diff options
Diffstat (limited to 'llama.cpp')
-rw-r--r-- | llama.cpp | 27 |
1 files changed, 25 insertions, 2 deletions
@@ -354,6 +354,7 @@ enum llm_tensor { LLM_TENSOR_FFN_GATE, LLM_TENSOR_FFN_DOWN, LLM_TENSOR_FFN_UP, + LLM_TENSOR_FFN_ACT, LLM_TENSOR_FFN_DOWN_EXP, LLM_TENSOR_FFN_GATE_EXP, LLM_TENSOR_FFN_UP_EXP, @@ -473,6 +474,7 @@ static std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NAMES = { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, + { LLM_TENSOR_FFN_ACT, "blk.%d.ffn.act" }, }, }, { @@ -1285,6 +1287,7 @@ struct llama_hparams { float f_clamp_kqv; float f_max_alibi_bias; + bool operator!=(const llama_hparams & other) const { if (this->vocab_only != other.vocab_only) return true; if (this->n_vocab != other.n_vocab) return true; @@ -1388,6 +1391,7 @@ struct llama_layer { // ff bias struct ggml_tensor * ffn_down_b; // b2 struct ggml_tensor * ffn_up_b; // b3 + struct ggml_tensor * ffn_act; }; struct llama_kv_cell { @@ -3471,7 +3475,6 @@ static bool llm_load_tensors( case LLM_ARCH_MPT: { model.tok_embd = ml.create_tensor(ctx, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, GGML_BACKEND_CPU); - // output { ggml_backend_type backend_norm; @@ -3509,6 +3512,9 @@ static bool llm_load_tensors( layer.ffn_down = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, backend_split); layer.ffn_up = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, backend_split); + + // AWQ ScaleActivation layer + layer.ffn_act = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_ACT, "scales", i), {n_ff}, backend, false); } } break; case LLM_ARCH_STABLELM: @@ -4039,6 +4045,7 @@ static struct ggml_tensor * llm_build_ffn( struct ggml_tensor * gate_b, struct ggml_tensor * down, struct ggml_tensor * down_b, + struct ggml_tensor * act_scales, llm_ffn_op_type type_op, llm_ffn_gate_type type_gate, const llm_build_cb & cb, @@ -4083,6 +4090,10 @@ static struct ggml_tensor * llm_build_ffn( { cur = ggml_gelu(ctx, cur); cb(cur, "ffn_gelu", il); + if (act_scales != NULL) { + cur = ggml_div(ctx, cur, act_scales); + cb(cur, "ffn_act", il); + } } break; case LLM_FFN_RELU: { @@ -4401,6 +4412,7 @@ struct llm_build_context { model.layers[il].ffn_up, NULL, model.layers[il].ffn_gate, NULL, model.layers[il].ffn_down, NULL, + NULL, LLM_FFN_SILU, LLM_FFN_PAR, cb, il); cb(cur, "ffn_out", il); } else { @@ -4580,6 +4592,7 @@ struct llm_build_context { model.layers[il].ffn_up, NULL, model.layers[il].ffn_gate, NULL, model.layers[il].ffn_down, NULL, + NULL, LLM_FFN_SILU, LLM_FFN_PAR, cb, il); cb(cur, "ffn_out", il); } @@ -4694,6 +4707,7 @@ struct llm_build_context { model.layers[il].ffn_up, NULL, NULL, NULL, model.layers[il].ffn_down, NULL, + NULL, LLM_FFN_GELU, LLM_FFN_SEQ, cb, il); cb(cur, "ffn_out", il); } @@ -4798,6 +4812,7 @@ struct llm_build_context { model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL, NULL, model.layers[il].ffn_down, model.layers[il].ffn_down_b, + NULL, LLM_FFN_GELU, LLM_FFN_SEQ, cb, il); cb(cur, "ffn_out", il); } @@ -5002,6 +5017,7 @@ struct llm_build_context { model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL, NULL, model.layers[il].ffn_down, model.layers[il].ffn_down_b, + NULL, LLM_FFN_RELU_SQR, LLM_FFN_SEQ, cb, il); cb(cur, "ffn_out", il); } @@ -5088,6 +5104,7 @@ struct llm_build_context { model.layers[il].ffn_up, NULL, model.layers[il].ffn_gate, NULL, model.layers[il].ffn_down, NULL, + NULL, LLM_FFN_SILU, LLM_FFN_PAR, cb, il); cb(cur, "ffn_out", il); } @@ -5183,6 +5200,7 @@ struct llm_build_context { model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL, NULL, model.layers[il].ffn_down, model.layers[il].ffn_down_b, + NULL, LLM_FFN_GELU, LLM_FFN_SEQ, cb, il); cb(cur, "ffn_out", il); } @@ -5268,11 +5286,11 @@ struct llm_build_context { NULL, LLM_NORM, cb, il); cb(cur, "ffn_norm", il); - cur = llm_build_ffn(ctx0, cur, model.layers[il].ffn_up, NULL, NULL, NULL, model.layers[il].ffn_down, NULL, + model.layers[il].ffn_act, LLM_FFN_GELU, LLM_FFN_SEQ, cb, il); cb(cur, "ffn_out", il); } @@ -5381,6 +5399,7 @@ struct llm_build_context { model.layers[il].ffn_up, NULL, model.layers[il].ffn_gate, NULL, model.layers[il].ffn_down, NULL, + NULL, LLM_FFN_SILU, LLM_FFN_PAR, cb, il); cb(cur, "ffn_out", il); } @@ -5493,6 +5512,7 @@ struct llm_build_context { model.layers[il].ffn_up, NULL, model.layers[il].ffn_gate, NULL, model.layers[il].ffn_down, NULL, + NULL, LLM_FFN_SILU, LLM_FFN_PAR, cb, il); cb(cur, "ffn_out", il); } @@ -5600,6 +5620,7 @@ struct llm_build_context { model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL, NULL, model.layers[il].ffn_down, model.layers[il].ffn_down_b, + NULL, LLM_FFN_GELU, LLM_FFN_SEQ, cb, il); cb(ffn_output, "ffn_out", il); } @@ -5703,6 +5724,7 @@ struct llm_build_context { model.layers[il].ffn_up, NULL, model.layers[il].ffn_gate, NULL, model.layers[il].ffn_down, NULL, + NULL, LLM_FFN_SILU, LLM_FFN_PAR, cb, il); cb(cur, "ffn_out", il); } @@ -5887,6 +5909,7 @@ static const std::unordered_map<const char *, llm_offload_func_e> k_offload_map { "ffn_gate", OFFLOAD_FUNC }, { "ffn_gate_b", OFFLOAD_FUNC }, { "ffn_gate_par", OFFLOAD_FUNC }, + { "ffn_act", OFFLOAD_FUNC }, { "ffn_down", OFFLOAD_FUNC }, { "ffn_down_b", OFFLOAD_FUNC }, { "ffn_out", OFFLOAD_FUNC }, |