diff options
Diffstat (limited to 'llama.cpp')
-rw-r--r-- | llama.cpp | 281 |
1 files changed, 281 insertions, 0 deletions
@@ -225,6 +225,7 @@ enum llm_arch { LLM_ARCH_OLMO, LLM_ARCH_ARCTIC, LLM_ARCH_DEEPSEEK2, + LLM_ARCH_BITNET, LLM_ARCH_UNKNOWN, }; @@ -263,6 +264,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = { { LLM_ARCH_OLMO, "olmo" }, { LLM_ARCH_ARCTIC, "arctic" }, { LLM_ARCH_DEEPSEEK2, "deepseek2" }, + { LLM_ARCH_BITNET, "bitnet" }, { LLM_ARCH_UNKNOWN, "(unknown)" }, }; @@ -500,6 +502,8 @@ enum llm_tensor { LLM_TENSOR_ATTN_KV_B, LLM_TENSOR_ATTN_Q_A_NORM, LLM_TENSOR_ATTN_KV_A_NORM, + LLM_TENSOR_ATTN_SUB_NORM, + LLM_TENSOR_FFN_SUB_NORM, }; static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NAMES = { @@ -1114,6 +1118,24 @@ static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NA }, }, { + LLM_ARCH_BITNET, + { + { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, + { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, + { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, + { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, + { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, + { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, + { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, + { LLM_TENSOR_ATTN_SUB_NORM, "blk.%d.attn_sub_norm" }, + { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, + { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, + { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, + { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, + { LLM_TENSOR_FFN_SUB_NORM, "blk.%d.ffn_sub_norm" }, + }, + }, + { LLM_ARCH_UNKNOWN, { { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, @@ -2118,6 +2140,8 @@ struct llama_layer { struct ggml_tensor * attn_out_norm_b; struct ggml_tensor * attn_q_a_norm; struct ggml_tensor * attn_kv_a_norm; + struct ggml_tensor * attn_sub_norm; + struct ggml_tensor * ffn_sub_norm; // attention struct ggml_tensor * wq; @@ -4710,6 +4734,15 @@ static void llm_load_hparams( default: model.type = e_model::MODEL_UNKNOWN; } } break; + case LLM_ARCH_BITNET: + { + ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); + + switch (hparams.n_layer) { + case 26: model.type = e_model::MODEL_3B; break; + default: model.type = e_model::MODEL_UNKNOWN; + } + } break; default: (void)0; } @@ -6655,6 +6688,40 @@ static bool llm_load_tensors( } } } break; + case LLM_ARCH_BITNET: + { + model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); + + // output + { + model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); + } + + const uint32_t n_ff = hparams.n_ff; + model.layers.resize(n_layer); + + for (int i = 0; i < n_layer; ++i) { + ggml_context * ctx_layer = ctx_for_layer(i); + ggml_context * ctx_split = ctx_for_layer_split(i); + + auto & layer = model.layers[i]; + + layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); + layer.attn_sub_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_SUB_NORM, "weight", i), {n_embd}); + + layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}); + layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}); + layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}); + layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); + + layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}); + layer.ffn_sub_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_SUB_NORM, "weight", i), {n_ff}); + + layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}); + layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}); + layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); + } + } break; default: throw std::runtime_error("unknown architecture"); } @@ -11709,6 +11776,215 @@ struct llm_build_context { return gf; } + struct ggml_cgraph * build_bitnet() { + struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); + + const int64_t n_embd_head = hparams.n_embd_head_v; + GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); + + struct ggml_tensor * cur; + struct ggml_tensor * inpL; + + inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb); + + // inp_pos - contains the positions + struct ggml_tensor * inp_pos = build_inp_pos(); + + // KQ_mask (mask for 1 head, it will be broadcasted to all heads) + struct ggml_tensor * KQ_mask = build_inp_KQ_mask(); + + for (int il = 0; il < n_layer; ++il) { + struct ggml_tensor * inpSA = inpL; + + cur = llm_build_norm(ctx0, inpL, hparams, + model.layers[il].attn_norm, NULL, + LLM_NORM_RMS, cb, il); + cb(cur, "attn_norm", il); + + // self-attention + { + // compute Q and K and RoPE them + struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur); + cb(Qcur, "Qcur", il); + if (model.layers[il].bq) { + Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq); + cb(Qcur, "Qcur", il); + } + + // B1.K + struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur); + cb(Kcur, "Kcur", il); + if (model.layers[il].bk) { + Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk); + cb(Kcur, "Kcur", il); + } + + // B1.V + struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur); + cb(Vcur, "Vcur", il); + if (model.layers[il].bv) { + Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv); + cb(Vcur, "Vcur", il); + } + + Qcur = ggml_rope_ext( + ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr, + n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, + ext_factor, attn_factor, beta_fast, beta_slow + ); + cb(Qcur, "Qcur", il); + + Kcur = ggml_rope_ext( + ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr, + n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, + ext_factor, attn_factor, beta_fast, beta_slow + ); + cb(Kcur, "Kcur", il); + + llm_build_kv_store(ctx0, hparams, cparams, kv_self, gf, Kcur, Vcur, n_tokens, kv_head, cb, il); + + const int64_t n_ctx = cparams.n_ctx; + const int64_t n_head = hparams.n_head; + const int64_t n_head_kv = hparams.n_head_kv; + const int64_t n_embd_head_k = hparams.n_embd_head_k; + const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(); + const int64_t n_embd_head_v = hparams.n_embd_head_v; + const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa(); + + struct ggml_tensor * q_cur = Qcur; + struct ggml_tensor * kq_mask = KQ_mask; + float kq_scale = 1.0f/sqrtf(float(n_embd_head)); + struct ggml_tensor * attn_sub_norm = model.layers[il].attn_sub_norm; + struct ggml_cgraph * graph = gf; + struct ggml_tensor * wo = model.layers[il].wo; + struct ggml_tensor * cur_attn; + struct ggml_tensor * q = ggml_permute(ctx0, q_cur, 0, 2, 1, 3); + cb(q, "q", il); + + struct ggml_tensor * k = + ggml_view_3d(ctx0, kv_self.k_l[il], + n_embd_head_k, n_kv, n_head_kv, + ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa), + ggml_row_size(kv_self.k_l[il]->type, n_embd_head_k), + 0); + cb(k, "k", il); + + if (cparams.flash_attn) { + + // split cached v into n_head heads (not transposed) + struct ggml_tensor * v = + ggml_view_3d(ctx0, kv_self.v_l[il], + n_embd_head_v, n_kv, n_head_kv, + ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa), + ggml_row_size(kv_self.v_l[il]->type, n_embd_head_v), + 0); + cb(v, "v", il); + + cur_attn = ggml_flash_attn_ext(ctx0, q, k, v, kq_mask, kq_scale, hparams.f_max_alibi_bias); + + cur_attn = ggml_reshape_2d(ctx0, cur, n_embd_head_v*n_head, n_tokens); + } else { + struct ggml_tensor * kq = ggml_mul_mat(ctx0, k, q); + cb(kq, "kq", il); + + kq = ggml_soft_max_ext(ctx0, kq, kq_mask, kq_scale, hparams.f_max_alibi_bias); + cb(kq, "kq_soft_max_ext", il); + + GGML_ASSERT(kv_self.size == n_ctx); + + // split cached v into n_head heads + struct ggml_tensor * v = + ggml_view_3d(ctx0, kv_self.v_l[il], + n_kv, n_embd_head_v, n_head_kv, + ggml_element_size(kv_self.v_l[il])*n_ctx, + ggml_element_size(kv_self.v_l[il])*n_ctx*n_embd_head_v, + 0); + cb(v, "v", il); + + struct ggml_tensor * kqv = ggml_mul_mat(ctx0, v, kq); + cb(kqv, "kqv", il); + + struct ggml_tensor * kqv_merged = ggml_permute(ctx0, kqv, 0, 2, 1, 3); + cb(kqv_merged, "kqv_merged", il); + + cur_attn = ggml_cont_2d(ctx0, kqv_merged, n_embd_head_v*n_head, n_tokens); + cb(cur_attn, "kqv_merged_cont", il); + } + + cur_attn = llm_build_norm(ctx0, cur_attn, hparams, + attn_sub_norm, NULL, + LLM_NORM_RMS, cb, il); + cb(cur_attn, "attn_sub_norm", il); + + ggml_build_forward_expand(graph, cur_attn); + + cur = ggml_mul_mat(ctx0, wo, cur_attn); + + cb(cur, "kqv_out", il); + } + + if (il == n_layer - 1) { + // skip computing output for unused tokens + struct ggml_tensor * inp_out_ids = build_inp_out_ids(); + cur = ggml_get_rows(ctx0, cur, inp_out_ids); + inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); + } + + struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); + cb(ffn_inp, "ffn_inp", il); + + // feed-forward forward + if (model.layers[il].ffn_gate_inp == nullptr) { + cur = llm_build_norm(ctx0, ffn_inp, hparams, + model.layers[il].ffn_norm, NULL, + LLM_NORM_RMS, cb, il); + cb(cur, "ffn_norm", il); + + struct ggml_tensor *tmp = ggml_mul_mat(ctx0, model.layers[il].ffn_up, cur); + + cb(tmp, "ffn_up", il); + + cur = ggml_mul_mat(ctx0, model.layers[il].ffn_gate, cur); + + cb(cur, "ffn_gate", il); + + + cur = ggml_silu(ctx0, cur); + cb(cur, "ffn_silu", il); + + cur = ggml_mul(ctx0, cur, tmp); + cb(cur, "ffn_gate_par", il); + + cur = llm_build_norm(ctx0, cur, hparams, + model.layers[il].ffn_sub_norm, NULL, + LLM_NORM_RMS, cb, il); + cb(cur, "ffn_sub_norm", il); + + cur = ggml_mul_mat(ctx0, model.layers[il].ffn_down, cur); + cb(cur, "ffn_down", il); + } + cur = ggml_add(ctx0, cur, ffn_inp); + cb(cur, "l_out", il); + + // input for next layer + inpL = cur; + } + + cur = inpL; + + cur = llm_build_norm(ctx0, cur, hparams, + model.output_norm, NULL, + LLM_NORM_RMS, cb, -1); + cb(cur, "result_norm", -1); + + // lm_head + cur = ggml_mul_mat(ctx0, model.tok_embd, cur); + cb(cur, "result_output", -1); + + ggml_build_forward_expand(gf, cur); + return gf; + } + }; static struct ggml_cgraph * llama_build_graph_defrag(llama_context & lctx, const std::vector<uint32_t> & ids) { @@ -11932,6 +12208,10 @@ static struct ggml_cgraph * llama_build_graph( { result = llm.build_deepseek2(); } break; + case LLM_ARCH_BITNET: + { + result = llm.build_bitnet(); + } break; default: GGML_ASSERT(false); } @@ -16760,6 +17040,7 @@ enum llama_rope_type llama_rope_type(const struct llama_model * model) { case LLM_ARCH_BERT: case LLM_ARCH_NOMIC_BERT: case LLM_ARCH_STABLELM: + case LLM_ARCH_BITNET: case LLM_ARCH_QWEN: case LLM_ARCH_QWEN2: case LLM_ARCH_QWEN2MOE: |