32
+
+ backend_output = LLAMA_BACKEND_OFFLOAD_SPLIT;
+ } else {
+ backend_norm = GGML_BACKEND_CPU;
+ backend_output = GGML_BACKEND_CPU;
+ }
+
+ model.output_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, backend_norm);
+ model.output_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, backend_norm);
+ model.output = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, backend_output);
+
+ if (backend_norm == GGML_BACKEND_GPU) {
+ vram_weights += ggml_nbytes(model.output_norm);
+ vram_weights += ggml_nbytes(model.output_norm_b);
+ }
+ if (backend_output == GGML_BACKEND_GPU_SPLIT) {
+ vram_weights += ggml_nbytes(model.output);
+ }
+ }
+
+ const uint32_t n_ff = hparams.n_ff;
+
+ const int i_gpu_start = n_layer - n_gpu_layers;
+
+ model.layers.resize(n_layer);
+
+ for (uint32_t i = 0; i < n_layer; ++i) {
+ const ggml_backend backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; // NOLINT
+ const ggml_backend backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD_SPLIT; // NOLINT
+
+ auto & layer = model.layers[i];
+
+ layer.attn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, backend);
+ layer.attn_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, backend);
+
+ layer.wqkv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, backend_split);
+ layer.bqkv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, backend_split);
+
+ layer.wo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, backend_split);
+ layer.bo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, backend_split);
+
+ layer.ffn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, backend);
+ layer.ffn_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, backend);
+
+ layer.w2 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, backend_split);
+ layer.b2 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, backend_split);
+
+ layer.w3 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, backend_split);
+ layer.b3 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, backend_split);
+
+ if (backend == GGML_BACKEND_GPU) {
+ vram_weights +=
+ ggml_nbytes(layer.attn_norm) + ggml_nbytes(layer.attn_norm_b) +
+ ggml_nbytes(layer.wqkv) + ggml_nbytes(layer.bqkv) +
+ ggml_nbytes(layer.wo) + ggml_nbytes(layer.bo) +
+ ggml_nbytes(layer.ffn_norm) + ggml_nbytes(layer.ffn_norm_b) +
+ ggml_nbytes(layer.w2) + ggml_nbytes(layer.b2) +
+ ggml_nbytes(layer.w3) + ggml_nbytes(layer.b3);
+ }
+ }
+ } break;
default:
throw std::runtime_error("unknown architecture");
};
@@ -3305,6 +3426,235 @@ static struct ggml_cgraph * llm_build_falcon(
return gf;
}
+static struct ggml_cgraph * llm_build_starcoder(
+ llama_context & lctx,
+ const llama_token * tokens,
+ const float * embd,
+ int n_tokens,
+ int n_past) {
+
+ GGML_ASSERT((!tokens && embd) || (tokens && !embd)); // NOLINT
+
+ const int N = n_tokens;
+
+ const auto & model = lctx.model;
+ const auto & hparams = model.hparams;
+
+ const auto & kv_self = lctx.kv_self;
+
+ GGML_ASSERT(!!kv_self.ctx);
+
+ const int64_t n_embd = hparams.n_embd;
+ const int64_t n_layer = hparams.n_layer;
+ const int64_t n_ctx = hparams.n_ctx;
+ const int64_t n_head = hparams.n_head;
+ const int64_t n_head_kv = hparams.n_head_kv;
+ const int64_t n_embd_head = hparams.n_embd_head();
+ const int64_t n_embd_gqa = hparams.n_embd_gqa();
+
+ GGML_ASSERT(n_embd_head == hparams.n_rot);
+
+ const float norm_eps = hparams.f_norm_eps;
+
+ auto & buf_compute = lctx.buf_compute;
+
+ struct ggml_init_params params = {
+ /*.mem_size =*/ buf_compute.size,
+ /*.mem_buffer =*/ buf_compute.data,
+ /*.no_alloc =*/ false,
+ };
+
+ params.no_alloc = true;
+
+ struct ggml_context * ctx0 = ggml_init(params);
+
+ ggml_cgraph * gf = ggml_new_graph(ctx0);
+
+ struct ggml_tensor * cur;
+ struct ggml_tensor * token;
+ struct ggml_tensor * position;
+ struct ggml_tensor * inpL;
+
+ if (tokens) {
+ struct ggml_tensor * inp_tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
+
+ ggml_allocr_alloc(lctx.alloc, inp_tokens);
+ if (!ggml_allocr_is_measure(lctx.alloc)) {
+ memcpy(inp_tokens->data, tokens, N*ggml_element_size(inp_tokens));
+ }
+ ggml_set_name(inp_tokens, "inp_tokens");
+
+ token = ggml_get_rows(ctx0, model.tok_embeddings, inp_tokens);
+ } else {
+#ifdef GGML_USE_MPI
+ GGML_ASSERT(false && "not implemented");
+#endif
+
+ token = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N);
+
+ ggml_allocr_alloc(lctx.alloc, token);
+ if (!ggml_allocr_is_measure(lctx.alloc)) {
+ memcpy(token->data, embd, N * n_embd * ggml_element_size(inpL));
+ }
+ }
+
+ {
+ // Compute position embeddings.
+ struct ggml_tensor * inp_positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
+ ggml_allocr_alloc(lctx.alloc, inp_positions);
+ if (!ggml_allocr_is_measure(lctx.alloc)) {
+ for (int i = 0; i < N; ++i) {
+ ((int32_t *) inp_positions->data)[i] = n_past + i;
+ }
+ }
+ ggml_set_name(inp_positions, "inp_positions");
+
+ position = ggml_get_rows(ctx0, model.pos_embeddings, inp_positions);
+ }
+
+ struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
+ ggml_allocr_alloc(lctx.alloc, KQ_scale);
+ if (!ggml_allocr_is_measure(lctx.alloc)) {
+ ggml_set_f32(KQ_scale, 1.0f/sqrtf(float(n_embd)/n_head));
+ }
+ ggml_set_name(KQ_scale, "1/sqrt(n_embd_head)");
+
+ inpL = ggml_add(ctx0, token, position);
+ ggml_set_name(inpL, "inpL");
+
+ for (int il = 0; il < n_layer; ++il) {
+ {
+ // Norm
+ cur = ggml_norm(ctx0, inpL, norm_eps);
+ cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].attn_norm), model.layers[il].attn_norm_b);
+ }
+
+ {
+ // Self Attention
+ cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wqkv, cur), model.layers[il].bqkv);
+
+ struct ggml_tensor * tmpq = ggml_view_2d(ctx0, cur, n_embd, N, cur->nb[1], 0*sizeof(float)*n_embd);
+ struct ggml_tensor * tmpk = ggml_view_2d(ctx0, cur, n_embd_gqa, N, cur->nb[1], sizeof(float)*n_embd);
+ struct ggml_tensor * tmpv = ggml_view_2d(ctx0, cur, n_embd_gqa, N, cur->nb[1], sizeof(float)*(n_embd + n_embd_gqa));
+
+ struct ggml_tensor * Qcur = tmpq;
+ struct ggml_tensor * Kcur = tmpk;
+
+ {
+ struct ggml_tensor * Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, ggml_cont(ctx0, tmpv), n_embd_gqa, N));
+ ggml_set_name(Vcur, "Vcur");
+
+ struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, N*n_embd_gqa, (ggml_element_size(kv_self.k)*n_embd_gqa)*(il*n_ctx + n_past));
+ ggml_set_name(k, "k");
+
+ struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, N, n_embd_gqa,
+ ( n_ctx)*ggml_element_size(kv_self.v),
+ (il*n_ctx)*ggml_element_size(kv_self.v)*n_embd_gqa + n_past*ggml_element_size(kv_self.v));
+
+ ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, k));
+ ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, v));
+ }
+
+ struct ggml_tensor * Q =
+ ggml_permute(ctx0,
+ ggml_cpy(ctx0,
+ Qcur,
+ ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_embd_head, n_head, N)),
+ 0, 2, 1, 3);
+ ggml_set_name(Q, "Q");
+
+ struct ggml_tensor * K =
+ ggml_view_3d(ctx0, kv_self.k,
+ n_embd_head, n_past + N, n_head_kv,
+ ggml_element_size(kv_self.k)*n_embd_gqa,
+ ggml_element_size(kv_self.k)*n_embd_head,
+ ggml_element_size(kv_self.k)*n_embd_gqa*n_ctx*il);
+ ggml_set_name(K, "K");
+
+ // K * Q
+ struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
+ ggml_set_name(KQ, "KQ");
+
+ // KQ_scaled = KQ / sqrt(n_embd_head)
+ // KQ_scaled shape [n_past + N, N, n_head, 1]
+ struct ggml_tensor * KQ_scaled = ggml_scale_inplace(ctx0, KQ, KQ_scale);
+ ggml_set_name(KQ_scaled, "KQ_scaled");
+
+ // KQ_masked = mask_past(KQ_scaled)
+ struct ggml_tensor * KQ_masked = ggml_diag_mask_inf_inplace(ctx0, KQ_scaled, n_past);
+ ggml_set_name(KQ_masked, "KQ_masked");
+
+ // KQ = soft_max(KQ_masked)
+ struct ggml_tensor * KQ_soft_max = ggml_soft_max_inplace(ctx0, KQ_masked);
+ ggml_set_name(KQ_soft_max, "KQ_soft_max");
+
+ // split cached V into n_head heads
+ struct ggml_tensor * V =
+ ggml_view_3d(ctx0, kv_self.v,
+ n_past + N, n_embd_head, n_head_kv,
+ ggml_element_size(kv_self.v)*n_ctx,
+ ggml_element_size(kv_self.v)*n_ctx*n_embd_head,
+ ggml_element_size(kv_self.v)*n_ctx*n_embd_gqa*il);
+ ggml_set_name(V, "V");
+
+ struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max);
+ ggml_set_name(KQV, "KQV");
+
+ // KQV_merged = KQV.permute(0, 2, 1, 3)
+ struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
+ ggml_set_name(KQV_merged, "KQV_merged");
+
+ // cur = KQV_merged.contiguous().view(n_embd, N)
+ cur = ggml_cpy(ctx0,
+ KQV_merged,
+ ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N));
+ ggml_set_name(cur, "KQV_merged_contiguous");
+ }
+
+ // Projection
+ cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wo, cur), model.layers[il].bo);
+
+ // Add the input
+ cur = ggml_add(ctx0, cur, inpL);
+
+ struct ggml_tensor * inpFF = cur;
+
+ // FF
+ {
+ // Norm
+ {
+ cur = ggml_norm(ctx0, inpFF, norm_eps);
+ cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].ffn_norm), model.layers[il].ffn_norm_b);
+ }
+
+ cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].w3, cur), model.layers[il].b3);
+
+ // GELU activation
+ cur = ggml_gelu(ctx0, cur);
+
+ // Projection
+ cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].w2, cur), model.layers[il].b2);
+ }
+
+ inpL = ggml_add(ctx0, cur, inpFF);
+ }
+
+ // Output Norm
+ {
+ cur = ggml_norm(ctx0, inpL, norm_eps);
+ cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.output_norm), model.output_norm_b);
+ }
+ ggml_set_name(cur, "result_norm");
+
+ cur = ggml_mul_mat(ctx0, model.output, cur);
+ ggml_set_name(cur, "result_output");
+
+ ggml_build_forward_expand(gf, cur);
+ ggml_free(ctx0);
+
+ return gf;
+}
+
static struct ggml_cgraph * llama_build_graph(
llama_context & lctx,
const llama_token * tokens,
@@ -3328,6 +3678,10 @@ static struct ggml_cgraph * llama_build_graph(
{
result = llm_build_falcon(lctx, tokens, embd, n_tokens, n_past);
} break;
+ case LLM_ARCH_STARCODER:
+ {
+ result = llm_build_starcoder(lctx, tokens, embd, n_tokens, n_past);
+ } break;
default:
GGML_ASSERT(false);
};