summaryrefslogtreecommitdiff
path: root/src/llama.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/llama.cpp')
-rw-r--r--src/llama.cpp202
1 files changed, 19 insertions, 183 deletions
diff --git a/src/llama.cpp b/src/llama.cpp
index 4ca1bd11..27ba5d2f 100644
--- a/src/llama.cpp
+++ b/src/llama.cpp
@@ -8,7 +8,6 @@
#include "ggml.h"
#include "ggml-alloc.h"
#include "ggml-backend.h"
-#include "../ggml/src/ggml-impl.h"
#ifdef GGML_USE_RPC
# include "ggml-rpc.h"
@@ -2718,17 +2717,6 @@ struct llama_model {
}
};
-// Object used to allow caching of GGML graph between tokens where possible.
-struct ggml_cached_graph {
- bool is_active = false;
- ggml_cgraph * gf;
- size_t n;
- ggml_backend_t backend_res;
- ggml_backend_t backend_embd;
- struct ggml_tensor * res;
- struct ggml_tensor * embd;
-};
-
struct llama_context {
llama_context(const llama_model & model)
: model(model)
@@ -2829,8 +2817,6 @@ struct llama_context {
struct ggml_tensor * inp_pos_bucket; // I32 [n_batch|n_kv, n_batch]
struct ggml_tensor * inp_embd_enc; // F32 [n_embd, n_outputs_enc]
struct ggml_tensor * inp_KQ_mask_cross; // F32 [n_outputs_enc, n_batch]
-
- struct ggml_cached_graph cached_graph;
};
struct llama_lora_weight {
@@ -3862,8 +3848,6 @@ struct llama_model_loader {
case GGML_TYPE_IQ1_M: ftype = LLAMA_FTYPE_MOSTLY_IQ1_M; break;
case GGML_TYPE_IQ1_BN: ftype = LLAMA_FTYPE_MOSTLY_IQ1_BN; break;
case GGML_TYPE_IQ2_BN: ftype = LLAMA_FTYPE_MOSTLY_IQ2_BN; break;
- case GGML_TYPE_IQ1_TN: ftype = LLAMA_FTYPE_MOSTLY_IQ1_TN; break;
- case GGML_TYPE_IQ2_TN: ftype = LLAMA_FTYPE_MOSTLY_IQ2_TN; break;
case GGML_TYPE_IQ4_NL: ftype = LLAMA_FTYPE_MOSTLY_IQ4_NL; break;
case GGML_TYPE_IQ4_XS: ftype = LLAMA_FTYPE_MOSTLY_IQ4_XS; break;
case GGML_TYPE_IQ4_KS: ftype = LLAMA_FTYPE_MOSTLY_IQ4_KS; break;
@@ -4579,9 +4563,7 @@ static std::string llama_model_ftype_name(llama_ftype ftype) {
case LLAMA_FTYPE_MOSTLY_IQ5_K: return "IQ5_K - 5.5 bpw";
case LLAMA_FTYPE_MOSTLY_IQ6_K: return "IQ6_K - 6.6 bpw";
case LLAMA_FTYPE_MOSTLY_IQ1_BN: return "IQ1_BN - 1.625 bpw Bitnet";
- case LLAMA_FTYPE_MOSTLY_IQ1_TN: return "IQ1_TN - 1.625 bpw TriLM";
case LLAMA_FTYPE_MOSTLY_IQ2_BN: return "IQ2_BN - 2.00 bpw Bitnet";
- case LLAMA_FTYPE_MOSTLY_IQ2_TN: return "IQ2_TN - 2.00 bpw TriLM";
case LLAMA_FTYPE_MOSTLY_IQ3_S: return "IQ3_S - 3.4375 bpw";
case LLAMA_FTYPE_MOSTLY_IQ3_M: return "IQ3_S mix - 3.66 bpw";
case LLAMA_FTYPE_MOSTLY_Q4_0_4_4: return "Q4_0_4_4";
@@ -13329,7 +13311,7 @@ struct llm_build_context {
float q_scale; std::memcpy(&q_scale, model.layers[il].wq->op_params, sizeof(float));
// Note: we could save this scale operation by applying the Q scale on the K * Q product further down
// (which also uses a scale). This works on the CPU and Metal backends, but produces NaNs on CUDA.
- Qcur = ggml_scale(ctx0, Qcur, q_scale);
+ if (fabsf(q_scale-1) > 1e-4f) Qcur = ggml_scale(ctx0, Qcur, q_scale);
cb(Qcur, "Qcur", il);
if (model.layers[il].bq) {
Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
@@ -13339,7 +13321,7 @@ struct llm_build_context {
// B1.K
struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
float k_scale; std::memcpy(&k_scale, model.layers[il].wk->op_params, sizeof(float));
- Kcur = ggml_scale(ctx0, Kcur, k_scale);
+ if (fabsf(k_scale-1) > 1e-4f) Kcur = ggml_scale(ctx0, Kcur, k_scale);
cb(Kcur, "Kcur", il);
if (model.layers[il].bk) {
Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
@@ -13349,13 +13331,12 @@ struct llm_build_context {
// B1.V
struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
float v_scale; std::memcpy(&v_scale, model.layers[il].wv->op_params, sizeof(float));
- cb(Vcur, "Vcur", il);
if (model.layers[il].bv) {
- Vcur = ggml_scale(ctx0, Vcur, v_scale);
- Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
- cb(Vcur, "Vcur", il);
+ if (fabsf(v_scale-1) > 1e-4f) Vcur = ggml_scale(ctx0, Vcur, v_scale);
v_scale = 1;
+ Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
}
+ cb(Vcur, "Vcur", il);
Qcur = ggml_rope_ext(
ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
@@ -13371,56 +13352,10 @@ struct llm_build_context {
);
cb(Kcur, "Kcur", il);
- llm_build_kv_store(ctx0, hparams, cparams, kv_self, gf, Kcur, Vcur, n_tokens, kv_head, cb, il);
-
- const int64_t n_ctx = cparams.n_ctx;
- const int64_t n_head = hparams.n_head();
- const int64_t n_head_kv = hparams.n_head_kv();
- const int64_t n_embd_head_k = hparams.n_embd_head_k;
- const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
- const int64_t n_embd_head_v = hparams.n_embd_head_v;
- const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
-
- float kq_scale = 1.0f/sqrtf(float(n_embd_head));
- // We would use this if we did not apply the Q scale above. Sadly, this fails on CUDA.
- //float kq_scale = q_scale/sqrtf(float(n_embd_head));
- struct ggml_tensor * cur_attn;
- struct ggml_tensor * q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
- cb(q, "q", il);
-
- struct ggml_tensor * k =
- ggml_view_3d(ctx0, kv_self.k_l[il],
- n_embd_head_k, n_kv, n_head_kv,
- ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa),
- ggml_row_size(kv_self.k_l[il]->type, n_embd_head_k),
- 0);
- cb(k, "k", il);
-
- struct ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
- cb(kq, "kq", il);
-
- kq = ggml_soft_max_ext(ctx0, kq, KQ_mask, kq_scale, hparams.f_max_alibi_bias);
- cb(kq, "kq_soft_max_ext", il);
-
- GGML_ASSERT(kv_self.size == n_ctx);
-
- // split cached v into n_head heads
- struct ggml_tensor * v =
- ggml_view_3d(ctx0, kv_self.v_l[il],
- n_kv, n_embd_head_v, n_head_kv,
- ggml_element_size(kv_self.v_l[il])*n_ctx,
- ggml_element_size(kv_self.v_l[il])*n_ctx*n_embd_head_v,
- 0);
- cb(v, "v", il);
-
- struct ggml_tensor * kqv = ggml_mul_mat(ctx0, v, kq);
- cb(kqv, "kqv", il);
-
- struct ggml_tensor * kqv_merged = ggml_permute(ctx0, kqv, 0, 2, 1, 3);
- cb(kqv_merged, "kqv_merged", il);
-
- cur_attn = ggml_cont_2d(ctx0, kqv_merged, n_embd_head_v*n_head, n_tokens);
- cb(cur_attn, "kqv_merged_cont", il);
+ ggml_tensor * cur_attn = llm_build_kv(ctx0, lctx, kv_self, gf,
+ // we cannot pass model.layers[il].wo and model.layers[il].bo because we need to do rms_norm first
+ nullptr, nullptr,
+ Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
cur_attn = llm_build_norm(ctx0, cur_attn, hparams,
model.layers[il].attn_sub_norm, NULL,
@@ -13431,7 +13366,7 @@ struct llm_build_context {
cur = ggml_mul_mat(ctx0, model.layers[il].wo, cur_attn);
float wo_scale; std::memcpy(&wo_scale, model.layers[il].wo->op_params, sizeof(float));
- cur = ggml_scale(ctx0, cur, wo_scale);
+ if (fabsf(wo_scale-1) > 1e-4f) cur = ggml_scale(ctx0, cur, wo_scale);
cb(cur, "kqv_out", il);
}
@@ -13460,7 +13395,7 @@ struct llm_build_context {
cur = ggml_mul_mat(ctx0, model.layers[il].ffn_gate, cur);
float ffn_gate_scale; std::memcpy(&ffn_gate_scale, model.layers[il].ffn_gate->op_params, sizeof(float));
- cur = ggml_scale(ctx0, cur, ffn_gate_scale);
+ if (fabsf(ffn_gate_scale-1) > 1e-4f) cur = ggml_scale(ctx0, cur, ffn_gate_scale);
cb(cur, "ffn_gate", il);
@@ -13479,7 +13414,7 @@ struct llm_build_context {
cur = ggml_mul_mat(ctx0, model.layers[il].ffn_down, cur);
float ffn_down_scale; std::memcpy(&ffn_down_scale, model.layers[il].ffn_down->op_params, sizeof(float));
- cur = ggml_scale(ctx0, cur, ffn_down_scale);
+ if (fabsf(ffn_down_scale-1) > 1e-4f) cur = ggml_scale(ctx0, cur, ffn_down_scale);
cb(cur, "ffn_down", il);
}
cur = ggml_add(ctx0, cur, ffn_inp);
@@ -15005,44 +14940,11 @@ static int llama_decode_internal(
ggml_backend_sched_reset(lctx.sched);
ggml_backend_sched_set_eval_callback(lctx.sched, lctx.cparams.cb_eval, lctx.cparams.cb_eval_user_data);
- ggml_cgraph * gf;
- // the output is always the last tensor in the graph
- struct ggml_tensor * res;
- struct ggml_tensor * embd;
-
- bool n_has_changed_since_last_token = false;
- if(lctx.cached_graph.n != kv_self.n) n_has_changed_since_last_token = true;
- lctx.cached_graph.n = kv_self.n;
-
- // Re-build graph only if graph caching is not possible
- if(!ggml_use_cached_graph(lctx.sched) || n_has_changed_since_last_token) {
-
- gf = llama_build_graph(lctx, u_batch, false);
-
- // Set whether GGML graph caching is in use within GGML module, based on
- // whether caching was activated here during the previous token
- ggml_set_cached_graph(lctx.sched,lctx.cached_graph.is_active);
-
- // Disable future graph caching in presence of env var,
- // if there are multiple devices, if batch size is greater than 1,
- // or if nsplits is not 2.
- // TO DO enable graph caching for these cases
- bool disable_cached_ggml_graph = (getenv("GGML_DISABLE_GRAPH_CACHING") != nullptr)
- || (llama_get_device_count(model) > 1)
- || (ggml_backend_sched_get_n_splits(lctx.sched) != 2);
- for (int i = 0 ; i < gf->n_nodes; i++) {
- if (gf->nodes[i]->op == GGML_OP_ADD && gf->nodes[i]->src[1] && gf->nodes[i]->src[1]->ne[1] > 1) {
- disable_cached_ggml_graph = true;
- break;
- }
- }
-
- // Set whether graph caching should be used for future tokens
- lctx.cached_graph.is_active=!disable_cached_ggml_graph;
+ ggml_cgraph * gf = llama_build_graph(lctx, u_batch, false);
// the output is always the last tensor in the graph
- res = gf->nodes[gf->n_nodes - 1];
- embd = gf->nodes[gf->n_nodes - 2];
+ struct ggml_tensor * res = gf->nodes[gf->n_nodes - 1];
+ struct ggml_tensor * embd = gf->nodes[gf->n_nodes - 2];
if (lctx.n_outputs == 0) {
// no output
@@ -15062,58 +14964,9 @@ static int llama_decode_internal(
embd = nullptr; // do not extract embeddings when not needed
GGML_ASSERT(strcmp(res->name, "result_output") == 0 && "missing result_output tensor");
}
- lctx.cached_graph.res = res;
- lctx.cached_graph.embd = embd;
// LLAMA_LOG_INFO("graph build time: %.3f ms (%d nodes, %d leafs)\n", (ggml_time_us() - t_start_us)/1000.0, gf->n_nodes, gf->n_leafs);
ggml_backend_sched_alloc_graph(lctx.sched, gf);
- }
- else {
- gf = lctx.cached_graph.gf;
- res = lctx.cached_graph.res;
- embd = lctx.cached_graph.embd;
- }
- lctx.cached_graph.gf = gf;
-
- // Update K and V cache parameters in cached graph.
- if(gf != nullptr && gf->nodes != nullptr && ggml_use_cached_graph(lctx.sched)) {
-
- const struct llama_hparams & hparams = model.hparams;
- const int64_t kv_head = kv_self.head;
-
- for (int i = 0; i < gf->n_nodes; i++) {
- ggml_tensor * node = gf->nodes[i];
- if (node->op == GGML_OP_CPY) {
-
- // K cache
- const char* k_prefix = "k_cache_view-";
- if (strncmp(node->src[1]->name, k_prefix, strlen(k_prefix)) == 0) {
- int il = atoi(node->src[1]->name + strlen(k_prefix)); // Layer index from name
- const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(il);
- ggml_tensor * tmp_tensor = kv_self.k_l[il];
- size_t tmp_offset = (ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa))*kv_head;
- node->src[1]->data = static_cast<char*>(tmp_tensor->data) + tmp_offset;
- }
-
- // V cache
- const char* v_prefix = "v_cache_view-";
- if (strncmp(node->src[1]->name, v_prefix, strlen(v_prefix)) == 0) {
- int il = atoi(node->src[1]->name + strlen(v_prefix)); // Layer index from name
- const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa(il);
- ggml_tensor * tmp_tensor = kv_self.v_l[il];
- size_t tmp_offset;
- if (cparams.flash_attn) {
- tmp_offset = (kv_head)*ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa);
- } else {
- tmp_offset = (kv_head)*ggml_element_size(kv_self.v_l[il]);
- }
- node->src[1]->data = static_cast<char*>(tmp_tensor->data) + tmp_offset;
- }
-
- }
- }
-
- }
llama_set_inputs(lctx, u_batch);
@@ -15137,18 +14990,12 @@ static int llama_decode_internal(
// extract logits
if (res) {
ggml_backend_t backend_res = ggml_backend_sched_get_tensor_backend(lctx.sched, res);
+ GGML_ASSERT(backend_res != nullptr);
+ GGML_ASSERT(lctx.logits != nullptr);
float * logits_out = lctx.logits + n_outputs_prev*n_vocab;
const int32_t n_outputs_new = lctx.n_outputs;
- if(!ggml_use_cached_graph(lctx.sched))
- lctx.cached_graph.backend_res = backend_res;
- else
- backend_res = lctx.cached_graph.backend_res;
-
- GGML_ASSERT(backend_res != nullptr);
- GGML_ASSERT(lctx.logits != nullptr);
-
if (n_outputs_new) {
GGML_ASSERT( n_outputs_prev + n_outputs_new <= n_outputs);
GGML_ASSERT((n_outputs_prev + n_outputs_new)*n_vocab <= (int64_t) lctx.logits_size);
@@ -15159,10 +15006,6 @@ static int llama_decode_internal(
// extract embeddings
if (embd) {
ggml_backend_t backend_embd = ggml_backend_sched_get_tensor_backend(lctx.sched, embd);
- if(!ggml_use_cached_graph(lctx.sched))
- lctx.cached_graph.backend_embd = backend_embd;
- else
- backend_embd = lctx.cached_graph.backend_embd;
GGML_ASSERT(backend_embd != nullptr);
switch (cparams.pooling_type) {
@@ -15903,9 +15746,6 @@ static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type n
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ1_BN || ftype == LLAMA_FTYPE_MOSTLY_IQ2_BN) {
new_type = GGML_TYPE_IQ4_NL;
}
- else if (ftype == LLAMA_FTYPE_MOSTLY_IQ1_TN || ftype == LLAMA_FTYPE_MOSTLY_IQ2_TN) {
- new_type = GGML_TYPE_Q4_K;
- }
else if (new_type == GGML_TYPE_Q4_0_4_4 || new_type == GGML_TYPE_Q4_0_4_8 ||
new_type == GGML_TYPE_Q4_0_8_8) {
new_type = GGML_TYPE_Q4_0;
@@ -16154,8 +15994,8 @@ static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type n
new_type == GGML_TYPE_IQ2_XS || new_type == GGML_TYPE_IQ2_XXS || new_type == GGML_TYPE_IQ2_S ||
new_type == GGML_TYPE_IQ3_XXS || new_type == GGML_TYPE_IQ1_S || new_type == GGML_TYPE_IQ3_S ||
new_type == GGML_TYPE_IQ1_M || new_type == GGML_TYPE_IQ4_K || new_type == GGML_TYPE_IQ2_K ||
- new_type == GGML_TYPE_IQ5_K || new_type == GGML_TYPE_IQ3_K || new_type == GGML_TYPE_IQ2_TN ||
- new_type == GGML_TYPE_IQ6_K || new_type == GGML_TYPE_IQ1_TN || new_type == GGML_TYPE_IQ4_KS ||
+ new_type == GGML_TYPE_IQ5_K || new_type == GGML_TYPE_IQ3_K ||
+ new_type == GGML_TYPE_IQ6_K || new_type == GGML_TYPE_IQ4_KS ||
new_type == GGML_TYPE_IQ2_KS || new_type == GGML_TYPE_IQ4_KSS) {
int nx = tensor->ne[0];
int ny = tensor->ne[1];
@@ -16182,8 +16022,6 @@ static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type n
case GGML_TYPE_IQ3_S:
case GGML_TYPE_IQ1_S:
case GGML_TYPE_IQ1_M:
- case GGML_TYPE_IQ1_TN:
- case GGML_TYPE_IQ2_TN:
case GGML_TYPE_Q2_K:
case GGML_TYPE_Q3_K:
case GGML_TYPE_IQ2_K:
@@ -16297,8 +16135,6 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
case LLAMA_FTYPE_MOSTLY_IQ1_M: default_type = GGML_TYPE_IQ1_M; break;
case LLAMA_FTYPE_MOSTLY_IQ1_BN: default_type = GGML_TYPE_IQ1_BN; break;
case LLAMA_FTYPE_MOSTLY_IQ2_BN: default_type = GGML_TYPE_IQ2_BN; break;
- case LLAMA_FTYPE_MOSTLY_IQ1_TN: default_type = GGML_TYPE_IQ1_TN; break;
- case LLAMA_FTYPE_MOSTLY_IQ2_TN: default_type = GGML_TYPE_IQ2_TN; break;
case LLAMA_FTYPE_MOSTLY_IQ4_NL: default_type = GGML_TYPE_IQ4_NL; break;
case LLAMA_FTYPE_MOSTLY_IQ4_XS: default_type = GGML_TYPE_IQ4_XS; break;
case LLAMA_FTYPE_MOSTLY_IQ4_KS: default_type = GGML_TYPE_IQ4_KS; break;