summaryrefslogtreecommitdiff
path: root/llama.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'llama.cpp')
-rw-r--r--llama.cpp67
1 files changed, 67 insertions, 0 deletions
diff --git a/llama.cpp b/llama.cpp
index 6a7506e8..823d42d7 100644
--- a/llama.cpp
+++ b/llama.cpp
@@ -8151,6 +8151,73 @@ void llama_sample_typical(struct llama_context * ctx, llama_token_data_array * c
}
}
+void llama_sample_entropy(struct llama_context * ctx, llama_token_data_array * candidates_p, float min_temp, float max_temp, float exponent_val) {
+ const int64_t t_start_sample_us = ggml_time_us();
+
+ // no need to do anything if there is only one (or zero) candidates
+ if(candidates_p->size <= 1) {
+ return;
+ }
+
+ // Calculate maximum possible entropy
+ float max_entropy = -logf(1.0f / candidates_p->size);
+
+ llama_sample_softmax(nullptr, candidates_p);
+
+ // Calculate entropy of the softmax probabilities
+ float entropy = 0.0f;
+ for (size_t i = 0; i < candidates_p->size; ++i) {
+ float prob = candidates_p->data[i].p;
+ if (prob > 0.0f) { // Ensure no log(0)
+ entropy -= prob * logf(prob);
+ }
+ }
+
+ // Normalize the entropy (max_entropy cannot be 0 here because we checked candidates_p->size != 1 above)
+ float normalized_entropy = entropy / max_entropy;
+
+ // Map the normalized entropy to the desired temperature range using the power function
+ float dyn_temp = min_temp + (max_temp - min_temp) * powf(normalized_entropy, exponent_val);
+
+#ifdef DEBUG
+ LLAMA_LOG_INFO("Your text maxtemp value is: %f\n", max_temp);
+ LLAMA_LOG_INFO("Entropy: %f\n", entropy);
+ LLAMA_LOG_INFO("Max Possible Entropy: %f\n", max_entropy);
+ LLAMA_LOG_INFO("Normalized Entropy: %f\n", normalized_entropy);
+ LLAMA_LOG_INFO("Exponent: %f\n", exponent_val);
+ LLAMA_LOG_INFO("Dynamic Temperature (dyn_temp): %f\n", dyn_temp);
+#endif
+
+ // Apply the dynamically calculated temperature scaling
+ for (size_t i = 0; i < candidates_p->size; ++i) {
+ candidates_p->data[i].logit /= dyn_temp;
+ }
+
+ // Re-compute softmax probabilities after scaling logits with dynamic temperature
+ double max_l_double = candidates_p->data[0].logit;
+ double cum_sum_double = 0.0;
+ for (size_t i = 0; i < candidates_p->size; ++i) {
+ double p = exp(candidates_p->data[i].logit - max_l_double);
+ candidates_p->data[i].p = p; // Store the scaled probability
+ cum_sum_double += p;
+ }
+ for (size_t i = 0; i < candidates_p->size; ++i) {
+ candidates_p->data[i].p /= cum_sum_double; // Re-normalize the probabilities
+ }
+
+#ifdef DEBUG
+ // Print the updated top 25 probabilities after temperature scaling
+ LLAMA_LOG_INFO("\nUpdated Top 25 Probabilities After Dynamic Temperature Scaling (in percentages):\n");
+ for (size_t i = 0; i < 25 && i < candidates_p->size; ++i) {
+ LLAMA_LOG_INFO("Token %zu: %f%%\n", i + 1, candidates_p->data[i].p * 100.0f);
+ }
+#endif
+
+ if (ctx) {
+ ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
+ }
+}
+
void llama_sample_temp(struct llama_context * ctx, llama_token_data_array * candidates_p, float temp) {
const int64_t t_start_sample_us = ggml_time_us();