diff options
Diffstat (limited to 'src/llama.cpp')
-rw-r--r-- | src/llama.cpp | 100 |
1 files changed, 96 insertions, 4 deletions
diff --git a/src/llama.cpp b/src/llama.cpp index b983c84b..29bd14af 100644 --- a/src/llama.cpp +++ b/src/llama.cpp @@ -106,7 +106,7 @@ // bump if necessary #define LLAMA_MAX_LAYERS 512 -#define LLAMA_MAX_EXPERTS 160 // DeepSeekV2 +#define LLAMA_MAX_EXPERTS 256 // DeepSeekV2 // // helpers @@ -294,6 +294,8 @@ enum llm_kv { LLM_KV_EXPERT_USED_COUNT, LLM_KV_EXPERT_SHARED_COUNT, LLM_KV_EXPERT_WEIGHTS_SCALE, + LLM_KV_EXPERT_WEIGHTS_NORM, + LLM_KV_EXPERT_GATING_FUNC, LLM_KV_POOLING_TYPE, LLM_KV_LOGIT_SCALE, LLM_KV_DECODER_START_TOKEN_ID, @@ -399,6 +401,8 @@ static const std::map<llm_kv, const char *> LLM_KV_NAMES = { { LLM_KV_EXPERT_USED_COUNT, "%s.expert_used_count" }, { LLM_KV_EXPERT_SHARED_COUNT, "%s.expert_shared_count" }, { LLM_KV_EXPERT_WEIGHTS_SCALE, "%s.expert_weights_scale" }, + { LLM_KV_EXPERT_WEIGHTS_NORM, "%s.expert_weights_norm" }, + { LLM_KV_EXPERT_GATING_FUNC, "%s.expert_gating_func" }, { LLM_KV_POOLING_TYPE , "%s.pooling_type" }, { LLM_KV_LOGIT_SCALE, "%s.logit_scale" }, { LLM_KV_DECODER_START_TOKEN_ID, "%s.decoder_start_token_id" }, @@ -520,6 +524,7 @@ enum llm_tensor { LLM_TENSOR_FFN_DOWN_SHEXP, LLM_TENSOR_FFN_GATE_SHEXP, LLM_TENSOR_FFN_UP_SHEXP, + LLM_TENSOR_FFN_EXP_PROBS_B, LLM_TENSOR_ATTN_Q_NORM, LLM_TENSOR_ATTN_K_NORM, LLM_TENSOR_LAYER_OUT_NORM, @@ -1211,6 +1216,7 @@ static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NA { LLM_TENSOR_FFN_GATE_SHEXP, "blk.%d.ffn_gate_shexp" }, { LLM_TENSOR_FFN_DOWN_SHEXP, "blk.%d.ffn_down_shexp" }, { LLM_TENSOR_FFN_UP_SHEXP, "blk.%d.ffn_up_shexp" }, + { LLM_TENSOR_FFN_EXP_PROBS_B, "blk.%d.exp_probs_b" }, }, }, { @@ -2186,6 +2192,7 @@ enum e_model { MODEL_70B, MODEL_236B, MODEL_314B, + MODEL_671B, MODEL_SMALL, MODEL_MEDIUM, MODEL_LARGE, @@ -2203,6 +2210,21 @@ static const size_t kiB = 1024; static const size_t MiB = 1024*kiB; static const size_t GiB = 1024*MiB; +enum llm_expert_gating_func_type { + LLM_EXPERT_GATING_FUNC_SOFTMAX = 1, + LLM_EXPERT_GATING_FUNC_SIGMOID = 2, +}; + +static const char * llama_expert_gating_func_name(llm_expert_gating_func_type type) { + switch (type) { + case LLM_EXPERT_GATING_FUNC_SOFTMAX: return "softmax"; + case LLM_EXPERT_GATING_FUNC_SIGMOID: return "sigmoid"; + default: return "unknown"; + } +} + + + struct llama_hparams { bool vocab_only; bool rope_finetuned; @@ -2232,6 +2254,8 @@ struct llama_hparams { uint32_t n_ff_shexp = 0; uint32_t n_expert_shared = 0; float expert_weights_scale = 0.0; + bool expert_weights_norm = false; + uint32_t expert_gating_func = LLM_EXPERT_GATING_FUNC_SOFTMAX; float f_norm_eps; float f_norm_rms_eps; @@ -2502,6 +2526,7 @@ struct llama_layer { struct ggml_tensor * ffn_down_b = nullptr; // b2 struct ggml_tensor * ffn_up_b = nullptr; // b3 struct ggml_tensor * ffn_act; + struct ggml_tensor * ffn_exp_probs_b = nullptr; // mamba proj struct ggml_tensor * ssm_in; @@ -4677,6 +4702,7 @@ static const char * llama_model_type_name(e_model type) { case MODEL_70B: return "70B"; case MODEL_236B: return "236B"; case MODEL_314B: return "314B"; + case MODEL_671B: return "671B"; case MODEL_SMALL: return "0.1B"; case MODEL_MEDIUM: return "0.4B"; case MODEL_LARGE: return "0.8B"; @@ -5302,11 +5328,19 @@ static void llm_load_hparams( ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp); ml.get_key(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared); ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale); + ml.get_key(LLM_KV_EXPERT_WEIGHTS_NORM, hparams.expert_weights_norm, false); + ml.get_key(LLM_KV_EXPERT_GATING_FUNC, hparams.expert_gating_func, false); + if (hparams.expert_gating_func == 0) { + // for compatibility with existing DeepSeek V2 and V2.5 GGUFs + // that have no expert_gating_func model parameter set + hparams.expert_gating_func = LLM_EXPERT_GATING_FUNC_SOFTMAX; + } ml.get_key(LLM_KV_ROPE_SCALING_YARN_LOG_MUL, hparams.rope_yarn_log_mul); switch (hparams.n_layer) { case 27: model.type = e_model::MODEL_16B; break; case 60: model.type = e_model::MODEL_236B; break; + case 61: model.type = e_model::MODEL_671B; break; default: model.type = e_model::MODEL_UNKNOWN; } } break; @@ -5566,6 +5600,10 @@ static void llm_load_vocab( vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_CODER; vocab.tokenizer_clean_spaces = false; } else if ( + tokenizer_pre == "deepseek-v3") { + vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEEPSEEK3_LLM; + vocab.tokenizer_clean_spaces = false; + } else if ( tokenizer_pre == "falcon") { vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_FALCON; } else if ( @@ -6075,6 +6113,8 @@ static void llm_load_print_meta(llama_model_loader & ml, llama_model & model) { LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp); LLAMA_LOG_INFO("%s: n_expert_shared = %d\n", __func__, hparams.n_expert_shared); LLAMA_LOG_INFO("%s: expert_weights_scale = %.1f\n", __func__, hparams.expert_weights_scale); + LLAMA_LOG_INFO("%s: expert_weights_norm = %d\n", __func__, hparams.expert_weights_norm); + LLAMA_LOG_INFO("%s: expert_gating_func = %s\n", __func__, llama_expert_gating_func_name((enum llm_expert_gating_func_type) hparams.expert_gating_func)); LLAMA_LOG_INFO("%s: rope_yarn_log_mul = %.4f\n", __func__, hparams.rope_yarn_log_mul); } @@ -7540,6 +7580,7 @@ static bool llm_load_tensors( layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); } else { layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}); + layer.ffn_exp_probs_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_EXP_PROBS_B, "bias", i), {n_expert} ); GGML_ASSERT(n_expert > 0); GGML_ASSERT(n_expert_used > 0); @@ -8346,12 +8387,14 @@ static struct ggml_tensor * llm_build_moe_ffn( struct ggml_tensor * up_exps, struct ggml_tensor * gate_exps, struct ggml_tensor * down_exps, + struct ggml_tensor * exp_probs_b, int64_t n_expert, int64_t n_expert_used, llm_ffn_op_type type_op, bool norm_w, bool scale_w, float w_scale, +llm_expert_gating_func_type gating_op, const llm_build_cb & cb, int il) { int64_t n_embd = cur->ne[0]; @@ -8360,11 +8403,32 @@ static struct ggml_tensor * llm_build_moe_ffn( ggml_tensor * logits = llm_build_lora_mm(lctx, ctx, gate_inp, cur); // [n_expert, n_tokens] cb(logits, "ffn_moe_logits", il); - ggml_tensor * probs = ggml_soft_max(ctx, logits); // [n_expert, n_tokens] + //ggml_tensor * probs = ggml_soft_max(ctx, logits); // [n_expert, n_tokens] + ggml_tensor * probs = nullptr; + switch (gating_op) { + case LLM_EXPERT_GATING_FUNC_SOFTMAX: + { + probs = ggml_soft_max(ctx, logits); // [n_expert, n_tokens] + } break; + case LLM_EXPERT_GATING_FUNC_SIGMOID: + { + probs = ggml_sigmoid(ctx, logits); // [n_expert, n_tokens] + } break; + default: + GGML_ABORT("fatal error"); + } cb(probs, "ffn_moe_probs", il); + // add experts selection bias - introduced in DeepSeek V3 + // leave probs unbiased as it's later used to get expert weights + ggml_tensor * selection_probs = probs; + if (exp_probs_b != nullptr) { + selection_probs = ggml_add(ctx, probs, exp_probs_b); + cb(selection_probs, "ffn_moe_probs_biased", il); + } + // select experts - ggml_tensor * selected_experts = ggml_top_k(ctx, probs, n_expert_used); // [n_expert_used, n_tokens] + ggml_tensor * selected_experts = ggml_top_k(ctx, selection_probs, n_expert_used); // [n_expert_used, n_tokens] cb(selected_experts->src[0], "ffn_moe_argsort", il); cb(selected_experts, "ffn_moe_topk", il); @@ -9180,9 +9244,11 @@ struct llm_build_context { model.layers[il].ffn_up_exps, model.layers[il].ffn_gate_exps, model.layers[il].ffn_down_exps, + nullptr, n_expert, n_expert_used, LLM_FFN_SILU, true, false, 0.0, + LLM_EXPERT_GATING_FUNC_SOFTMAX, cb, il); cb(cur, "ffn_moe_out", il); } @@ -9673,9 +9739,11 @@ struct llm_build_context { model.layers[il].ffn_up_exps, model.layers[il].ffn_gate_exps, model.layers[il].ffn_down_exps, + nullptr, n_expert, n_expert_used, LLM_FFN_GELU, true, false, 0.0, + LLM_EXPERT_GATING_FUNC_SOFTMAX, cb, il); cb(cur, "ffn_moe_out", il); @@ -9814,9 +9882,11 @@ struct llm_build_context { model.layers[il].ffn_up_exps, model.layers[il].ffn_gate_exps, model.layers[il].ffn_down_exps, + nullptr, n_expert, n_expert_used, LLM_FFN_SILU, true, false, 0.0, + LLM_EXPERT_GATING_FUNC_SOFTMAX, cb, il); cb(cur, "ffn_moe_out", il); @@ -10944,9 +11014,11 @@ struct llm_build_context { model.layers[il].ffn_up_exps, model.layers[il].ffn_gate_exps, model.layers[il].ffn_down_exps, + nullptr, n_expert, n_expert_used, LLM_FFN_SILU, false, false, 0.0, + LLM_EXPERT_GATING_FUNC_SOFTMAX, cb, il); cb(cur, "ffn_moe_out", il); @@ -13109,9 +13181,11 @@ struct llm_build_context { model.layers[il].ffn_up_exps, model.layers[il].ffn_gate_exps, model.layers[il].ffn_down_exps, + nullptr, n_expert, n_expert_used, LLM_FFN_SILU, true, false, 0.0, + LLM_EXPERT_GATING_FUNC_SOFTMAX, cb, il); cb(cur, "ffn_moe_out", il); @@ -13324,9 +13398,11 @@ struct llm_build_context { model.layers[il].ffn_up_exps, model.layers[il].ffn_gate_exps, model.layers[il].ffn_down_exps, + model.layers[il].ffn_exp_probs_b, n_expert, n_expert_used, - LLM_FFN_SILU, false, + LLM_FFN_SILU, hparams.expert_weights_norm, true, hparams.expert_weights_scale, + (enum llm_expert_gating_func_type) hparams.expert_gating_func, cb, il); cb(moe_out, "ffn_moe_out", il); @@ -18547,6 +18623,7 @@ struct llama_data_read { read_to(&n_seq_id, sizeof(n_seq_id)); if (n_seq_id != 0) { + llama_batch_free(batch); LLAMA_LOG_ERROR("%s: invalid seq_id-agnostic kv cell\n", __func__); return false; } @@ -19732,6 +19809,21 @@ static int32_t llama_chat_apply_template_internal( if (add_ass) { ss << "Assistant:"; } + } else if (tmpl == "deepseek3" || tmpl_contains(LU8("'<|Assistant|>' + message['content'] + '<|end▁of▁sentence|>'"))) { + // DeepSeek-V3 + for (auto message : chat) { + std::string role(message->role); + if (role == "system") { + ss << message->content << "\n\n"; + } else if (role == "user") { + ss << LU8("<|User|>") << message->content; + } else if (role == "assistant") { + ss << LU8("<|Assistant|>") << message->content << LU8("<|end▁of▁sentence|>"); + } + } + if (add_ass) { + ss << LU8("<|Assistant|>"); + } } else { // template not supported return -1; |