diff options
Diffstat (limited to 'src/llama.cpp')
-rw-r--r-- | src/llama.cpp | 288 |
1 files changed, 285 insertions, 3 deletions
diff --git a/src/llama.cpp b/src/llama.cpp index dd9d82dc..9fbb58d1 100644 --- a/src/llama.cpp +++ b/src/llama.cpp @@ -185,6 +185,7 @@ static std::string format(const char * fmt, ...) { enum llm_arch { LLM_ARCH_LLAMA, LLM_ARCH_LLAMA4, + LLM_ARCH_DECI, LLM_ARCH_FALCON, LLM_ARCH_BAICHUAN, LLM_ARCH_GROK, @@ -240,6 +241,7 @@ enum llm_arch { static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = { { LLM_ARCH_LLAMA, "llama" }, { LLM_ARCH_LLAMA4, "llama4" }, + { LLM_ARCH_DECI, "deci" }, { LLM_ARCH_FALCON, "falcon" }, { LLM_ARCH_GROK, "grok" }, { LLM_ARCH_GPT2, "gpt2" }, @@ -282,7 +284,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = { { LLM_ARCH_GLM4, "glm4" }, { LLM_ARCH_BITNET, "bitnet" }, { LLM_ARCH_BITNET_25, "bitnet-25" }, - { LLM_ARCH_BITNET_B158, "bitnet-b1.58" }, + { LLM_ARCH_BITNET_B158, "bitnet-b1.58" }, { LLM_ARCH_T5, "t5" }, { LLM_ARCH_T5ENCODER, "t5encoder" }, { LLM_ARCH_JAIS, "jais" }, @@ -633,6 +635,32 @@ static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NA }, }, { + LLM_ARCH_DECI, + { + { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, + { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, + { LLM_TENSOR_OUTPUT, "output" }, + { LLM_TENSOR_ROPE_FREQS, "rope_freqs" }, + { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, + { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, + { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, + { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, + { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, + { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" }, + { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" }, + { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, + { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, + { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, + { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, + { LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" }, + { LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" }, + { LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" }, + { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" }, + { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" }, + { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" }, + }, + }, + { LLM_ARCH_LLAMA4, { { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, @@ -2525,6 +2553,7 @@ enum e_model { MODEL_70B, MODEL_236B, MODEL_314B, + MODEL_405B, MODEL_671B, MODEL_SMALL, MODEL_MEDIUM, @@ -5128,6 +5157,7 @@ static const char * llama_model_type_name(e_model type) { case MODEL_70B: return "70B"; case MODEL_236B: return "236B"; case MODEL_314B: return "314B"; + case MODEL_405B: return "405B"; case MODEL_671B: return "671B"; case MODEL_SMALL: return "0.1B"; case MODEL_MEDIUM: return "0.4B"; @@ -5265,7 +5295,7 @@ static void llm_load_hparams( ml.get_key(LLM_KV_ROPE_DIMENSION_COUNT, hparams.n_rot, false); - if (model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_FALCON || model.arch == LLM_ARCH_BITNET_25 || model.arch == LLM_ARCH_BITNET_B158) { + if (model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_FALCON || model.arch == LLM_ARCH_BITNET_25 || model.arch == LLM_ARCH_BITNET_B158 || model.arch == LLM_ARCH_DECI) { if (hparams.n_rot != hparams.n_embd_head_k) { throw std::runtime_error(format("invalid n_rot: %u, expected %u", hparams.n_rot, hparams.n_embd_head_k)); } @@ -5320,6 +5350,16 @@ static void llm_load_hparams( if (model.type == MODEL_17B_128E) { hparams.use_kq_norm = false; + } + } break; + case LLM_ARCH_DECI: + { + ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); + switch (hparams.n_layer) { + case 32: model.type = e_model::MODEL_7B; break; + case 80: model.type = e_model::MODEL_70B; break; + case 162: model.type = e_model::MODEL_405B; break; + default: model.type = e_model::MODEL_UNKNOWN; } } break; case LLM_ARCH_MINICPM: @@ -6956,6 +6996,76 @@ static bool llm_load_tensors( } } } break; + case LLM_ARCH_DECI: + { + model.tok_embd = create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); + + // output + model.output_norm = create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); + model.output = create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED); + + // if output is NULL, init from the input tok embed + if (model.output == NULL) { + model.output = create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); + } + + for (int i = 0; i < n_layer; ++i) { + ggml_context * ctx_layer = ctx_for_layer(i); + ggml_context * ctx_split = ctx_for_layer_split(i); + + auto & layer = model.layers[i]; + const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(i); + const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa(i); + const int64_t n_embd_gqa = hparams.n_embd_v_gqa(i); + const int64_t n_ff = hparams.n_ff(i); + const int64_t n_head = hparams.n_head(i); + const int64_t n_head_kv = hparams.n_head_kv(i); + + if (n_head_kv == 0 && n_head > 0) { + // linear attention for DeciLMCausalModel + layer.attn_norm = create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); + layer.wo = create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); + } + else if (n_head_kv > 0) { + layer.attn_norm = create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); + + layer.wq = create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}); + layer.wk = create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}); + layer.wv = create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}); + layer.wo = create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}); + } + + // optional bias tensors + + + layer.bq = create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED); + layer.bk = create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED); + layer.bv = create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED); + layer.bo = create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED); + if (n_ff > 0) { + layer.ffn_norm = create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}); + } + + if (hparams.rope_scaling_type_train == LLAMA_ROPE_SCALING_TYPE_LONGROPE) { + layer.rope_long = create_tensor(ctx_layer, tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight"), { n_rot/2 }, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0)); + layer.rope_short = create_tensor(ctx_layer, tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight"), { n_rot/2 }, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0)); + } + else { + layer.rope_freqs = create_tensor(ctx_layer, tn(LLM_TENSOR_ROPE_FREQS, "weight"), {n_rot/2}, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0)); + } + + if (n_ff > 0) { + layer.ffn_gate = create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}); + layer.ffn_down = create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}); + layer.ffn_up = create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); + } + + // optional MLP bias + layer.ffn_gate_b = create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "bias", i), {n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED); + layer.ffn_down_b = create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED); + layer.ffn_up_b = create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED); + } + } break; case LLM_ARCH_LLAMA4: { model.tok_embd = create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); @@ -10485,6 +10595,168 @@ struct llm_build_context { return gf; } + struct ggml_cgraph * build_deci() { + struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false); + + // mutable variable, needed during the last layer of the computation to skip unused tokens + int32_t n_tokens = this->n_tokens; + + const int64_t n_embd_head = hparams.n_embd_head_v; + GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); + GGML_ASSERT(n_embd_head == hparams.n_rot); + + struct ggml_tensor * cur; + struct ggml_tensor * inpL; + + inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb); + + // inp_pos - contains the positions + struct ggml_tensor * inp_pos = build_inp_pos(); + + // KQ_mask (mask for 1 head, it will be broadcasted to all heads) + struct ggml_tensor * KQ_mask = build_inp_KQ_mask(); + + const float kq_scale = hparams.f_attention_scale == 0.0f ? 1.0f/sqrtf(float(n_embd_head)) : hparams.f_attention_scale; + for (int il = 0; il < n_layer; ++il) { + struct ggml_tensor * inpSA = inpL; + const int64_t n_head_kv = hparams.n_head_kv(il); + const int64_t n_head = hparams.n_head(il); + const int64_t n_ff = hparams.n_ff(il); + + if (n_head == 0) { // attention-free layer of Llama-3_1-Nemotron-51B + cur = inpL; + } else { + // norm + cur = llm_build_norm(ctx0, inpL, hparams, + model.layers[il].attn_norm, NULL, + LLM_NORM_RMS, cb, il); + cb(cur, "attn_norm", il); + } + + if (n_head > 0 && n_head_kv == 0) { // "linear attention" of Llama-3_1-Nemotron-51B + cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wo, cur); + cb(cur, "wo", il); + } else if (n_head > 0) { + // self-attention + // rope freq factors for llama3; may return nullptr for llama2 and other models + struct ggml_tensor * rope_factors = build_rope_factors(il); + + // compute Q and K and RoPE them + struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur); + cb(Qcur, "Qcur", il); + if (model.layers[il].bq) { + Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq); + cb(Qcur, "Qcur", il); + } + + struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur); + cb(Kcur, "Kcur", il); + if (model.layers[il].bk) { + Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk); + cb(Kcur, "Kcur", il); + } + + struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur); + cb(Vcur, "Vcur", il); + if (model.layers[il].bv) { + Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv); + cb(Vcur, "Vcur", il); + } + + Qcur = ggml_rope_ext( + ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, rope_factors, + n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, + ext_factor, attn_factor, beta_fast, beta_slow + ); + cb(Qcur, "Qcur", il); + + Kcur = ggml_rope_ext( + ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, rope_factors, + n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, + ext_factor, attn_factor, beta_fast, beta_slow + ); + cb(Kcur, "Kcur", il); + + cur = llm_build_kv(ctx0, lctx, kv_self, gf, + model.layers[il].wo, model.layers[il].bo, + Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, kq_scale, cb, il); + } + + if (il == n_layer - 1) { + // skip computing output for unused tokens + struct ggml_tensor * inp_out_ids = build_inp_out_ids(); + n_tokens = n_outputs; + cur = ggml_get_rows(ctx0, cur, inp_out_ids); + inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); + } + + // FFN-free layer of Llama-3_1-Nemotron-Ultra-253B + if (n_ff == 0) { + continue; + } + + if (hparams.f_residual_scale) { + cur = ggml_scale(ctx0, cur, hparams.f_residual_scale); + } + + // modified to support attention-free layer of Llama-3_1-Nemotron-51B + struct ggml_tensor * ffn_inp = cur; + if (n_head > 0) { + ffn_inp = ggml_add(ctx0, cur, inpSA); + cb(ffn_inp, "ffn_inp", il); + } + + // feed-forward network + if (model.layers[il].ffn_gate_inp == nullptr) { + cur = llm_build_norm(ctx0, ffn_inp, hparams, + model.layers[il].ffn_norm, NULL, + LLM_NORM_RMS, cb, il); + cb(cur, "ffn_norm", il); + + cur = llm_build_ffn(ctx0, lctx, cur, + model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL, + model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL, + model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL, + NULL, + LLM_FFN_SILU, LLM_FFN_PAR, cb, il); + cb(cur, "ffn_out", il); + } + + if (hparams.f_residual_scale) { + cur = ggml_scale(ctx0, cur, hparams.f_residual_scale); + } + + cur = ggml_add(ctx0, cur, ffn_inp); + cb(cur, "ffn_out", il); + + cur = lctx.cvec.apply_to(ctx0, cur, il); + cb(cur, "l_out", il); + + // input for next layer + inpL = cur; + } + + cur = inpL; + + cur = llm_build_norm(ctx0, cur, hparams, + model.output_norm, NULL, + LLM_NORM_RMS, cb, -1); + cb(cur, "result_norm", -1); + + // lm_head + cur = llm_build_lora_mm(lctx, ctx0, model.output, cur); + + if (hparams.f_logit_scale) { + cur = ggml_scale(ctx0, cur, 1.0f / hparams.f_logit_scale); + } + + cb(cur, "result_output", -1); + + ggml_build_forward_expand(gf, cur); + + return gf; + } + struct ggml_cgraph * build_baichuan() { struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false); @@ -16477,6 +16749,10 @@ static struct ggml_cgraph * llama_build_graph( { result = llm.build_llama(); } break; + case LLM_ARCH_DECI: + { + result = llm.build_deci(); + } break; case LLM_ARCH_BAICHUAN: { result = llm.build_baichuan(); @@ -18997,8 +19273,9 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s // - qs.n_attention_wv == 0 for Mamba models // - qs.n_attention_wv == model.hparams.n_layer for Transformer models // - qs.n_attention_wv == 3 * model.hparams.n_layer for Encoder-Decoder models + // - model.arch == LLM_ARCH_DECI for Deci-Nemotron models // - GGML_ASSERT((qs.n_attention_wv == 0 || qs.n_attention_wv == (int)model.hparams.n_layer || qs.n_attention_wv == 3 * (int)model.hparams.n_layer) && "n_attention_wv is unexpected"); + GGML_ASSERT((qs.n_attention_wv == 0 || qs.n_attention_wv == (int)model.hparams.n_layer || qs.n_attention_wv == 3 * (int)model.hparams.n_layer || model.arch == LLM_ARCH_DECI) && "n_attention_wv is unexpected"); size_t total_size_org = 0; size_t total_size_new = 0; @@ -20298,6 +20575,7 @@ enum llama_rope_type llama_rope_type(const struct llama_model * model) { // use what we call a normal RoPE, operating on pairs of consecutive head values case LLM_ARCH_LLAMA: + case LLM_ARCH_DECI: case LLM_ARCH_LLAMA4: case LLM_ARCH_BAICHUAN: case LLM_ARCH_STARCODER: @@ -20371,6 +20649,10 @@ int32_t llama_n_layer(const struct llama_model * model) { return model->hparams.n_layer; } +int32_t llama_n_head(const struct llama_model * model) { + return model->hparams.n_head(); +} + float llama_rope_freq_scale_train(const struct llama_model * model) { return model->hparams.rope_freq_scale_train; } |