diff options
Diffstat (limited to 'llama.cpp')
-rw-r--r-- | llama.cpp | 252 |
1 files changed, 243 insertions, 9 deletions
@@ -105,7 +105,7 @@ #endif #define LLAMA_MAX_NODES 8192 -#define LLAMA_MAX_EXPERTS 16 +#define LLAMA_MAX_EXPERTS 60 // @@ -209,6 +209,7 @@ enum llm_arch { LLM_ARCH_STABLELM, LLM_ARCH_QWEN, LLM_ARCH_QWEN2, + LLM_ARCH_QWEN2MOE, LLM_ARCH_PHI2, LLM_ARCH_PLAMO, LLM_ARCH_CODESHELL, @@ -242,6 +243,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = { { LLM_ARCH_STABLELM, "stablelm" }, { LLM_ARCH_QWEN, "qwen" }, { LLM_ARCH_QWEN2, "qwen2" }, + { LLM_ARCH_QWEN2MOE, "qwen2moe" }, { LLM_ARCH_PHI2, "phi2" }, { LLM_ARCH_PLAMO, "plamo" }, { LLM_ARCH_CODESHELL, "codeshell" }, @@ -437,6 +439,7 @@ enum llm_tensor { LLM_TENSOR_ATTN_OUT_NORM, LLM_TENSOR_ATTN_ROT_EMBD, LLM_TENSOR_FFN_GATE_INP, + LLM_TENSOR_FFN_GATE_INP_SHEXP, LLM_TENSOR_FFN_NORM, LLM_TENSOR_FFN_GATE, LLM_TENSOR_FFN_DOWN, @@ -448,6 +451,9 @@ enum llm_tensor { LLM_TENSOR_FFN_DOWN_EXPS, // merged experts LLM_TENSOR_FFN_GATE_EXPS, LLM_TENSOR_FFN_UP_EXPS, + LLM_TENSOR_FFN_DOWN_SHEXP, + LLM_TENSOR_FFN_GATE_SHEXP, + LLM_TENSOR_FFN_UP_SHEXP, LLM_TENSOR_ATTN_Q_NORM, LLM_TENSOR_ATTN_K_NORM, LLM_TENSOR_LAYER_OUT_NORM, @@ -746,6 +752,28 @@ static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NA }, }, { + LLM_ARCH_QWEN2MOE, + { + { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, + { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, + { LLM_TENSOR_OUTPUT, "output" }, + { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, + { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, + { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, + { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, + { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, + { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, + { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" }, + { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" }, + { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" }, + { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" }, + { LLM_TENSOR_FFN_GATE_INP_SHEXP, "blk.%d.ffn_gate_inp_shexp" }, + { LLM_TENSOR_FFN_GATE_SHEXP, "blk.%d.ffn_gate_shexp" }, + { LLM_TENSOR_FFN_DOWN_SHEXP, "blk.%d.ffn_down_shexp" }, + { LLM_TENSOR_FFN_UP_SHEXP, "blk.%d.ffn_up_shexp" }, + }, + }, + { LLM_ARCH_PHI2, { { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, @@ -1731,6 +1759,7 @@ enum e_model { MODEL_MEDIUM, MODEL_LARGE, MODEL_XL, + MODEL_A2_7B, MODEL_8x7B, MODEL_8x22B, MODEL_16x12B, @@ -1917,6 +1946,12 @@ struct llama_layer { struct ggml_tensor * ffn_down_exps; struct ggml_tensor * ffn_up_exps ; + // ff shared expert (shexp) + struct ggml_tensor * ffn_gate_inp_shexp; + struct ggml_tensor * ffn_gate_shexp; + struct ggml_tensor * ffn_down_shexp; + struct ggml_tensor * ffn_up_shexp; + // ff bias struct ggml_tensor * ffn_down_b; // b2 struct ggml_tensor * ffn_up_b; // b3 @@ -3587,6 +3622,7 @@ static const char * llama_model_type_name(e_model type) { case MODEL_MEDIUM: return "0.4B"; case MODEL_LARGE: return "0.8B"; case MODEL_XL: return "1.5B"; + case MODEL_A2_7B: return "A2.7B"; case MODEL_8x7B: return "8x7B"; case MODEL_8x22B: return "8x22B"; case MODEL_16x12B: return "16x12B"; @@ -3886,6 +3922,14 @@ static void llm_load_hparams( default: model.type = e_model::MODEL_UNKNOWN; } } break; + case LLM_ARCH_QWEN2MOE: + { + ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); + switch (hparams.n_layer) { + case 24: model.type = e_model::MODEL_A2_7B; break; + default: model.type = e_model::MODEL_UNKNOWN; + } + } break; case LLM_ARCH_PHI2: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); @@ -5156,6 +5200,54 @@ static bool llm_load_tensors( layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); } } break; + case LLM_ARCH_QWEN2MOE: + { + model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); + + // output + { + model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); + model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}); + } + + for (int i = 0; i < n_layer; ++i) { + ggml_context * ctx_layer = ctx_for_layer(i); + ggml_context * ctx_split = ctx_for_layer_split(i); + + auto & layer = model.layers[i]; + + layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); + + layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}); + layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}); + layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}); + layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); + + // optional bias tensors + layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}); + layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}); + layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}); + + layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}); + + layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}); + + GGML_ASSERT(hparams.n_expert > 0); + GGML_ASSERT(hparams.n_expert_used > 0); + + // MoE branch + auto n_ff_exp = n_ff / hparams.n_expert_used; + layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}); + layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}); + layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}); + + // Shared expert branch + layer.ffn_gate_inp_shexp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP_SHEXP, "weight", i), {n_embd}); + layer.ffn_gate_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff}); + layer.ffn_down_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), { n_ff, n_embd}); + layer.ffn_up_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff}); + } + } break; case LLM_ARCH_PHI2: { model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); @@ -6532,7 +6624,7 @@ struct llm_build_context { LLM_NORM_RMS, cb, il); cb(cur, "ffn_norm", il); - cur = build_moe_ffn(cur, n_tokens, LLM_FFN_SILU, il); + cur = build_moe_ffn(cur, n_tokens, LLM_FFN_SILU, true, il); } cur = ggml_add(ctx0, cur, ffn_inp); @@ -6565,7 +6657,7 @@ struct llm_build_context { } // REVIEW: will be replaced by https://github.com/ggerganov/llama.cpp/pull/6505 - ggml_tensor * build_moe_ffn(ggml_tensor * cur, int32_t n_tokens, llm_ffn_op_type type_op, int il) { + ggml_tensor * build_moe_ffn(ggml_tensor * cur, int32_t n_tokens, llm_ffn_op_type type_op, bool norm_w, int il) { ggml_tensor * logits = ggml_mul_mat(ctx0, model.layers[il].ffn_gate_inp, cur); // [n_tokens, num_experts] cb(logits, "ffn_moe_logits", il); @@ -6582,11 +6674,13 @@ struct llm_build_context { weights = ggml_reshape_2d(ctx0, weights, n_expert_used, n_tokens); // [n_tokens, num_experts_per_tok] - ggml_tensor * weights_sum = ggml_sum_rows(ctx0, weights); - cb(weights_sum, "ffn_moe_weights_sum", il); + if (norm_w) { + ggml_tensor * weights_sum = ggml_sum_rows(ctx0, weights); + cb(weights_sum, "ffn_moe_weights_sum", il); - weights = ggml_div(ctx0, weights, weights_sum); // [n_tokens, num_experts_per_tok] - cb(weights, "ffn_moe_weights_norm", il); + weights = ggml_div(ctx0, weights, weights_sum); // [n_tokens, num_experts_per_tok] + cb(weights, "ffn_moe_weights_norm", il); + } // compute expert outputs ggml_tensor * moe_out = nullptr; @@ -7083,7 +7177,7 @@ struct llm_build_context { LLM_NORM_RMS, cb, il); cb(cur, "ffn_norm", il); - cur = build_moe_ffn(cur, n_tokens, LLM_FFN_GELU, il); + cur = build_moe_ffn(cur, n_tokens, LLM_FFN_GELU, true, il); // Grok // if layer_out_norm is present then apply it before adding the input @@ -7219,7 +7313,7 @@ struct llm_build_context { LLM_NORM, cb, il); cb(cur, "attn_out_norm", il); - cur = build_moe_ffn(cur, n_tokens, LLM_FFN_SILU, il); + cur = build_moe_ffn(cur, n_tokens, LLM_FFN_SILU, true, il); cur = ggml_add(ctx0, cur, ffn_inp); cb(cur, "ffn_out", il); @@ -8434,6 +8528,141 @@ struct llm_build_context { return gf; } + struct ggml_cgraph * build_qwen2moe() { + struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); + + // mutable variable, needed during the last layer of the computation to skip unused tokens + int32_t n_tokens = this->n_tokens; + + const int64_t n_embd_head = hparams.n_embd_head_v; + GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); + GGML_ASSERT(n_embd_head == hparams.n_rot); + + struct ggml_tensor * cur; + struct ggml_tensor * inpL; + + inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb); + + // inp_pos - contains the positions + struct ggml_tensor * inp_pos = build_inp_pos(); + + // KQ_mask (mask for 1 head, it will be broadcasted to all heads) + struct ggml_tensor * KQ_mask = build_inp_KQ_mask(); + + for (int il = 0; il < n_layer; ++il) { + struct ggml_tensor * inpSA = inpL; + + // norm + cur = llm_build_norm(ctx0, inpL, hparams, + model.layers[il].attn_norm, NULL, + LLM_NORM_RMS, cb, il); + cb(cur, "attn_norm", il); + + // self_attention + { + // compute Q and K and RoPE them + struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur); + cb(Qcur, "Qcur", il); + Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq); + cb(Qcur, "Qcur", il); + + struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur); + cb(Kcur, "Kcur", il); + Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk); + cb(Kcur, "Kcur", il); + + struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur); + cb(Vcur, "Vcur", il); + Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv); + cb(Vcur, "Vcur", il); + + Qcur = ggml_rope_custom( + ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, + n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, + ext_factor, attn_factor, beta_fast, beta_slow + ); + cb(Qcur, "Qcur", il); + + Kcur = ggml_rope_custom( + ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, + n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, + ext_factor, attn_factor, beta_fast, beta_slow + ); + cb(Kcur, "Kcur", il); + + cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, + model.layers[il].wo, model.layers[il].bo, + Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); + } + + if (il == n_layer - 1) { + // skip computing output for unused tokens + struct ggml_tensor * inp_out_ids = build_inp_out_ids(); + n_tokens = n_outputs; + cur = ggml_get_rows(ctx0, cur, inp_out_ids); + inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); + } + + struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); + cb(ffn_inp, "ffn_inp", il); + + // MoE branch + cur = llm_build_norm(ctx0, ffn_inp, hparams, + model.layers[il].ffn_norm, NULL, + LLM_NORM_RMS, cb, il); + cb(cur, "ffn_norm", il); + + ggml_tensor * moe_out = build_moe_ffn(cur, n_tokens, LLM_FFN_SILU, false, il); + + // FFN shared expert + { + ggml_tensor * cur_gate_inp = ggml_mul_mat(ctx0, model.layers[il].ffn_gate_inp_shexp, cur); + cb(cur_gate_inp, "ffn_shexp_gate_inp", il); + + // sigmoid + ggml_tensor * cur_gate = ggml_div(ctx0, ggml_silu(ctx0, cur_gate_inp), cur_gate_inp); + cb(cur_gate, "ffn_shexp_gate", il); + + ggml_tensor * cur_ffn = llm_build_ffn(ctx0, cur, + model.layers[il].ffn_up_shexp, NULL, + model.layers[il].ffn_gate_shexp, NULL, + model.layers[il].ffn_down_shexp, NULL, + NULL, + LLM_FFN_SILU, LLM_FFN_PAR, cb, il); + cb(cur_ffn, "ffn_shexp", il); + + ggml_tensor * ffn_shexp_out = ggml_mul(ctx0, cur_ffn, cur_gate); + cb(ffn_shexp_out, "ffn_shexp_out", il); + + moe_out = ggml_add(ctx0, moe_out, ffn_shexp_out); + cb(moe_out, "ffn_out", il); + + cur = moe_out; + } + + cur = ggml_add(ctx0, cur, ffn_inp); + cb(cur, "l_out", il); + + // input for next layer + inpL = cur; + } + + cur = inpL; + + cur = llm_build_norm(ctx0, cur, hparams, + model.output_norm, NULL, + LLM_NORM_RMS, cb, -1); + cb(cur, "result_norm", -1); + + // lm_head + cur = ggml_mul_mat(ctx0, model.output, cur); + cb(cur, "result_output", -1); + + ggml_build_forward_expand(gf, cur); + + return gf; + } + struct ggml_cgraph * build_phi2() { struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); @@ -9917,6 +10146,10 @@ static struct ggml_cgraph * llama_build_graph( { result = llm.build_qwen2(); } break; + case LLM_ARCH_QWEN2MOE: + { + result = llm.build_qwen2moe(); + } break; case LLM_ARCH_PHI2: { result = llm.build_phi2(); @@ -14834,6 +15067,7 @@ enum llama_rope_type llama_rope_type(const struct llama_model * model) { case LLM_ARCH_STABLELM: case LLM_ARCH_QWEN: case LLM_ARCH_QWEN2: + case LLM_ARCH_QWEN2MOE: case LLM_ARCH_PHI2: case LLM_ARCH_GEMMA: case LLM_ARCH_STARCODER2: |