summaryrefslogtreecommitdiff
path: root/src/llama-vocab.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/llama-vocab.cpp')
-rw-r--r--src/llama-vocab.cpp1721
1 files changed, 1721 insertions, 0 deletions
diff --git a/src/llama-vocab.cpp b/src/llama-vocab.cpp
new file mode 100644
index 00000000..c482b368
--- /dev/null
+++ b/src/llama-vocab.cpp
@@ -0,0 +1,1721 @@
+#include "llama-vocab.h"
+
+#include "unicode.h"
+
+#include <algorithm>
+#include <cassert>
+#include <cfloat>
+#include <climits>
+#include <cstdarg>
+#include <cstring>
+#include <forward_list>
+#include <queue>
+#include <sstream>
+
+//
+// helpers
+//
+
+static void replace_all(std::string & s, const std::string & search, const std::string & replace) {
+ std::string result;
+ for (size_t pos = 0; ; pos += search.length()) {
+ auto new_pos = s.find(search, pos);
+ if (new_pos == std::string::npos) {
+ result += s.substr(pos, s.size() - pos);
+ break;
+ }
+ result += s.substr(pos, new_pos - pos) + replace;
+ pos = new_pos;
+ }
+ s = std::move(result);
+}
+
+LLAMA_ATTRIBUTE_FORMAT(1, 2)
+static std::string format(const char * fmt, ...) {
+ va_list ap;
+ va_list ap2;
+ va_start(ap, fmt);
+ va_copy(ap2, ap);
+ int size = vsnprintf(NULL, 0, fmt, ap);
+ GGML_ASSERT(size >= 0 && size < INT_MAX); // NOLINT
+ std::vector<char> buf(size + 1);
+ int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2);
+ GGML_ASSERT(size2 == size);
+ va_end(ap2);
+ va_end(ap);
+ return std::string(buf.data(), size);
+}
+
+struct naive_trie {
+ naive_trie() : has_value(false), value(0) {
+ }
+ void insert(const char * key, size_t len, int32_t value = 0) {
+ if (len == 0) {
+ this->has_value = true;
+ this->value = value;
+ return;
+ }
+ char c = key[0];
+ auto res = children.find(c);
+ if (res != children.end()) {
+ res->second.insert(key + 1, len - 1, value);
+ } else {
+ auto res = children.insert(std::make_pair(c, naive_trie()));
+ res.first->second.insert(key + 1, len - 1, value);
+ }
+ }
+ std::pair<const char *, size_t> get_longest_prefix(const char * key, size_t len, size_t offset = 0) {
+ if (len == 0 || offset == len) {
+ return std::make_pair(key, offset);
+ }
+ char c = key[offset];
+ auto res = children.find(c);
+ if (res != children.end()) {
+ return res->second.get_longest_prefix(key, len, offset + 1);
+ } else {
+ return std::make_pair(key, offset);
+ }
+ }
+ struct naive_trie * traverse(const char c) {
+ auto res = children.find(c);
+ if (res != children.end()) {
+ return &res->second;
+ } else {
+ return NULL;
+ }
+ }
+ std::map<char, struct naive_trie> children;
+ bool has_value;
+ llama_token value;
+};
+
+//
+// impl
+//
+
+int llama_vocab::find_bpe_rank(const std::string & token_left, const std::string & token_right) const {
+ GGML_ASSERT(token_left.find(' ') == std::string::npos);
+ GGML_ASSERT(token_left.find('\n') == std::string::npos);
+ GGML_ASSERT(token_right.find(' ') == std::string::npos);
+ GGML_ASSERT(token_right.find('\n') == std::string::npos);
+
+ auto it = bpe_ranks.find(std::make_pair(token_left, token_right));
+ if (it == bpe_ranks.end()) {
+ return -1;
+ }
+
+ return it->second;
+}
+
+static enum llama_vocab_type llama_vocab_get_type(const llama_vocab & vocab) {
+ return vocab.type;
+}
+
+static bool llama_is_normal_token(const llama_vocab & vocab, llama_token id) {
+ GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
+ return vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_NORMAL;
+}
+
+static bool llama_is_unknown_token(const llama_vocab & vocab, llama_token id) {
+ GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
+ return vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_UNKNOWN;
+}
+
+static bool llama_is_control_token(const llama_vocab & vocab, llama_token id) {
+ GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
+ return vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_CONTROL;
+}
+
+static bool llama_is_byte_token(const llama_vocab & vocab, llama_token id) {
+ GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
+ return vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_BYTE;
+}
+
+static bool llama_is_user_defined_token(const llama_vocab & vocab, llama_token id) {
+ GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
+ return vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_USER_DEFINED;
+}
+
+static bool llama_is_unused_token(const llama_vocab & vocab, llama_token id) {
+ GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
+ return vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_UNUSED;
+}
+
+static uint8_t llama_token_to_byte(const llama_vocab & vocab, llama_token id) {
+ GGML_ASSERT(llama_vocab_get_type(vocab) != LLAMA_VOCAB_TYPE_NONE);
+ GGML_ASSERT(llama_is_byte_token(vocab, id));
+ const auto & token_data = vocab.id_to_token.at(id);
+ switch (llama_vocab_get_type(vocab)) {
+ case LLAMA_VOCAB_TYPE_SPM:
+ case LLAMA_VOCAB_TYPE_UGM: {
+ auto buf = token_data.text.substr(3, 2);
+ return strtol(buf.c_str(), NULL, 16);
+ }
+ case LLAMA_VOCAB_TYPE_BPE: {
+ GGML_ASSERT(false);
+ return unicode_utf8_to_byte(token_data.text); // TODO: why is this here after GGML_ASSERT?
+ }
+ case LLAMA_VOCAB_TYPE_WPM: {
+ GGML_ASSERT(false);
+ }
+ default:
+ GGML_ASSERT(false);
+ }
+}
+
+static void llama_escape_whitespace(std::string & text) {
+ replace_all(text, " ", "\xe2\x96\x81");
+}
+
+static void llama_unescape_whitespace(std::string & word) {
+ replace_all(word, "\xe2\x96\x81", " ");
+}
+
+struct llm_symbol {
+ using index = int;
+ index prev;
+ index next;
+ const char * text;
+ size_t n;
+};
+
+static_assert(std::is_trivially_copyable<llm_symbol>::value, "llm_symbol is not trivially copyable");
+
+//
+// SPM tokenizer
+// original implementation:
+// https://github.com/ggerganov/llama.cpp/commit/074bea2eb1f1349a0118239c4152914aecaa1be4
+//
+
+struct llm_bigram_spm {
+ struct comparator {
+ bool operator()(llm_bigram_spm & l, llm_bigram_spm & r) {
+ return (l.score < r.score) || (l.score == r.score && l.left > r.left);
+ }
+ };
+ using queue_storage = std::vector<llm_bigram_spm>;
+ using queue = std::priority_queue<llm_bigram_spm, queue_storage, comparator>;
+ llm_symbol::index left;
+ llm_symbol::index right;
+ float score;
+ size_t size;
+};
+
+struct llm_tokenizer_spm {
+ llm_tokenizer_spm(const llama_vocab & vocab) : vocab(vocab) {}
+
+ void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
+ // split string into utf8 chars
+ int index = 0;
+ size_t offs = 0;
+ while (offs < text.size()) {
+ llm_symbol sym;
+ size_t len = unicode_len_utf8(text[offs]);
+ sym.text = text.c_str() + offs;
+ sym.n = std::min(len, text.size() - offs);
+ offs += sym.n;
+ sym.prev = index - 1;
+ sym.next = offs == text.size() ? -1 : index + 1;
+ index++;
+ symbols.emplace_back(sym);
+ }
+
+ // seed the work queue with all possible 2-character tokens.
+ for (size_t i = 1; i < symbols.size(); ++i) {
+ try_add_bigram(i - 1, i);
+ }
+
+ // keep substituting the highest frequency pairs for as long as we can.
+ while (!work_queue.empty()) {
+ auto bigram = work_queue.top();
+ work_queue.pop();
+
+ auto & left_sym = symbols[bigram.left];
+ auto & right_sym = symbols[bigram.right];
+
+ // if one of the symbols already got merged, skip it.
+ if (left_sym.n == 0 || right_sym.n == 0 ||
+ left_sym.n + right_sym.n != bigram.size) {
+ continue;
+ }
+
+ // merge the right sym into the left one
+ left_sym.n += right_sym.n;
+ right_sym.n = 0;
+
+ //LLAMA_LOG_INFO("left = '%*s' size = %zu\n", (int) left_sym.n, left_sym.text, bigram.size);
+
+ // remove the right sym from the chain
+ left_sym.next = right_sym.next;
+ if (right_sym.next >= 0) {
+ symbols[right_sym.next].prev = bigram.left;
+ }
+
+ // find more substitutions
+ try_add_bigram(left_sym.prev, bigram.left);
+ try_add_bigram(bigram.left, left_sym.next);
+ }
+
+ for (int i = 0; i != -1; i = symbols[i].next) {
+ auto & symbol = symbols[i];
+ resegment(symbol, output);
+ }
+ }
+
+private:
+ void resegment(llm_symbol & symbol, std::vector<llama_vocab::id> & output) {
+ auto text = std::string(symbol.text, symbol.n);
+ auto token = vocab.token_to_id.find(text);
+
+ // Do we need to support is_unused?
+ if (token != vocab.token_to_id.end()) {
+ output.push_back((*token).second);
+ return;
+ }
+
+ const auto p = rev_merge.find(text);
+
+ if (p == rev_merge.end()) {
+ // output any symbols that did not form tokens as bytes.
+ output.reserve(output.size() + symbol.n);
+ for (int j = 0; j < (int)symbol.n; ++j) {
+ llama_vocab::id token_id = llama_byte_to_token_impl(vocab, symbol.text[j]);
+ output.push_back(token_id);
+ }
+ return;
+ }
+
+ resegment(symbols[p->second.first], output);
+ resegment(symbols[p->second.second], output);
+ }
+
+ void try_add_bigram(int left, int right) {
+ if (left == -1 || right == -1) {
+ return;
+ }
+
+ const std::string text = std::string(symbols[left].text, symbols[left].n + symbols[right].n);
+ auto token = vocab.token_to_id.find(text);
+
+ if (token == vocab.token_to_id.end()) {
+ return;
+ }
+
+ if (static_cast<size_t>((*token).second) >= vocab.id_to_token.size()) {
+ return;
+ }
+
+ const auto & tok_data = vocab.id_to_token[(*token).second];
+
+ llm_bigram_spm bigram;
+ bigram.left = left;
+ bigram.right = right;
+ bigram.score = tok_data.score;
+ bigram.size = text.size();
+
+ work_queue.push(bigram);
+
+ // Do we need to support is_unused?
+ rev_merge[text] = std::make_pair(left, right);
+ }
+
+ const llama_vocab & vocab;
+
+ std::vector<llm_symbol> symbols;
+ llm_bigram_spm::queue work_queue;
+
+ std::map<std::string, std::pair<int, int>> rev_merge;
+};
+
+//
+// BPE tokenizer
+// adapted from https://github.com/cmp-nct/ggllm.cpp [MIT License]
+// tried to simplify unicode stuff, so most likely does not work 100% correctly!
+//
+
+// TODO: there are a lot of common parts between spm and bpe tokenizers, should be refactored and reused
+
+struct llm_bigram_bpe {
+ struct comparator {
+ bool operator()(const llm_bigram_bpe & l, const llm_bigram_bpe & r) const {
+ return l.rank > r.rank || (l.rank == r.rank && l.left > r.left);
+ }
+ };
+
+ using queue_storage = std::vector<llm_bigram_bpe>;
+ using queue = std::priority_queue<llm_bigram_bpe, queue_storage, comparator>;
+ llm_symbol::index left;
+ llm_symbol::index right;
+ std::string text;
+ int rank;
+ size_t size;
+};
+
+struct llm_tokenizer_bpe {
+ llm_tokenizer_bpe(const llama_vocab & vocab): vocab(vocab) {
+ GGML_ASSERT(vocab.type == LLAMA_VOCAB_TYPE_BPE);
+ switch (vocab.type_pre) {
+ case LLAMA_VOCAB_PRE_TYPE_LLAMA3:
+ regex_exprs = {
+ // original regex from tokenizer.json
+ //"(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
+
+ // adapted: https://github.com/ggerganov/llama.cpp/pull/6920#issuecomment-2080233989
+ "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
+ };
+ break;
+ case LLAMA_VOCAB_PRE_TYPE_DBRX:
+ case LLAMA_VOCAB_PRE_TYPE_SMAUG:
+ regex_exprs = {
+ // same as llama3
+ "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
+ };
+ break;
+ case LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_LLM:
+ regex_exprs = {
+ "[\r\n]",
+ "\\s?[A-Za-zµÀ-ÖØ-öø-ƺƼ-ƿDŽ-ʓʕ-ʯͰ-ͳͶͷͻ-ͽͿΆΈ-ΊΌΎ-ΡΣ-ϵϷ-ҁҊ-ԯԱ-ՖႠ-ჅᎠ-Ᏽᏸ-ᏽᲐ-ᲺᲽ-Ჿᴀ-ᴫᵫ-ᵷᵹ-ᶚḀ-ἕἘ-Ἕἠ-ὅὈ-Ὅὐ-ὗὙὛὝὟ-ώᾀ-ᾴᾶ-ᾼιῂ-ῄῆ-ῌῐ-ΐῖ-Ίῠ-Ῥῲ-ῴῶ-ῼℂℇℊ-ℓℕℙ-ℝℤΩℨK-ℭℯ-ℴℹℼ-ℿⅅ-ⅉⅎↃↄⰀ-ⱻⱾ-ⳤⳫ-ⳮⳲⳳꙀ-ꙭꚀ-ꚛꜢ-ꝯꝱ-ꞇꞋ-ꞎꭰ-ꮿff-stﬓ-ﬗA-Za-z𐐀-𐑏𐒰-𐓓𐓘-𐓻𐲀-𐲲𐳀-𐳲𑢠-𑣟𞤀-𞥃]+",
+ "\\s?[!-/:-~!-/:-~‘-‟ -。]+",
+ "\\s+$",
+ "[一-龥ࠀ-一가-퟿]+",
+ "\\p{N}+",
+ };
+ break;
+ case LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_CODER:
+ regex_exprs = {
+ "[\r\n]",
+ "\\s?\\p{L}+",
+ "\\s?\\p{P}+",
+ "[一-龥ࠀ-一가-퟿]+",
+ "\\p{N}",
+ };
+ break;
+ case LLAMA_VOCAB_PRE_TYPE_FALCON:
+ regex_exprs = {
+ "[\\p{P}\\$\\+<=>\\^~\\|`]+",
+ "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
+ "[0-9][0-9][0-9]",
+ };
+ break;
+ case LLAMA_VOCAB_PRE_TYPE_STARCODER:
+ case LLAMA_VOCAB_PRE_TYPE_REFACT:
+ case LLAMA_VOCAB_PRE_TYPE_COMMAND_R:
+ case LLAMA_VOCAB_PRE_TYPE_SMOLLM:
+ case LLAMA_VOCAB_PRE_TYPE_CODESHELL:
+ regex_exprs = {
+ "\\p{N}",
+ "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
+ };
+ break;
+ case LLAMA_VOCAB_PRE_TYPE_GPT2:
+ case LLAMA_VOCAB_PRE_TYPE_MPT:
+ case LLAMA_VOCAB_PRE_TYPE_OLMO:
+ case LLAMA_VOCAB_PRE_TYPE_JAIS:
+ regex_exprs = {
+ "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
+ };
+ break;
+ case LLAMA_VOCAB_PRE_TYPE_STABLELM2:
+ case LLAMA_VOCAB_PRE_TYPE_QWEN2:
+ regex_exprs = {
+ // original regex from tokenizer.json
+ // "(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+"
+ "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
+ };
+ break;
+ case LLAMA_VOCAB_PRE_TYPE_PORO:
+ regex_exprs = {
+ " ?[^(\\s|.,!?…。,、।۔،)]+",
+ };
+ break;
+ case LLAMA_VOCAB_PRE_TYPE_CHATGLM4:
+ regex_exprs = {
+ "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
+ };
+ break;
+ case LLAMA_VOCAB_PRE_TYPE_VIKING:
+ regex_exprs = {
+ " ?[^(\\s|.,!?…。,、।۔،)]+",
+ "\\p{N}",
+ };
+ break;
+ case LLAMA_VOCAB_PRE_TYPE_TEKKEN:
+ // original regex from tokenizer.json
+ // "[^\\r\\n\\p{L}\\p{N}]?[\\p{Lu}\\p{Lt}\\p{Lm}\\p{Lo}\\p{M}]*[\\p{Ll}\\p{Lm}\\p{Lo}\\p{M}]+|[^\\r\\n\\p{L}\\p{N}]?[\\p{Lu}\\p{Lt}\\p{Lm}\\p{Lo}\\p{M}]+[\\p{Ll}\\p{Lm}\\p{Lo}\\p{M}]*|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n/]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+"
+ regex_exprs = {
+ "[^\\r\\n\\p{L}\\p{N}]?((?=[\\p{L}])([^a-z]))*((?=[\\p{L}])([^A-Z]))+|[^\\r\\n\\p{L}\\p{N}]?((?=[\\p{L}])([^a-z]))+((?=[\\p{L}])([^A-Z]))*|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n/]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
+ };
+ break;
+ default:
+ // default regex for BPE tokenization pre-processing
+ regex_exprs = {
+ "[\\p{P}\\$\\+<=>\\^~\\|]+",
+ "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
+ "\\p{N}+",
+ "[0-9][0-9][0-9]",
+ };
+ break;
+ }
+ }
+
+ void append(const llama_vocab::id token_id, std::vector<llama_vocab::id> & output) const {
+ output.push_back(token_id);
+ }
+
+ bool append_bos(std::vector<llama_vocab::id> & output) const {
+ if (vocab.tokenizer_add_bos) {
+ GGML_ASSERT(vocab.special_bos_id != -1);
+ output.push_back(vocab.special_bos_id);
+ return true;
+ }
+ return false;
+ }
+
+ bool append_eos(std::vector<llama_vocab::id> & output) const {
+ if (vocab.tokenizer_add_eos) {
+ GGML_ASSERT(vocab.special_eos_id != -1);
+ output.push_back(vocab.special_eos_id);
+ return true;
+ }
+ return false;
+ }
+
+ void check_double_bos_eos(const std::vector<llama_vocab::id> & output) const {
+ if (vocab.tokenizer_add_bos && output.size() >= 2 && output[1] == vocab.special_bos_id) {
+ LLAMA_LOG_WARN(
+ "%s: Added a BOS token to the prompt as specified by the model but the prompt "
+ "also starts with a BOS token. So now the final prompt starts with 2 BOS tokens. "
+ "Are you sure this is what you want?\n", __FUNCTION__);
+ }
+ if (vocab.tokenizer_add_eos && output.size() >= 2 && *(output.end()-2) == vocab.special_eos_id) {
+ LLAMA_LOG_WARN(
+ "%s: Added a EOS token to the prompt as specified by the model but the prompt "
+ "also ends with a EOS token. So now the final prompt ends with 2 EOS tokens. "
+ "Are you sure this is what you want?\n", __FUNCTION__);
+ }
+ }
+
+ void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
+ int final_prev_index = -1;
+
+ const auto word_collection = unicode_regex_split(text, regex_exprs);
+
+ symbols_final.clear();
+
+ for (auto & word : word_collection) {
+ work_queue = llm_bigram_bpe::queue();
+ symbols.clear();
+
+ int index = 0;
+ size_t offset = 0;
+
+ if (vocab.tokenizer_ignore_merges && vocab.token_to_id.find(word) != vocab.token_to_id.end()) {
+ symbols.emplace_back(llm_symbol{-1, -1, word.c_str(), word.size()});
+ offset = word.size();
+ }
+
+ while (offset < word.size()) {
+ llm_symbol sym;
+ size_t char_len = std::min(word.size() - offset, (size_t) unicode_len_utf8(word[offset]));
+ sym.text = word.c_str() + offset;
+ sym.n = char_len;
+ offset += sym.n;
+ sym.prev = index - 1;
+ sym.next = offset == word.size() ? -1 : index + 1;
+ index++;
+ symbols.emplace_back(sym);
+ }
+ for (size_t i = 1; i < symbols.size(); ++i) {
+ add_new_bigram(i - 1, i);
+ }
+
+ // build token(s)
+ while (!work_queue.empty()) {
+ auto bigram = work_queue.top();
+ work_queue.pop();
+
+ auto & left_symbol = symbols[bigram.left];
+ auto & right_symbol = symbols[bigram.right];
+
+ if (left_symbol.n == 0 || right_symbol.n == 0) {
+ continue;
+ }
+ std::string left_token = std::string(left_symbol.text, left_symbol.n);
+ std::string right_token = std::string(right_symbol.text, right_symbol.n);
+ if (left_token + right_token != bigram.text) {
+ continue; // Skip this bigram if it's outdated
+ }
+
+ // merge the right sym into the left one
+ left_symbol.n += right_symbol.n;
+ right_symbol.n = 0;
+
+ // remove the right sym from the chain
+ left_symbol.next = right_symbol.next;
+ if (right_symbol.next >= 0) {
+ symbols[right_symbol.next].prev = bigram.left;
+ }
+
+ add_new_bigram(left_symbol.prev, bigram.left); // left side of current symbol
+ add_new_bigram(bigram.left, left_symbol.next); // right side of current symbol
+ }
+
+ // add the finished tokens to the final list keeping correct order for next and prev
+ for (auto & sym : symbols) {
+ if (sym.n > 0) {
+ sym.prev = final_prev_index;
+ sym.next = -1;
+ if (final_prev_index != -1) {
+ symbols_final[final_prev_index].next = symbols_final.size();
+ }
+ symbols_final.emplace_back(sym);
+ final_prev_index = symbols_final.size() - 1;
+ }
+ }
+ }
+
+ symbols = symbols_final;
+
+ if (!symbols.empty()) {
+ for (int i = 0; i != -1; i = symbols[i].next) {
+ auto & symbol = symbols[i];
+ if (symbol.n == 0) {
+ continue;
+ }
+
+ const std::string str = std::string(symbol.text, symbol.n);
+ const auto token = vocab.token_to_id.find(str);
+
+ if (token == vocab.token_to_id.end()) {
+ for (auto j = str.begin(); j != str.end(); ++j) {
+ std::string byte_str(1, *j);
+ auto token_multibyte = vocab.token_to_id.find(byte_str);
+ if (token_multibyte != vocab.token_to_id.end()) {
+ output.push_back(token_multibyte->second);
+ }
+ }
+ } else {
+ output.push_back((*token).second);
+ }
+ }
+ }
+ }
+
+private:
+ void add_new_bigram(int left, int right) {
+ if (left == -1 || right == -1) {
+ return;
+ }
+
+ std::string left_token = std::string(symbols[left].text, symbols[left].n);
+ std::string right_token = std::string(symbols[right].text, symbols[right].n);
+
+ int rank_found = -1;
+
+ rank_found = vocab.find_bpe_rank(left_token, right_token);
+
+ if (rank_found < 0) {
+ return;
+ }
+
+ llm_bigram_bpe bigram;
+
+ bigram.left = left;
+ bigram.right = right;
+ bigram.text = left_token + right_token;
+ bigram.size = left_token.size() + right_token.size();
+ bigram.rank = rank_found;
+
+ work_queue.push(bigram);
+ }
+
+ const llama_vocab & vocab;
+
+ std::vector<std::string> regex_exprs;
+
+ std::vector<llm_symbol> symbols;
+ std::vector<llm_symbol> symbols_final;
+
+ llm_bigram_bpe::queue work_queue;
+};
+
+//
+// WPM tokenizer
+//
+
+struct llm_tokenizer_wpm {
+ llm_tokenizer_wpm(const llama_vocab & vocab): vocab(vocab) {}
+
+ void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) const {
+ const auto & token_map = vocab.token_to_id;
+
+ // normalize and split by whitespace
+ std::vector<std::string> words = preprocess(text);
+
+ // bos token prepended already
+
+ // find the longest tokens that form the words
+ for (const std::string & word : words) {
+ // skip empty words
+ if (word.size() == 0) {
+ continue;
+ }
+
+ // prepend phantom space
+ const std::string word1 = "\xe2\x96\x81" + word;
+ const int n = word1.size();
+
+ const size_t current_tokens = output.size();
+
+ // we're at the start of a new word
+ // move through character position in word
+ for (int i = 0; i < n; ++i) {
+ // loop through possible match length
+ bool match = false;
+ for (int j = std::min(n, i + vocab.max_token_len + 1); j > i; j--) {
+ auto it = token_map.find(word1.substr(i, j - i));
+ if (it != token_map.end()) {
+ output.push_back(it->second);
+ match = true;
+ i = j - 1;
+ break;
+ }
+ }
+
+ if (!match) { // discard all
+ output.resize(current_tokens);
+ break; // and discard next tokens
+ }
+ }
+
+ // we didn't find any matches for this word
+ if (current_tokens == output.size()) {
+ output.push_back(vocab.special_unk_id);
+ }
+ }
+ }
+
+ // TODO: reduce string copies by using cpts_offs array
+ std::vector<std::string> preprocess(const std::string & text) const {
+ const std::vector<uint32_t> cpts_nfd = unicode_cpts_normalize_nfd(unicode_cpts_from_utf8(text));
+ std::vector<std::string> words(1, "");
+
+ for (const uint32_t cpt : cpts_nfd) {
+ const auto flags = unicode_cpt_flags(cpt);
+
+ if (flags.is_whitespace) {
+ if (words.back().size()) { // finish previous word if any
+ words.emplace_back();
+ }
+ continue;
+ }
+
+ assert (!flags.is_separator);
+ if (cpt == 0 || cpt == 0xFFFD || flags.is_control) {
+ continue;
+ }
+
+ const std::string s = unicode_cpt_to_utf8(unicode_tolower(cpt));
+ if (flags.is_punctuation || ( cpt < 0x7F && flags.is_symbol ) || is_chinese_char(cpt)) {
+ if (words.back().size()) { // finish previous word if any
+ words.emplace_back();
+ }
+ words.back() = s; // single char word
+ words.emplace_back(); // start a new word
+ } else {
+ words.back() += s; // append char to word
+ }
+ }
+
+ if (!words.back().size()) {
+ words.pop_back();
+ }
+
+ return words;
+ }
+
+ static bool is_chinese_char(uint32_t cpt) {
+ return
+ (cpt >= 0x04E00 && cpt <= 0x09FFF) ||
+ (cpt >= 0x03400 && cpt <= 0x04DBF) ||
+ (cpt >= 0x20000 && cpt <= 0x2A6DF) ||
+ (cpt >= 0x2A700 && cpt <= 0x2B73F) ||
+ (cpt >= 0x2B740 && cpt <= 0x2B81F) ||
+ (cpt >= 0x2B920 && cpt <= 0x2CEAF) || // this should be 0x2B820 but in hf rust code it is 0x2B920
+ (cpt >= 0x0F900 && cpt <= 0x0FAFF) ||
+ (cpt >= 0x2F800 && cpt <= 0x2FA1F);
+ //(cpt >= 0x3000 && cpt <= 0x303F) ||
+ //(cpt >= 0xFF00 && cpt <= 0xFFEF);
+ }
+
+ const llama_vocab & vocab;
+};
+
+//
+// UGM tokenizer
+//
+
+struct llm_tokenizer_ugm {
+ llm_tokenizer_ugm(const llama_vocab & vocab) : vocab(vocab) {
+ if (vocab.precompiled_charsmap.size() > 0) {
+ size_t charsmap_offset = 0;
+
+ // First four bytes of precompiled_charsmap contains length of binary
+ // blob containing XOR-compressed compact double array (XCDA) entries
+ uint32_t xcda_blob_size = *(const uint32_t *) &vocab.precompiled_charsmap[0];
+ charsmap_offset += sizeof(xcda_blob_size);
+ if (xcda_blob_size + charsmap_offset >= vocab.precompiled_charsmap.size()) {
+ throw std::runtime_error("Index out of array bounds in precompiled charsmap!");
+ }
+
+ // Next xcda_blob_size bytes contain entries of XOR-compressed compact
+ // double array (XCDA). Each entry is bit-packed into a 32-bit integer.
+ xcda_array = (const uint32_t *) &vocab.precompiled_charsmap[charsmap_offset];
+ xcda_array_size = xcda_blob_size / sizeof(uint32_t);
+ charsmap_offset += xcda_blob_size;
+
+ // Remaining bytes of precompiled charsmap contain null-terminated
+ // replacement strings for prefixes matched by the XCDA.
+ prefix_replacements = &vocab.precompiled_charsmap[charsmap_offset];
+ prefix_replacements_size = vocab.precompiled_charsmap.size() - charsmap_offset;
+ }
+
+ for (unsigned int id = 0; id < vocab.id_to_token.size(); ++id) {
+ const auto &token_data = vocab.id_to_token[id];
+
+ if (llama_is_normal_token(vocab, id)) {
+ min_score = std::min<float>(min_score, token_data.score);
+ max_score = std::max<float>(max_score, token_data.score);
+ }
+
+ if (llama_is_normal_token(vocab, id) ||
+ llama_is_user_defined_token(vocab, id) ||
+ llama_is_unused_token(vocab, id)) {
+ token_matcher.insert(token_data.text.data(), token_data.text.size(), id);
+ }
+
+ if (llama_is_user_defined_token(vocab, id)) {
+ user_defined_token_matcher.insert(token_data.text.data(), token_data.text.size());
+ }
+ }
+
+ unknown_token_score = min_score - unknown_token_score_penalty;
+ }
+
+ /* This implementation is based on SentencePiece optimized Viterbi algorithm for
+ * unigram language models. The general idea is to:
+ * - move along the input sequence in steps of one UTF code point,
+ * - at each step find all possible tokenizations of the prefix by
+ * traversing the tokens trie,
+ * - for each tokenization store the best one so far (by higher score)
+ * - use the position in sequence after given token as an index to store
+ * results
+ * - if there was no valid tokenization of the current UTF code point
+ * then use unknown token with additional score penalty
+ * After processing the whole sequence we backtrack from the end to get
+ * the best tokenization.
+ */
+ void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
+ // normalize the input first
+ std::string normalized;
+ normalize(text, &normalized);
+ size_t input_len = normalized.size();
+ if (input_len == 0) {
+ return;
+ }
+
+ // initialize score_sum to -FLT_MAX so it will be always lower than sums of token scores
+ std::vector<struct best_tokenization> tokenization_results(input_len + 1, {vocab.special_unk_id, 0, -FLT_MAX});
+ // at the beginning tokenization score is zero
+ tokenization_results[0] = { vocab.special_unk_id, 0, 0 };
+
+ for (size_t input_offset = 0; input_offset < input_len;) {
+ size_t prefix_offset = input_offset;
+ // calculate how many code units are in the currently processed UTF code point
+ size_t n_utf8_code_units = std::min<size_t>(unicode_len_utf8(normalized[input_offset]), input_len - input_offset);
+
+ // traverse the token matcher trie to find a matching token
+ bool single_codepoint_token_found = false;
+ const struct best_tokenization & current_best = tokenization_results[input_offset];
+ struct naive_trie * node = token_matcher.traverse(normalized[prefix_offset++]);
+
+ while (prefix_offset <= input_len && node != NULL) {
+ // check if we found valid token in prefix
+ if (node->has_value) {
+ // check if it corresponds to the whole UTF code point
+ if (prefix_offset - input_offset == n_utf8_code_units) {
+ single_codepoint_token_found = true;
+ }
+ llama_token token_id = node->value;
+ const auto & token_data = vocab.id_to_token[token_id];
+
+ // we set the user-defined token scores to 0 to make them more likely to be selected
+ // (normal token scores are log probabilities, so they are negative)
+ // score type is double here to make tokenization results exactly
+ // the same as in the HF tokenizer using SentencePiece
+ const double token_score = llama_is_user_defined_token(vocab, token_id) ? 0.0 : token_data.score;
+ const double challenger_score = current_best.score_sum + token_score;
+ struct best_tokenization & current_champ = tokenization_results[prefix_offset];
+ if (challenger_score > current_champ.score_sum) {
+ struct best_tokenization challenger = { token_id, input_offset, (float) challenger_score };
+ current_champ = challenger;
+ }
+ }
+ node = node->traverse(normalized[prefix_offset++]);
+ }
+
+ // if we didn't find a valid token corresponding to the whole UTF code point
+ // then use unknown token as the tokenization of this UTF code point
+ if (!single_codepoint_token_found) {
+ const double challenger_score = current_best.score_sum + unknown_token_score;
+ prefix_offset = input_offset + n_utf8_code_units;
+ struct best_tokenization & current_champ = tokenization_results[prefix_offset];
+ if (challenger_score > current_champ.score_sum) {
+ struct best_tokenization challenger = { vocab.special_unk_id, input_offset, (float) challenger_score };
+ current_champ = challenger;
+ }
+ }
+
+ // move to the next UTF code point
+ input_offset += n_utf8_code_units;
+ }
+
+ // now backtrack from the end to gather token ids of the best tokenization
+ // merge sequences of consecutive unknown tokens into single unknown tokens
+ bool is_prev_unknown = false;
+ for (struct best_tokenization & tokenization = tokenization_results[input_len]; ; tokenization = tokenization_results[tokenization.input_offset]) {
+ bool is_unknown = tokenization.token_id == vocab.special_unk_id;
+ if (!(is_prev_unknown && is_unknown)) {
+ output.push_back(tokenization.token_id);
+ }
+ if (tokenization.input_offset == 0) {
+ break;
+ }
+ is_prev_unknown = is_unknown;
+ }
+
+ // reverse the output since we added tokens starting from the end of the input
+ std::reverse(output.begin(), output.end());
+ }
+
+private:
+ const llama_vocab & vocab;
+
+ // helper structure for returning normalization results
+ struct normalization_result {
+ const char * normalized;
+ size_t normalized_len;
+ size_t consumed_input;
+ };
+
+ void normalize(const std::string& input, std::string * normalized) {
+ normalized->clear();
+ normalized->reserve(input.size() * 3);
+
+ const std::string space = vocab.tokenizer_escape_whitespaces ? escaped_space : " ";
+
+ bool shall_prepend_space = !vocab.tokenizer_treat_whitespace_as_suffix && vocab.tokenizer_add_space_prefix;
+ bool shall_append_space = vocab.tokenizer_treat_whitespace_as_suffix && vocab.tokenizer_add_space_prefix;
+ bool shall_merge_spaces = vocab.tokenizer_remove_extra_whitespaces;
+
+ bool is_space_prepended = false;
+ bool processing_non_ws = false;
+
+ size_t input_len = input.size();
+
+ for (size_t input_offset = 0; input_offset < input_len; ) {
+ auto norm_res = normalize_prefix(input, input_offset);
+ for (size_t i = 0; i < norm_res.normalized_len; i++) {
+ char c = norm_res.normalized[i];
+ if (c != ' ') {
+ if (!processing_non_ws) {
+ processing_non_ws = true;
+ if ((shall_prepend_space && !is_space_prepended) || shall_merge_spaces) {
+ normalized->append(space);
+ is_space_prepended = true;
+ }
+ }
+ normalized->push_back(c);
+ } else {
+ if (processing_non_ws) {
+ processing_non_ws = false;
+ }
+ if (!shall_merge_spaces) {
+ normalized->append(space);
+ }
+ }
+ }
+
+ input_offset += norm_res.consumed_input;
+ }
+
+ if (shall_append_space) {
+ normalized->append(space);
+ }
+ }
+
+ /*
+ * This structure is a view wrapper for XOR-compressed double array (XCDA)
+ * See Shunsuke Kanda (2018). Space- and Time-Efficient String Dictionaries.
+ * Eeach bit-packed entry contains:
+ * - BASE array value in bits 10-30
+ * - LCHECK array value in bits 0-7
+ * - LEAF array value in bit 9
+ * Entries containing indexes of replacement sequences have set bit 31
+ */
+ struct xcda_array_view {
+ public:
+ xcda_array_view(const uint32_t * xcda_array, size_t xcda_array_size) : xcda_array(xcda_array), xcda_array_size(xcda_array_size) {
+ }
+ uint32_t get_base(size_t index) {
+ uint32_t packed_node = get_node(index);
+ return (packed_node >> 10) << ((packed_node & (1U << 9)) >> 6);
+ }
+ uint32_t get_lcheck(size_t index) {
+ uint32_t packed_node = get_node(index);
+ return packed_node & ((1U << 31) | 0xff);
+ }
+ bool get_leaf(size_t index) {
+ uint32_t packed_node = get_node(index);
+ return (packed_node >> 8) & 1;
+ }
+ uint32_t get_value(size_t index) {
+ uint32_t packed_node = get_node(index);
+ return packed_node & ((1U << 31) - 1);
+ }
+ private:
+ uint32_t get_node(size_t index) {
+ if (index > xcda_array_size) {
+ throw std::runtime_error("Index out of array bounds in XCDA array!");
+ }
+ return xcda_array[index];
+ }
+ const uint32_t * xcda_array;
+ size_t xcda_array_size;
+ };
+
+ struct normalization_result normalize_prefix(const std::string & input, size_t input_offset) {
+ if (input_offset == input.size()) {
+ return { &input[input_offset], 0, 0 };
+ }
+
+ // if input prefix matches some user-defined token return this token as normalization result
+ auto user_defined_token_match = user_defined_token_matcher.get_longest_prefix(&input[input_offset], input.size() - input_offset);
+ if (user_defined_token_match.second > 0) {
+ return { &input[input_offset], user_defined_token_match.second, user_defined_token_match.second };
+ }
+
+ size_t longest_prefix_length = 0;
+ size_t longest_prefix_offset = 0;
+
+ if (xcda_array_size > 0) {
+ struct xcda_array_view xcda_view(xcda_array, xcda_array_size);
+
+ // Find the longest normalized sequence matching the input prefix by walking
+ // the XOR-compressed compact double array (XCDA) starting from the root node
+ // We find the index of the next node by calculating BASE[s] ^ c where s is
+ // the index of the previous node and c is a numerical character value
+ uint32_t node_index = 0;
+ // get BASE of the root node
+ node_index = xcda_view.get_base(node_index);
+ for (size_t prefix_offset = input_offset; prefix_offset < input.size(); prefix_offset++) {
+ unsigned char c = input[prefix_offset];
+ if (c == 0) {
+ break;
+ }
+ node_index ^= c;
+ // if value of LCHECK is not c it means that this is not a child of
+ // the previous node, so we stop matching
+ if (xcda_view.get_lcheck(node_index) != c) {
+ break;
+ }
+ bool is_leaf = xcda_view.get_leaf(node_index);
+ // get BASE of the current node
+ node_index ^= xcda_view.get_base(node_index);
+ // if LEAF of the current node is true, it means that its BASE points to the node
+ // containing index of replacement sequence for currently matched input prefix
+ if (is_leaf)
+ {
+ longest_prefix_length = prefix_offset - input_offset + 1;
+ // get index of replacement sequence for currently matched input prefix
+ longest_prefix_offset = xcda_view.get_value(node_index);
+ }
+ }
+ }
+
+ if (longest_prefix_length > 0) {
+ // we have a match, so return the replacement sequence
+ if (longest_prefix_offset >= prefix_replacements_size) {
+ throw std::runtime_error("Index out of array bounds in precompiled charsmap!");
+ }
+ const char * prefix_replacement = &prefix_replacements[longest_prefix_offset];
+ return { prefix_replacement, strlen(prefix_replacement), longest_prefix_length };
+ } else {
+ // check if the input prefix contains a valid sequence of UTF-8 code units
+ try {
+ // if yes, return this sequence unmodified
+ size_t prefix_offset = input_offset;
+ unicode_cpt_from_utf8(input, prefix_offset);
+ return { &input[input_offset], prefix_offset - input_offset, prefix_offset - input_offset };
+ } catch (std::invalid_argument & /*ex*/) {
+ // if no, consume 1 byte and return U+FFFD - REPLACEMENT CHARACTER
+ return { "\xEF\xBF\xBD", 3, 1 };
+ }
+ }
+ }
+
+ // escaped space symbol - U+2581 (Lower One Eighth Block)
+ const std::string escaped_space = "\xE2\x96\x81";
+
+ const char * prefix_replacements = NULL;
+ size_t prefix_replacements_size = 0;
+
+ const uint32_t * xcda_array = NULL;
+ size_t xcda_array_size = 0;
+
+ struct naive_trie user_defined_token_matcher;
+
+ // this structure stores the best tokenization so far at input_offset
+ struct best_tokenization {
+ llama_token token_id;
+ size_t input_offset;
+ float score_sum;
+ };
+
+ float min_score = FLT_MAX;
+ float max_score = -FLT_MAX;
+
+ float unknown_token_score_penalty = 10.0;
+ float unknown_token_score;
+
+ struct naive_trie token_matcher;
+};
+
+//
+// (de-) tokenize
+//
+
+typedef enum FRAGMENT_BUFFER_VARIANT_TYPE {
+ FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN,
+ FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT
+} FRAGMENT_BUFFER_VARIANT_TYPE;
+
+struct fragment_buffer_variant {
+ fragment_buffer_variant(llama_vocab::id _token)
+ :
+ type(FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN),
+ token(_token),
+ raw_text(_dummy),
+ offset(0),
+ length(0) {}
+
+ fragment_buffer_variant(const std::string & _raw_text, int64_t _offset, int64_t _length)
+ :
+ type(FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT),
+ token((llama_vocab::id) - 1),
+ raw_text(_raw_text),
+ offset(_offset),
+ length(_length){
+ GGML_ASSERT(_offset >= 0);
+ GGML_ASSERT(_length >= 1);
+ GGML_ASSERT(offset + length <= raw_text.length());
+ }
+
+ const FRAGMENT_BUFFER_VARIANT_TYPE type;
+ const llama_vocab::id token;
+ const std::string _dummy;
+ const std::string & raw_text;
+ const uint64_t offset;
+ const uint64_t length;
+};
+
+// #define PRETOKENIZERDEBUG
+
+static void tokenizer_st_partition(const llama_vocab & vocab, std::forward_list<fragment_buffer_variant> & buffer, bool parse_special) {
+ // for each special token
+ for (const llama_vocab::id special_id : vocab.cache_special_tokens) {
+ const auto & data = vocab.id_to_token[special_id];
+ const auto & special_token = data.text;
+
+ if (!parse_special && (data.attr & (LLAMA_TOKEN_ATTR_CONTROL | LLAMA_TOKEN_ATTR_UNKNOWN))) {
+ // Ignore control and unknown tokens when parse_special == false
+ continue;
+ // User-defined tokens are still pre-tokenized before everything else
+ // ref: https://github.com/huggingface/tokenizers/blob/fdd26ba9a3f0c133427aab0423888cbde91362d7/tokenizers/src/tokenizer/mod.rs#L726
+ // This is mostly relevant for neox-style tokenizers (mpt, olmo, stablelm, etc.)
+ }
+
+ // for each text fragment
+ std::forward_list<fragment_buffer_variant>::iterator it = buffer.begin();
+ while (it != buffer.end()) {
+ auto & fragment = (*it);
+
+ // if a fragment is text ( not yet processed )
+ if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
+ auto & raw_text = fragment.raw_text;
+
+ auto raw_text_base_offset = fragment.offset;
+ auto raw_text_base_length = fragment.length;
+
+ // loop over the text
+ while (true) {
+ // find the first occurrence of a given special token in this fragment
+ // passing offset argument only limit the "search area" but match coordinates
+ // are still relative to the source full raw_text
+ auto match = raw_text.find(special_token, raw_text_base_offset);
+
+ // no occurrences found, stop processing this fragment for a given special token
+ if (match == std::string::npos) break;
+
+ // check if match is within bounds of offset <-> length
+ if (match + special_token.length() > raw_text_base_offset + raw_text_base_length) break;
+
+#ifdef PRETOKENIZERDEBUG
+ LLAMA_LOG_WARN("FF: (%ld %ld %ld) '%s'\n", raw_text->length(), raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str());
+#endif
+ auto source = std::distance(buffer.begin(), it);
+
+ // if match is further than base offset
+ // then we have some text to the left of it
+ if (match > raw_text_base_offset) {
+ // left
+ const int64_t left_reminder_offset = raw_text_base_offset + 0;
+ int64_t left_reminder_length = match - raw_text_base_offset;
+
+ if (data.attr & LLAMA_TOKEN_ATTR_LSTRIP) {
+ while (left_reminder_length > 0 && isspace(raw_text[left_reminder_offset + left_reminder_length - 1])) {
+ left_reminder_length--;
+ }
+ }
+
+ if (left_reminder_length > 0) {
+ buffer.emplace_after(it, raw_text, left_reminder_offset, left_reminder_length);
+ it++;
+ }
+
+#ifdef PRETOKENIZERDEBUG
+ LLAMA_LOG_WARN("FL: (%ld %ld) '%s'\n", left_reminder_offset, left_reminder_length, raw_text->substr(left_reminder_offset, left_reminder_length).c_str());
+#endif
+ }
+
+ // special token
+ buffer.emplace_after(it, special_id);
+ it++;
+
+ // right
+ if (match + special_token.length() < raw_text_base_offset + raw_text_base_length) {
+ int64_t right_reminder_offset = match + special_token.length();
+ int64_t right_reminder_length = raw_text_base_length - ((match - raw_text_base_offset) + special_token.length());
+
+ if (data.attr & LLAMA_TOKEN_ATTR_RSTRIP) {
+ while (right_reminder_length > 0 && isspace(raw_text[right_reminder_offset])) {
+ right_reminder_offset++;
+ right_reminder_length--;
+ }
+ }
+
+ if (right_reminder_length > 0) {
+ buffer.emplace_after(it, raw_text, right_reminder_offset, right_reminder_length);
+ it++;
+ }
+
+#ifdef PRETOKENIZERDEBUG
+ LLAMA_LOG_WARN("FR: (%ld %ld) '%s'\n", right_reminder_offset, right_reminder_length, raw_text->substr(right_reminder_offset, right_reminder_length).c_str());
+#endif
+
+ if (source == 0) {
+ buffer.erase_after(buffer.before_begin());
+ } else {
+ buffer.erase_after(std::next(buffer.begin(), (source-1)));
+ }
+
+ // repeat for the right side
+ raw_text_base_offset = right_reminder_offset;
+ raw_text_base_length = right_reminder_length;
+
+#ifdef PRETOKENIZERDEBUG
+ LLAMA_LOG_WARN("RR: (%ld %ld) '%s'\n", raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str());
+#endif
+ } else {
+ if (source == 0) {
+ buffer.erase_after(buffer.before_begin());
+ } else {
+ buffer.erase_after(std::next(buffer.begin(), (source-1)));
+ }
+ break;
+ }
+ }
+ }
+ it++;
+ }
+ }
+}
+
+std::vector<llama_vocab::id> llama_tokenize_internal(const llama_vocab & vocab, std::string raw_text, bool add_special, bool parse_special) {
+ std::vector<llama_vocab::id> output;
+ std::forward_list<fragment_buffer_variant> fragment_buffer;
+
+ if (!raw_text.empty()) {
+ fragment_buffer.emplace_front(raw_text, 0, raw_text.length());
+ tokenizer_st_partition(vocab, fragment_buffer, parse_special);
+ }
+
+ switch (vocab.type) {
+ case LLAMA_VOCAB_TYPE_SPM:
+ {
+ // OG tokenizer behavior:
+ //
+ // tokenizer.encode('', add_special_tokens=True) returns [1]
+ // tokenizer.encode('', add_special_tokens=False) returns []
+
+ bool is_prev_special = true; // prefix with space if first token
+
+ if (add_special && vocab.tokenizer_add_bos) {
+ GGML_ASSERT(vocab.special_bos_id != -1);
+ output.push_back(vocab.special_bos_id);
+ is_prev_special = true;
+ }
+
+ for (const auto & fragment : fragment_buffer) {
+ if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
+ auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
+
+ // prefix with space if previous is special
+ if (vocab.tokenizer_add_space_prefix && is_prev_special) {
+ raw_text = " " + raw_text;
+ }
+
+#ifdef PRETOKENIZERDEBUG
+ LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
+#endif
+ llm_tokenizer_spm tokenizer(vocab);
+ llama_escape_whitespace(raw_text);
+ tokenizer.tokenize(raw_text, output);
+ is_prev_special = false;
+ } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
+ output.push_back(fragment.token);
+ is_prev_special = true;
+ }
+ }
+
+ if (add_special && vocab.tokenizer_add_bos && output.size() >= 2 && output[1] == vocab.special_bos_id) {
+ LLAMA_LOG_WARN(
+ "%s: Added a BOS token to the prompt as specified by the model but the prompt "
+ "also starts with a BOS token. So now the final prompt starts with 2 BOS tokens. "
+ "Are you sure this is what you want?\n", __FUNCTION__);
+ }
+
+ if (add_special && vocab.tokenizer_add_eos) {
+ GGML_ASSERT(vocab.special_eos_id != -1);
+ output.push_back(vocab.special_eos_id);
+ }
+ } break;
+ case LLAMA_VOCAB_TYPE_BPE:
+ {
+ llm_tokenizer_bpe tokenizer(vocab);
+
+ if (add_special) {
+ tokenizer.append_bos(output);
+ }
+ for (const auto & fragment : fragment_buffer) {
+ if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
+ auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
+
+#ifdef PRETOKENIZERDEBUG
+ LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
+#endif
+ tokenizer.tokenize(raw_text, output);
+ } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
+ tokenizer.append(fragment.token, output);
+ }
+ }
+
+ if (add_special) {
+ tokenizer.append_eos(output);
+ tokenizer.check_double_bos_eos(output);
+ }
+ } break;
+ case LLAMA_VOCAB_TYPE_WPM:
+ {
+ if (add_special) {
+ GGML_ASSERT(vocab.special_cls_id != -1);
+ output.push_back(vocab.special_cls_id);
+ }
+
+ llm_tokenizer_wpm tokenizer(vocab);
+
+ for (const auto & fragment : fragment_buffer) {
+ if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
+ auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
+
+#ifdef PRETOKENIZERDEBUG
+ LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
+#endif
+ tokenizer.tokenize(raw_text, output);
+ } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
+ output.push_back(fragment.token);
+ }
+ }
+
+ if (add_special) {
+ GGML_ASSERT(vocab.special_sep_id != -1);
+ output.push_back(vocab.special_sep_id);
+ }
+ } break;
+ case LLAMA_VOCAB_TYPE_UGM:
+ {
+ llm_tokenizer_ugm tokenizer(vocab);
+
+ if (add_special && vocab.tokenizer_add_bos != 0) {
+ GGML_ASSERT(vocab.special_bos_id != -1);
+ output.push_back(vocab.special_bos_id);
+ }
+
+ for (const auto & fragment : fragment_buffer) {
+ if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
+ auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
+#ifdef PRETOKENIZERDEBUG
+ LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
+#endif
+ tokenizer.tokenize(raw_text, output);
+ } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
+ output.push_back(fragment.token);
+ }
+ }
+
+ if (add_special && vocab.tokenizer_add_bos != 0 && output.size() >= 2 && output[1] == vocab.special_bos_id) {
+ LLAMA_LOG_WARN(
+ "%s: Added a BOS token to the prompt as specified by the model but the prompt "
+ "also starts with a BOS token. So now the final prompt starts with 2 BOS tokens. "
+ "Are you sure this is what you want?\n", __FUNCTION__);
+ }
+
+ if (add_special && vocab.tokenizer_add_eos == 1) {
+ GGML_ASSERT(vocab.special_eos_id != -1);
+ output.push_back(vocab.special_eos_id);
+ }
+ } break;
+ case LLAMA_VOCAB_TYPE_NONE:
+ GGML_ASSERT(false);
+ }
+
+ return output;
+}
+
+llama_token llama_byte_to_token_impl(const llama_vocab & vocab, uint8_t ch) {
+ GGML_ASSERT(llama_vocab_get_type(vocab) != LLAMA_VOCAB_TYPE_NONE);
+ static const char * hex = "0123456789ABCDEF";
+ switch (llama_vocab_get_type(vocab)) {
+ case LLAMA_VOCAB_TYPE_SPM:
+ case LLAMA_VOCAB_TYPE_UGM: {
+ const char buf[7] = { '<', '0', 'x', hex[ch >> 4], hex[ch & 15], '>', 0 };
+ auto token = vocab.token_to_id.find(buf);
+ if (token != vocab.token_to_id.end()) {
+ return (*token).second;
+ }
+ // Try to fall back to just the byte as a string
+ const char buf2[2] = { (char)ch, 0 };
+ return vocab.token_to_id.at(buf2);
+ }
+ case LLAMA_VOCAB_TYPE_WPM:
+ case LLAMA_VOCAB_TYPE_BPE: {
+ return vocab.token_to_id.at(unicode_byte_to_utf8(ch));
+ }
+ default:
+ GGML_ASSERT(false);
+ }
+}
+
+const char * llama_token_get_text_impl(const struct llama_vocab & vocab, llama_token token) {
+ GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
+ return vocab.id_to_token[token].text.c_str();
+}
+
+float llama_token_get_score_impl(const struct llama_vocab & vocab, llama_token token) {
+ GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
+ return vocab.id_to_token[token].score;
+}
+
+llama_token_attr llama_token_get_attr_impl(const struct llama_vocab & vocab, llama_token token) {
+ GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
+ return vocab.id_to_token[token].attr;
+}
+
+bool llama_token_is_eog_impl(const struct llama_vocab & vocab, llama_token token) {
+ return token != -1 && (
+ token == llama_token_eos_impl(vocab) ||
+ token == llama_token_eot_impl(vocab)
+ );
+}
+
+bool llama_token_is_control_impl(const struct llama_vocab & vocab, llama_token token) {
+ return llama_is_control_token(vocab, token);
+}
+
+llama_token llama_token_bos_impl(const struct llama_vocab & vocab) {
+ return vocab.special_bos_id;
+}
+
+llama_token llama_token_eos_impl(const struct llama_vocab & vocab) {
+ return vocab.special_eos_id;
+}
+
+llama_token llama_token_cls_impl(const struct llama_vocab & vocab) {
+ return vocab.special_cls_id;
+}
+
+llama_token llama_token_sep_impl(const struct llama_vocab & vocab) {
+ return vocab.special_sep_id;
+}
+
+llama_token llama_token_nl_impl(const struct llama_vocab & vocab) {
+ return vocab.linefeed_id;
+}
+
+llama_token llama_token_pad_impl(const struct llama_vocab & vocab) {
+ return vocab.special_pad_id;
+}
+
+int32_t llama_add_bos_token_impl(const struct llama_vocab & vocab) {
+ return vocab.tokenizer_add_bos;
+}
+
+int32_t llama_add_eos_token_impl(const struct llama_vocab & vocab) {
+ return vocab.tokenizer_add_eos;
+}
+
+llama_token llama_token_prefix_impl(const struct llama_vocab & vocab) {
+ return vocab.special_prefix_id;
+}
+
+llama_token llama_token_middle_impl(const struct llama_vocab & vocab) {
+ return vocab.special_middle_id;
+}
+
+llama_token llama_token_suffix_impl(const struct llama_vocab & vocab) {
+ return vocab.special_suffix_id;
+}
+
+llama_token llama_token_eot_impl(const struct llama_vocab & vocab) {
+ return vocab.special_eot_id;
+}
+
+int32_t llama_tokenize_impl(
+ const struct llama_vocab & vocab,
+ const char * text,
+ int32_t text_len,
+ llama_token * tokens,
+ int32_t n_tokens_max,
+ bool add_special,
+ bool parse_special) {
+ auto res = llama_tokenize_internal(vocab, std::string(text, text_len), add_special, parse_special);
+ if (n_tokens_max < (int) res.size()) {
+ // LLAMA_LOG_ERROR("%s: too many tokens\n", __func__);
+ return -((int) res.size());
+ }
+
+ for (size_t i = 0; i < res.size(); i++) {
+ tokens[i] = res[i];
+ }
+
+ return res.size();
+}
+
+static std::string llama_decode_text(const std::string & text) {
+ std::string decoded_text;
+
+ const auto cpts = unicode_cpts_from_utf8(text);
+ for (const auto cpt : cpts) {
+ const auto utf8 = unicode_cpt_to_utf8(cpt);
+ try {
+ decoded_text += unicode_utf8_to_byte(utf8);
+ } catch (const std::out_of_range & /*e*/) {
+ decoded_text += "[UNK_BYTE_0x";
+ for (const auto c : utf8) {
+ decoded_text += format("%02x", (uint8_t) c);
+ }
+ decoded_text += text + "]";
+ }
+ }
+
+ return decoded_text;
+}
+
+// does not write null-terminator to buf
+int32_t llama_token_to_piece_impl(const struct llama_vocab & vocab, llama_token token, char * buf, int32_t length, int32_t lstrip, bool special) {
+ // ref: https://github.com/ggerganov/llama.cpp/pull/7587#discussion_r1620983843
+ static const int attr_special = LLAMA_TOKEN_ATTR_UNKNOWN | LLAMA_TOKEN_ATTR_CONTROL;
+ const llama_token_attr attr = llama_token_get_attr_impl(vocab, token);
+ if (!special && (attr & attr_special)) {
+ return 0;
+ }
+
+ // copy piece chars to output text buffer
+ // skip up to 'lstrip' leading spaces before copying
+ auto _try_copy = [=] (const char * token, size_t size) -> int32_t {
+ for (int32_t i = 0; i < lstrip && size && *token == ' '; ++i) {
+ token++;
+ size--;
+ }
+ if (length < (int32_t)size) {
+ return -(int32_t) size;
+ }
+ memcpy(buf, token, size);
+ return (int32_t) size;
+ };
+
+ // if we have a cache - use it
+ {
+ const auto & cache = vocab.cache_token_to_piece;
+
+ if (!cache.empty()) {
+ const auto & result = cache.at(token);
+ return _try_copy(result.data(), result.size());
+ }
+ }
+
+ if (0 <= token && token < (int32_t) vocab.id_to_token.size()) {
+ const std::string & token_text = vocab.id_to_token[token].text;
+ switch (llama_vocab_get_type(vocab)) {
+ case LLAMA_VOCAB_TYPE_WPM:
+ case LLAMA_VOCAB_TYPE_SPM:
+ case LLAMA_VOCAB_TYPE_UGM: {
+ // NOTE: we accept all unsupported token types,
+ // suppressing them like CONTROL tokens.
+ if (attr & (attr_special | LLAMA_TOKEN_ATTR_USER_DEFINED)) {
+ return _try_copy(token_text.data(), token_text.size());
+ } else if (attr & LLAMA_TOKEN_ATTR_NORMAL) {
+ std::string result = token_text;
+ llama_unescape_whitespace(result);
+ return _try_copy(result.data(), result.size());
+ } else if (attr & LLAMA_TOKEN_ATTR_BYTE) {
+ char byte = (char) llama_token_to_byte(vocab, token);
+ return _try_copy((char*) &byte, 1);
+ }
+ break;
+ }
+ case LLAMA_VOCAB_TYPE_BPE: {
+ // NOTE: we accept all unsupported token types,
+ // suppressing them like CONTROL tokens.
+ if (attr & (attr_special | LLAMA_TOKEN_ATTR_USER_DEFINED)) {
+ return _try_copy(token_text.data(), token_text.size());
+ } else if (attr & LLAMA_TOKEN_ATTR_NORMAL) {
+ std::string result = llama_decode_text(token_text);
+ return _try_copy(result.data(), result.size());
+ }
+ break;
+ }
+ default:
+ GGML_ASSERT(false);
+ }
+ }
+
+ return 0;
+}
+
+int32_t llama_detokenize_impl(
+ const struct llama_vocab & vocab,
+ const llama_token * tokens,
+ int32_t n_tokens,
+ char * text,
+ int32_t text_len_max,
+ bool remove_special,
+ bool unparse_special) {
+ int32_t avail = text_len_max;
+ int32_t total = 0;
+
+ // remove the leading space
+ bool remove_space = vocab.tokenizer_add_space_prefix;
+
+ if (remove_special && vocab.tokenizer_add_bos) {
+ if (n_tokens > 0 && tokens[0] == vocab.special_bos_id) {
+ remove_space = false;
+ n_tokens--;
+ tokens++;
+ }
+ }
+
+ if (remove_special && vocab.tokenizer_add_eos) {
+ if (n_tokens > 0 && tokens[n_tokens-1] == vocab.special_eos_id) {
+ n_tokens--;
+ }
+ }
+
+ for (int32_t i = 0; i < n_tokens; ++i) {
+ GGML_ASSERT(avail >= 0);
+ int32_t n_chars = llama_token_to_piece_impl(vocab, tokens[i], text, avail, remove_space, unparse_special);
+ remove_space = false;
+ if (n_chars < 0) {
+ avail = 0;
+ total -= n_chars;
+ } else if (n_chars > 0) {
+ avail -= n_chars;
+ text += n_chars;
+ total += n_chars;
+ }
+ }
+
+ if (total > text_len_max) {
+ return -total;
+ }
+
+ if (vocab.tokenizer_clean_spaces) {
+ text -= total; // restart text
+
+ // first pass: characters ?!., //TODO: where do these characters come from?
+ const int32_t total1 = total;
+ total = total ? 1 : 0;
+ for (int32_t i = 1; i < total1; ++i) {
+ const char x = text[i];
+ if (text[i - 1] == ' ') {
+ if (x == '?' || x == '!' || x == '.' || x == ',') { // " ?", " !", " .", " ,"
+ total--; // remove space
+ }
+ }
+ text[total++] = x;
+ }
+
+ // second pass: strip single apostrophe between spaces
+ const int32_t total2 = total;
+ total = total ? 1 : 0;
+ for (int32_t i = 1; i < total2; ++i) {
+ const char x = text[i];
+ if (x == '\'' && i + 1 < total2 && text[i - 1] == ' ' && text[i + 1] == ' ') { // " ' "
+ total--; // remove prev space
+ text[++i] = '\0'; // remove next space
+ }
+ text[total++] = x;
+ }
+
+ // third pass: apostrophe contractions //NOTE: this makes sense?
+ const int32_t total3 = total;
+ total = total ? 1 : 0;
+ for (int32_t i = 1; i < total3; ++i) {
+ const char x = text[i];
+ if (text[i - 1] == ' ') {
+ if (x == '\'' && i + 1 < total3) {
+ const char x1 = text[i + 1];
+ if (x1 == 't' || x1 == 'd') { // " 't", " 'd"
+ //total--; // remove space
+ } else if (x1 == 's' || x1 == 'm') { // " 's", " 'm"
+ total--; // remove space
+ } else if (i + 2 < total3) {
+ const char x2 = text[i + 2];
+ if ((x1 == 'l' && x2 == 'l')) { // " 'll"
+ //total--; // remove space
+ } else if ((x1 == 'r' && x2 == 'e') || (x1 == 'v' && x2 == 'e')) { // " 're", " 've"
+ total--; // remove space
+ } else {
+ //total--; // remove space
+ }
+ } else {
+ //total--; // remove space
+ }
+ }
+ }
+ text[total++] = x;
+ }
+ }
+
+ return total <= text_len_max ? total : -total;
+}