summaryrefslogtreecommitdiff
path: root/quantize.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'quantize.cpp')
-rw-r--r--quantize.cpp330
1 files changed, 330 insertions, 0 deletions
diff --git a/quantize.cpp b/quantize.cpp
new file mode 100644
index 00000000..0bc62db9
--- /dev/null
+++ b/quantize.cpp
@@ -0,0 +1,330 @@
+#include "ggml.h"
+
+#include "utils.h"
+
+#include <cassert>
+#include <cmath>
+#include <cstdio>
+#include <cstring>
+#include <fstream>
+#include <map>
+#include <string>
+#include <vector>
+#include <regex>
+
+// TODO: move somewhere else
+#define QK 32
+
+// default hparams (LLaMA76B)
+struct llama_hparams {
+ int32_t n_vocab = 32000;
+ int32_t n_ctx = 512; // this is provided as user input?
+ int32_t n_embd = 4096;
+ int32_t n_mult = 256;
+ int32_t n_head = 32;
+ int32_t n_layer = 32;
+ int32_t n_rot = 64;
+ int32_t f16 = 1;
+};
+
+
+// quantize a model
+bool llama_model_quantize(const std::string & fname_inp, const std::string & fname_out, int itype) {
+ ggml_type type = GGML_TYPE_Q4_1;
+
+ switch (itype) {
+ case 2: type = GGML_TYPE_Q4_0; break;
+ case 3: type = GGML_TYPE_Q4_1; break;
+ default: fprintf(stderr, "%s: invalid quantization type %d\n", __func__, itype); return 1;
+ };
+
+ if (type != GGML_TYPE_Q4_0 && type != GGML_TYPE_Q4_1) {
+ fprintf(stderr, "%s: invalid quantization type %d\n", __func__, type);
+ return false;
+ }
+
+ gpt_vocab vocab;
+
+ printf("%s: loading model from '%s'\n", __func__, fname_inp.c_str());
+
+ auto finp = std::ifstream(fname_inp, std::ios::binary);
+ if (!finp) {
+ fprintf(stderr, "%s: failed to open '%s' for reading\n", __func__, fname_inp.c_str());
+ return false;
+ }
+
+ auto fout = std::ofstream(fname_out, std::ios::binary);
+ if (!fout) {
+ fprintf(stderr, "%s: failed to open '%s' for writing\n", __func__, fname_out.c_str());
+ return false;
+ }
+
+ // verify magic
+ {
+ uint32_t magic;
+ finp.read((char *) &magic, sizeof(magic));
+ if (magic != 0x67676d6c) {
+ fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__, fname_inp.c_str());
+ return false;
+ }
+
+ fout.write((char *) &magic, sizeof(magic));
+ }
+
+ llama_hparams hparams;
+
+ // load hparams
+ {
+ finp.read((char *) &hparams.n_vocab, sizeof(hparams.n_vocab));
+ //finp.read((char *) &hparams.n_ctx, sizeof(hparams.n_ctx));
+ finp.read((char *) &hparams.n_embd, sizeof(hparams.n_embd));
+ finp.read((char *) &hparams.n_mult, sizeof(hparams.n_mult));
+ finp.read((char *) &hparams.n_head, sizeof(hparams.n_head));
+ finp.read((char *) &hparams.n_layer, sizeof(hparams.n_layer));
+ finp.read((char *) &hparams.n_rot, sizeof(hparams.n_rot));
+ finp.read((char *) &hparams.f16, sizeof(hparams.f16));
+
+ printf("%s: n_vocab = %d\n", __func__, hparams.n_vocab);
+ printf("%s: n_ctx = %d\n", __func__, hparams.n_ctx);
+ printf("%s: n_embd = %d\n", __func__, hparams.n_embd);
+ printf("%s: n_mult = %d\n", __func__, hparams.n_mult);
+ printf("%s: n_head = %d\n", __func__, hparams.n_head);
+ printf("%s: n_layer = %d\n", __func__, hparams.n_layer);
+ printf("%s: f16 = %d\n", __func__, hparams.f16);
+
+ fout.write((char *) &hparams.n_vocab, sizeof(hparams.n_vocab));
+ //fout.write((char *) &hparams.n_ctx, sizeof(hparams.n_ctx));
+ fout.write((char *) &hparams.n_embd, sizeof(hparams.n_embd));
+ fout.write((char *) &hparams.n_mult, sizeof(hparams.n_mult));
+ fout.write((char *) &hparams.n_head, sizeof(hparams.n_head));
+ fout.write((char *) &hparams.n_layer, sizeof(hparams.n_layer));
+ fout.write((char *) &hparams.n_rot, sizeof(hparams.n_rot));
+ fout.write((char *) &itype, sizeof(hparams.f16));
+ }
+
+ // load vocab
+ {
+ const int32_t n_vocab = hparams.n_vocab;
+
+ if (n_vocab != hparams.n_vocab) {
+ fprintf(stderr, "%s: invalid model file '%s' (bad vocab size %d != %d)\n",
+ __func__, fname_inp.c_str(), n_vocab, hparams.n_vocab);
+ return false;
+ }
+
+ std::string word;
+ for (int i = 0; i < n_vocab; i++) {
+ uint32_t len;
+ finp.read ((char *) &len, sizeof(len));
+ fout.write((char *) &len, sizeof(len));
+
+ word.resize(len);
+ finp.read ((char *) word.data(), len);
+ fout.write((char *) word.data(), len);
+
+ vocab.token_to_id[word] = i;
+ vocab.id_to_token[i] = word;
+ }
+ }
+
+ // load weights
+ {
+ size_t total_size_org = 0;
+ size_t total_size_new = 0;
+
+ std::vector<float> work;
+
+ std::vector<uint8_t> data_u8;
+ std::vector<ggml_fp16_t> data_f16;
+ std::vector<float> data_f32;
+
+ std::vector<int64_t> hist_all(1 << 4, 0);
+
+ while (true) {
+ int32_t n_dims;
+ int32_t length;
+ int32_t ftype;
+
+ finp.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
+ finp.read(reinterpret_cast<char *>(&length), sizeof(length));
+ finp.read(reinterpret_cast<char *>(&ftype), sizeof(ftype));
+
+ if (finp.eof()) {
+ break;
+ }
+
+ int32_t nelements = 1;
+ int32_t ne[2] = { 1, 1 };
+ for (int i = 0; i < n_dims; ++i) {
+ finp.read (reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
+ nelements *= ne[i];
+ }
+
+ std::string name(length, 0);
+ finp.read (&name[0], length);
+
+ {
+ static const char * ftype_str[] = { "f32", "f16", "q4_0", "q4_1", };
+ printf("%48s - [%5d, %5d], type = %6s ", name.data(), ne[0], ne[1], ftype_str[ftype]);
+ }
+
+ // regexes of tensor names to be quantized
+ const std::vector<std::string> k_names = {
+ ".*weight",
+ };
+
+ bool quantize = false;
+ for (const auto & s : k_names) {
+ if (std::regex_match(name, std::regex(s))) {
+ quantize = true;
+ break;
+ }
+ }
+
+ // quantize only 2D tensors
+ quantize &= (n_dims == 2);
+
+ if (quantize) {
+ if (ftype != 0 && ftype != 1) {
+ fprintf(stderr, "%s: unsupported ftype %d for integer quantization\n", __func__, ftype);
+ return false;
+ }
+
+ if (ftype == 1) {
+ data_f16.resize(nelements);
+ finp.read(reinterpret_cast<char *>(data_f16.data()), nelements * sizeof(ggml_fp16_t));
+ data_f32.resize(nelements);
+ for (int i = 0; i < nelements; ++i) {
+ data_f32[i] = ggml_fp16_to_fp32(data_f16[i]);
+ }
+ } else {
+ data_f32.resize(nelements);
+ finp.read(reinterpret_cast<char *>(data_f32.data()), nelements * sizeof(float));
+ }
+
+ ftype = itype;
+ } else {
+ const int bpe = (ftype == 0) ? sizeof(float) : sizeof(uint16_t);
+
+ data_u8.resize(nelements*bpe);
+ finp.read(reinterpret_cast<char *>(data_u8.data()), nelements * bpe);
+ }
+
+ fout.write(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
+ fout.write(reinterpret_cast<char *>(&length), sizeof(length));
+ fout.write(reinterpret_cast<char *>(&ftype), sizeof(ftype));
+ for (int i = 0; i < n_dims; ++i) {
+ fout.write(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
+ }
+ fout.write(&name[0], length);
+
+ if (quantize) {
+ printf("quantizing .. ");
+ work.resize(nelements); // for quantization
+
+ size_t cur_size = 0;
+ std::vector<int64_t> hist_cur(1 << 4, 0);
+
+ switch (type) {
+ case GGML_TYPE_Q4_0:
+ {
+ cur_size = ggml_quantize_q4_0(data_f32.data(), work.data(), nelements, ne[0], QK, hist_cur.data());
+ } break;
+ case GGML_TYPE_Q4_1:
+ {
+ cur_size = ggml_quantize_q4_1(data_f32.data(), work.data(), nelements, ne[0], QK, hist_cur.data());
+ } break;
+ default:
+ {
+ fprintf(stderr, "%s: unsupported quantization type %d\n", __func__, type);
+ return false;
+ }
+ }
+
+ fout.write(reinterpret_cast<char *>(work.data()), cur_size);
+ total_size_new += cur_size;
+
+ printf("size = %8.2f MB -> %8.2f MB | hist: ", nelements * sizeof(float)/1024.0/1024.0, cur_size/1024.0/1024.0);
+ for (int i = 0; i < hist_cur.size(); ++i) {
+ hist_all[i] += hist_cur[i];
+ }
+
+ for (int i = 0; i < hist_cur.size(); ++i) {
+ printf("%5.3f ", hist_cur[i] / (float)nelements);
+ }
+ printf("\n");
+ } else {
+ printf("size = %8.3f MB\n", data_u8.size()/1024.0/1024.0);
+ fout.write(reinterpret_cast<char *>(data_u8.data()), data_u8.size());
+ total_size_new += data_u8.size();
+ }
+
+ total_size_org += nelements * sizeof(float);
+ }
+
+ printf("%s: model size = %8.2f MB\n", __func__, total_size_org/1024.0/1024.0);
+ printf("%s: quant size = %8.2f MB\n", __func__, total_size_new/1024.0/1024.0);
+
+ {
+ int64_t sum_all = 0;
+ for (int i = 0; i < hist_all.size(); ++i) {
+ sum_all += hist_all[i];
+ }
+
+ printf("%s: hist: ", __func__);
+ for (int i = 0; i < hist_all.size(); ++i) {
+ printf("%5.3f ", hist_all[i] / (float)sum_all);
+ }
+ printf("\n");
+ }
+ }
+
+ finp.close();
+ fout.close();
+
+ return true;
+}
+
+// usage:
+// ./llama-quantize models/llama/ggml-model.bin models/llama/ggml-model-quant.bin type
+//
+int main(int argc, char ** argv) {
+ if (argc != 4) {
+ fprintf(stderr, "usage: %s model-f32.bin model-quant.bin type\n", argv[0]);
+ fprintf(stderr, " type = 2 - q4_0\n");
+ fprintf(stderr, " type = 3 - q4_1\n");
+ return 1;
+ }
+
+ const std::string fname_inp = argv[1];
+ const std::string fname_out = argv[2];
+
+ const int itype = atoi(argv[3]);
+
+ const int64_t t_main_start_us = ggml_time_us();
+
+ int64_t t_quantize_us = 0;
+
+ // load the model
+ {
+ const int64_t t_start_us = ggml_time_us();
+
+ if (!llama_model_quantize(fname_inp, fname_out, itype)) {
+ fprintf(stderr, "%s: failed to quantize model from '%s'\n", __func__, fname_inp.c_str());
+ return 1;
+ }
+
+ t_quantize_us = ggml_time_us() - t_start_us;
+ }
+
+ // report timing
+ {
+ const int64_t t_main_end_us = ggml_time_us();
+
+ printf("\n");
+ printf("%s: quantize time = %8.2f ms\n", __func__, t_quantize_us/1000.0f);
+ printf("%s: total time = %8.2f ms\n", __func__, (t_main_end_us - t_main_start_us)/1000.0f);
+ }
+
+ return 0;
+}