diff options
Diffstat (limited to 'src')
-rw-r--r-- | src/llama.cpp | 325 |
1 files changed, 156 insertions, 169 deletions
diff --git a/src/llama.cpp b/src/llama.cpp index 0817c53c..498bb437 100644 --- a/src/llama.cpp +++ b/src/llama.cpp @@ -109,6 +109,14 @@ #define LLAMA_MAX_EXPERTS 256 // DeepSeekV2 // +// === MLA cache +// If tou are desperate to reduce KV cache size, set MLA_USE_TRANSPOSED_CACHE to 0. +// TG perfornce will be slower (similar to no-MLA), but KV cache size will be cut to ~half. +// PP performance will be about the same as with MLA_USE_TRANSPOSED_CACHE = 1. +// +#define MLA_USE_TRANSPOSED_CACHE 1 + +// // helpers // @@ -2547,7 +2555,7 @@ struct llama_layer { struct ggml_tensor * wkv_a_mqa; struct ggml_tensor * wkv_b; struct ggml_tensor * wk_b; - struct ggml_tensor * wv_b; + struct ggml_tensor * wv_b; struct ggml_tensor * wq_cross; struct ggml_tensor * wk_cross; struct ggml_tensor * wv_cross; @@ -2676,18 +2684,16 @@ struct llama_kv_cache { ggml_type type_k = GGML_TYPE_F16; ggml_type type_v = GGML_TYPE_F16; - ggml_type type_kr = GGML_TYPE_F16; - ggml_type type_kv = GGML_TYPE_F16; - std::vector<llama_kv_cell> cells; std::vector<struct ggml_tensor *> k_l; // per layer std::vector<struct ggml_tensor *> v_l; // DeepSeek MLA - std::vector<struct ggml_tensor *> kr_l; // per layer std::vector<struct ggml_tensor *> kv_l; +#if MLA_USE_TRANSPOSED_CACHE std::vector<struct ggml_tensor *> kvt_l; +#endif std::vector<struct ggml_context *> ctxs; std::vector<ggml_backend_buffer_t> bufs; @@ -3121,8 +3127,6 @@ static bool llama_kv_cache_init( cache.type_k = type_k; cache.type_v = type_v; - cache.type_kr = type_k; - cache.type_kv = type_v; cache.cells.clear(); cache.cells.resize(kv_size); @@ -3166,10 +3170,13 @@ static bool llama_kv_cache_init( cache.v_l.reserve(n_layer); // DeepSeek MLA - cache.kr_l.reserve(n_layer); cache.kv_l.reserve(n_layer); +#if MLA_USE_TRANSPOSED_CACHE cache.kvt_l.reserve(n_layer); +#endif + bool warn = true; + int n_mla = 0; for (int i = 0; i < (int) n_layer; i++) { const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(i) + hparams.n_embd_k_s(); const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(i) + hparams.n_embd_v_s(); @@ -3177,34 +3184,53 @@ static bool llama_kv_cache_init( struct ggml_context * ctx = offload ? ctx_map.at(model.buft_layer[i].buft) : cache.ctxs.front(); ggml_tensor * k; ggml_tensor * v; + if (cparams.mla_attn) { + if (!model.layers[i].wk_b || !model.layers[i].wv_b) { + if (warn) { + LLAMA_LOG_WARN("=======================================================================================\n"); + LLAMA_LOG_WARN("%s: missing MLA tensors => disabling MLA\n", __func__); + LLAMA_LOG_WARN("%s: you need to reconvert your model in order to use MLA\n", __func__); + LLAMA_LOG_WARN("=======================================================================================\n"); + warn = false; + } + } + } if (cparams.mla_attn && model.layers[i].wk_b && model.layers[i].wv_b) { - k = ggml_new_tensor_1d(ctx, type_k, 1); - v = ggml_new_tensor_1d(ctx, type_v, 1); + // DeepSeek MLA + const uint32_t n_embd_head_qk_rope = hparams.n_rot; + const uint32_t kv_lora_rank = hparams.n_lora_kv; + LLAMA_LOG_INFO("%s: layer %d: n_embd_head_qk_rope = %d, kv_lora_rank = %d\n", __func__, i, n_embd_head_qk_rope, kv_lora_rank); +#if MLA_USE_TRANSPOSED_CACHE + // TODO: The k-cache is contiguous and not permuted, so strictly speaking, it should be possible to quantize it. + // Sadly, at this point something goes wrong with quantized k-cache, so for now we set the k-cache + // type to type_v, which is guaranteed to be f16 or bf16 without FA. + //ggml_tensor * kv = ggml_new_tensor_1d(ctx, cache.type_k, (kv_lora_rank + n_embd_head_qk_rope)*kv_size); + ggml_tensor * kv = ggml_new_tensor_1d(ctx, cache.type_v, (kv_lora_rank + n_embd_head_qk_rope)*kv_size); +#else + ggml_tensor * kv = ggml_new_tensor_1d(ctx, cache.type_v, (kv_lora_rank + n_embd_head_qk_rope)*kv_size); +#endif + ggml_format_name(kv, "cache_kv_l%d", i); + cache.kv_l.push_back(kv); +#if MLA_USE_TRANSPOSED_CACHE + ggml_tensor * kvt = ggml_new_tensor_1d(ctx, cache.type_v, kv_lora_rank*kv_size); + ggml_format_name(kvt, "cache_kvt_l%d", i); + cache.kvt_l.push_back(kvt); +#endif + n_mla++; } else { - k = ggml_new_tensor_1d(ctx, type_k, n_embd_k_gqa*kv_size); - v = ggml_new_tensor_1d(ctx, type_v, n_embd_v_gqa*kv_size); - } - - ggml_format_name(k, "cache_k_l%d", i); - ggml_format_name(v, "cache_v_l%d", i); - cache.k_l.push_back(k); - cache.v_l.push_back(v); - - - // DeepSeek MLA - const uint32_t n_embd_head_qk_rope = hparams.n_rot; - const uint32_t kv_lora_rank = hparams.n_lora_kv; - LLAMA_LOG_INFO("%s: layer %d: n_embd_head_qk_rope = %d, kv_lora_rank = %d\n", __func__, i, n_embd_head_qk_rope, kv_lora_rank); - ggml_tensor * kr = ggml_new_tensor_1d(ctx, cache.type_kr, n_embd_head_qk_rope*kv_size); - ggml_tensor * kv = ggml_new_tensor_1d(ctx, cache.type_kv, kv_lora_rank*kv_size); - ggml_tensor * kvt = ggml_new_tensor_1d(ctx, cache.type_kv, kv_lora_rank*kv_size); - ggml_format_name(kr, "cache_kr_l%d", i); - ggml_format_name(kv, "cache_kv_l%d", i); - ggml_format_name(kvt, "cache_kvt_l%d", i); - cache.kr_l.push_back(kr); - cache.kv_l.push_back(kv); - cache.kvt_l.push_back(kvt); + k = ggml_new_tensor_1d(ctx, type_k, n_embd_k_gqa*kv_size); + v = ggml_new_tensor_1d(ctx, type_v, n_embd_v_gqa*kv_size); + ggml_format_name(k, "cache_k_l%d", i); + ggml_format_name(v, "cache_v_l%d", i); + cache.k_l.push_back(k); + cache.v_l.push_back(v); + } + } + if (cparams.mla_attn && n_mla < n_layer && n_mla > 0) { + LLAMA_LOG_ERROR("%s: unexpected situation with %d out of %d layers having MLA enabled\n", __func__, n_mla, int(n_layer)); + LLAMA_LOG_ERROR("%s: bailing out\n", __func__); + GGML_ABORT("fatal error"); } // allocate tensors and initialize the buffers to avoid NaNs in the padding @@ -13422,94 +13448,80 @@ struct llm_build_context { cb(q_nope, "q_nope", il); // and {n_head * n_embd_head_qk_rope, n_tokens} - struct ggml_tensor * q_pe = ggml_view_3d(ctx0, q, n_embd_head_qk_rope, n_head, n_tokens, + struct ggml_tensor * q_rope = ggml_view_3d(ctx0, q, n_embd_head_qk_rope, n_head, n_tokens, ggml_row_size(q->type, hparams.n_embd_head_k), ggml_row_size(q->type, hparams.n_embd_head_k * n_head), ggml_row_size(q->type, n_embd_head_qk_nope)); - cb(q_pe, "q_pe", il); + cb(q_rope, "q_rope", il); + + q_rope = ggml_rope_ext( + ctx0, q_rope, inp_pos, nullptr, + n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, + ext_factor, attn_factor_scaled, beta_fast, beta_slow + ); + cb(q_rope, "q_rope", il); // {n_embd, kv_lora_rank + n_embd_head_qk_rope} * {n_embd, n_tokens} -> {kv_lora_rank + n_embd_head_qk_rope, n_tokens} - struct ggml_tensor * kv_pe_compresseed = ggml_mul_mat(ctx0, model.layers[il].wkv_a_mqa, cur); - cb(kv_pe_compresseed, "kv_pe_compresseed", il); + struct ggml_tensor * kv_rope_compresseed = ggml_mul_mat(ctx0, model.layers[il].wkv_a_mqa, cur); + cb(kv_rope_compresseed, "kv_rope_compresseed", il); + + // and {n_embd_head_qk_rope, n_tokens} + struct ggml_tensor * k_rope = ggml_view_3d(ctx0, kv_rope_compresseed, n_embd_head_qk_rope, 1, n_tokens, + kv_rope_compresseed->nb[1], + kv_rope_compresseed->nb[1], + ggml_row_size(kv_rope_compresseed->type, kv_lora_rank)); + cb(k_rope, "k_rope", il); + + // shared RoPE key + k_rope = ggml_rope_ext( + ctx0, k_rope, inp_pos, nullptr, + n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, + ext_factor, attn_factor_scaled, beta_fast, beta_slow + ); + cb(k_rope, "k_rope", il); // split into {kv_lora_rank, n_tokens} - struct ggml_tensor * kv_compressed = ggml_view_2d(ctx0, kv_pe_compresseed, kv_lora_rank, n_tokens, - kv_pe_compresseed->nb[1], + struct ggml_tensor * kv_compressed = ggml_view_2d(ctx0, kv_rope_compresseed, kv_lora_rank, n_tokens, + kv_rope_compresseed->nb[1], 0); cb(kv_compressed, "kv_compressed", il); - if (lctx.cparams.mla_attn && model.layers[il].wk_b && model.layers[il].wv_b) { - - // and {n_embd_head_qk_rope, n_tokens} - struct ggml_tensor * k_pe = ggml_view_3d(ctx0, kv_pe_compresseed, n_embd_head_qk_rope, 1, n_tokens, - kv_pe_compresseed->nb[1], - kv_pe_compresseed->nb[1], - ggml_row_size(kv_pe_compresseed->type, kv_lora_rank)); - cb(k_pe, "k_pe", il); - - //kv_compressed = ggml_cont(ctx0, kv_compressed); // TODO: the CUDA backend does not support non-contiguous norm - kv_compressed = llm_build_norm(ctx0, kv_compressed, hparams, - model.layers[il].attn_kv_a_norm, NULL, - LLM_NORM_RMS, cb, il); - cb(kv_compressed, "kv_compressed", il); - - struct ggml_tensor * kv_cache_view = ggml_view_1d(ctx0, kv_self.kv_l[il], n_tokens*kv_lora_rank, ggml_row_size(kv_self.kv_l[il]->type, kv_lora_rank)*kv_head); - cb(kv_cache_view, "kv_cache_view", il); + kv_compressed = llm_build_norm(ctx0, kv_compressed, hparams, + model.layers[il].attn_kv_a_norm, NULL, + LLM_NORM_RMS, cb, il); + cb(kv_compressed, "kv_compressed", il); - // note: storing c^KV in the KV cache - ggml_build_forward_expand(gf, ggml_cpy(ctx0, kv_compressed, kv_cache_view)); + if (lctx.cparams.mla_attn && model.layers[il].wk_b && model.layers[il].wv_b) { - struct ggml_tensor * kv_cache_trans_view = ggml_view_2d(ctx0, kv_self.kvt_l[il], n_tokens, kv_lora_rank, ggml_row_size(kv_self.kv_l[il]->type, kv_self.size), ggml_row_size(kv_self.kv_l[il]->type, kv_head)); +#if MLA_USE_TRANSPOSED_CACHE + ggml_tensor * kv_cache_trans_view = ggml_view_2d(ctx0, kv_self.kvt_l[il], n_tokens, kv_lora_rank, + ggml_row_size(kv_self.kv_l[il]->type, kv_self.size), ggml_row_size(kv_self.kv_l[il]->type, kv_head)); cb(kv_cache_trans_view, "kv_cache_trans_view", il); // note: storing transposed c^KV in the transposed KV cache ggml_build_forward_expand(gf, ggml_cpy(ctx0, ggml_transpose(ctx0, kv_compressed), kv_cache_trans_view)); - struct ggml_tensor * kv_cache = - ggml_view_2d(ctx0, kv_self.kv_l[il], - kv_lora_rank, n_kv, - ggml_row_size(kv_self.kv_l[il]->type, kv_lora_rank), - 0); - cb(kv_cache, "kv_cache", il); - - struct ggml_tensor * kv_cache_trans = - ggml_view_2d(ctx0, kv_self.kvt_l[il], - n_kv, kv_lora_rank, - ggml_row_size(kv_self.kv_l[il]->type, kv_self.size), - 0); + ggml_tensor * kv_cache_trans = ggml_view_2d(ctx0, kv_self.kvt_l[il], + n_kv, kv_lora_rank, + ggml_row_size(kv_self.kv_l[il]->type, kv_self.size), + 0); cb(kv_cache_trans, "kv_cache_trans", il); +#endif - //q_pe = ggml_cont(ctx0, q_pe); // TODO: the CUDA backend does not support non-contiguous RoPE - q_pe = ggml_rope_ext( - ctx0, q_pe, inp_pos, nullptr, - n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, - ext_factor, attn_factor_scaled, beta_fast, beta_slow - ); - cb(q_pe, "q_pe", il); - - // shared RoPE key - //k_pe = ggml_cont(ctx0, k_pe); // TODO: the CUDA backend does not support non-contiguous RoPE - k_pe = ggml_rope_ext( - ctx0, k_pe, inp_pos, nullptr, - n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, - ext_factor, attn_factor_scaled, beta_fast, beta_slow - ); - cb(k_pe, "k_pe", il); - - struct ggml_tensor * kr_cache_view = ggml_view_1d(ctx0, kv_self.kr_l[il], n_tokens*n_embd_head_qk_rope, ggml_row_size(kv_self.kr_l[il]->type, n_embd_head_qk_rope)*kv_head); - cb(kr_cache_view, "kr_cache_view", il); - - // note: storing RoPE-ed version of K^R in the KV cache - ggml_build_forward_expand(gf, ggml_cpy(ctx0, k_pe, kr_cache_view)); + ggml_tensor * kvr = ggml_concat(ctx0, kv_compressed, ggml_permute(ctx0, k_rope, 0, 2, 1, 3), 0); + cb(kvr, "kvr", il); - struct ggml_tensor * kr_cache = - ggml_view_2d(ctx0, kv_self.kr_l[il], - n_embd_head_qk_rope, n_kv, - ggml_row_size(kv_self.kr_l[il]->type, n_embd_head_qk_rope), - 0); - cb(kr_cache, "kr_cache", il); + ggml_tensor * kv_cache_view = ggml_view_1d(ctx0, kv_self.kv_l[il], n_tokens*(kv_lora_rank + n_embd_head_qk_rope), + ggml_row_size(kv_self.kv_l[il]->type, kv_lora_rank + n_embd_head_qk_rope)*kv_head); + ggml_build_forward_expand(gf, ggml_cpy(ctx0, kvr, kv_cache_view)); + ggml_tensor * kv_cache = ggml_view_2d(ctx0, kv_self.kv_l[il], + kv_lora_rank + n_embd_head_qk_rope, n_kv, + ggml_row_size(kv_self.kv_l[il]->type, kv_lora_rank + n_embd_head_qk_rope), 0); + cb(kv_cache, "kv_cache", il); - struct ggml_tensor * wk_b = ggml_view_3d(ctx0, model.layers[il].wk_b, n_embd_head_qk_nope, kv_lora_rank, n_head, ggml_row_size(model.layers[il].wk_b->type, n_embd_head_qk_nope), ggml_row_size(model.layers[il].wk_b->type, kv_lora_rank * n_embd_head_qk_nope), 0); + struct ggml_tensor * wk_b = ggml_view_3d(ctx0, model.layers[il].wk_b, n_embd_head_qk_nope, kv_lora_rank, n_head, + ggml_row_size(model.layers[il].wk_b->type, n_embd_head_qk_nope), + ggml_row_size(model.layers[il].wk_b->type, kv_lora_rank)*n_embd_head_qk_nope, 0); cb(wk_b, "wk_b", il); q_nope = ggml_permute(ctx0, q_nope, 0, 2, 1, 3); @@ -13518,33 +13530,20 @@ struct llm_build_context { struct ggml_tensor * q_nope2 = ggml_mul_mat(ctx0, wk_b, q_nope); cb(q_nope2, "q_nope2", il); + ggml_tensor * q = ggml_concat(ctx0, q_nope2, ggml_permute(ctx0, q_rope, 0, 2, 1, 3), 0); + cb(q, "q", il); if (!pp_opt) { - q_nope2 = ggml_permute(ctx0, q_nope2, 0, 2, 1, 3); - cb(q_nope2, "q_nope2_perm", il); - } - struct ggml_tensor * kq_nope = ggml_mul_mat(ctx0, kv_cache, q_nope2); - cb(kq_nope, "kq_nope", il); - - if (!pp_opt) { - kq_nope = ggml_permute(ctx0, kq_nope, 0, 2, 1, 3); - cb(kq_nope, "kq_nope_perm", il); - } - - if (pp_opt) { - q_pe = ggml_permute(ctx0, q_pe, 0, 2, 1, 3); - cb(q_pe, "q_pe_perm", il); + q = ggml_permute(ctx0, q, 0, 2, 1, 3); + cb(q, "q_perm", il); } - struct ggml_tensor * kq_pe = ggml_mul_mat(ctx0, kr_cache, q_pe); - cb(kq_pe, "kq_pe", il); + ggml_tensor * kq = ggml_mul_mat(ctx0, kv_cache, q); + cb(kq, "kq", il); - if (!pp_opt) { - kq_pe = ggml_permute(ctx0, kq_pe, 0, 2, 1, 3); - cb(kq_pe, "kq_pe_perm", il); + if (!pp_opt) { + kq = ggml_cont(ctx0, ggml_permute(ctx0, kq, 0, 2, 1, 3)); + cb(kq, "kq_perm", il); } - struct ggml_tensor * kq = ggml_add(ctx0, kq_nope, kq_pe); - cb(kq, "kq", il); - kq = ggml_soft_max_ext(ctx0, kq, KQ_mask, kq_scale, hparams.f_max_alibi_bias); cb(kq, "kq_soft_max_ext", il); @@ -13553,6 +13552,16 @@ struct llm_build_context { cb(kq, "kq_soft_max_ext_perm", il); } +#if !MLA_USE_TRANSPOSED_CACHE + ggml_tensor * kv_cache_lora = ggml_view_2d(ctx0, kv_self.kv_l[il], + kv_lora_rank, n_kv, + ggml_row_size(kv_self.kv_l[il]->type, kv_lora_rank + n_embd_head_qk_rope), 0); + cb(kv_cache, "kv_cache_lora", il); + + ggml_tensor * kv_cache_trans = ggml_cont(ctx0, ggml_transpose(ctx0, kv_cache_lora)); + cb(kv_cache_trans, "kv_cache_trans", il); +#endif + struct ggml_tensor * kqv_compressed = ggml_mul_mat(ctx0, kv_cache_trans, kq); cb(kqv_compressed, "kqv_compressed", il); @@ -13561,7 +13570,9 @@ struct llm_build_context { cb(kqv_compressed, "kqv_compressed_perm", il); } - struct ggml_tensor * wv_b = ggml_view_3d(ctx0, model.layers[il].wv_b, kv_lora_rank, n_embd_head_v, n_head, ggml_row_size(model.layers[il].wv_b->type, kv_lora_rank), ggml_row_size(model.layers[il].wv_b->type, kv_lora_rank * n_embd_head_v), 0); + struct ggml_tensor * wv_b = ggml_view_3d(ctx0, model.layers[il].wv_b, kv_lora_rank, n_embd_head_v, n_head, + ggml_row_size(model.layers[il].wv_b->type, kv_lora_rank), + ggml_row_size(model.layers[il].wv_b->type, kv_lora_rank)*n_embd_head_v, 0); cb(wv_b, "wv_b", il); struct ggml_tensor * kqv = ggml_mul_mat(ctx0, wv_b, kqv_compressed); @@ -13581,19 +13592,6 @@ struct llm_build_context { } else { - // and {n_embd_head_qk_rope, n_tokens} - struct ggml_tensor * k_pe = ggml_view_3d(ctx0, kv_pe_compresseed, n_embd_head_qk_rope, 1, n_tokens, - kv_pe_compresseed->nb[1], - kv_pe_compresseed->nb[1], - ggml_row_size(kv_pe_compresseed->type, kv_lora_rank)); - cb(k_pe, "k_pe", il); - - //kv_compressed = ggml_cont(ctx0, kv_compressed); // TODO: the CUDA backend does not support non-contiguous norm - kv_compressed = llm_build_norm(ctx0, kv_compressed, hparams, - model.layers[il].attn_kv_a_norm, NULL, - LLM_NORM_RMS, cb, il); - cb(kv_compressed, "kv_compressed", il); - // {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v)} * {kv_lora_rank, n_tokens} -> {n_head * (n_embd_head_qk_nope + n_embd_head_v), n_tokens} struct ggml_tensor * kv = ggml_mul_mat(ctx0, model.layers[il].wkv_b, kv_compressed); cb(kv, "kv", il); @@ -13620,27 +13618,10 @@ struct llm_build_context { 0); cb(v_states, "v_states", il); - //q_pe = ggml_cont(ctx0, q_pe); // TODO: the CUDA backend does not support non-contiguous RoPE - q_pe = ggml_rope_ext( - ctx0, q_pe, inp_pos, nullptr, - n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, - ext_factor, attn_factor_scaled, beta_fast, beta_slow - ); - cb(q_pe, "q_pe", il); - - // shared RoPE key - //k_pe = ggml_cont(ctx0, k_pe); // TODO: the CUDA backend does not support non-contiguous RoPE - k_pe = ggml_rope_ext( - ctx0, k_pe, inp_pos, nullptr, - n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, - ext_factor, attn_factor_scaled, beta_fast, beta_slow - ); - cb(k_pe, "k_pe", il); - - struct ggml_tensor * q_states = ggml_concat(ctx0, q_nope, q_pe, 0); + struct ggml_tensor * q_states = ggml_concat(ctx0, q_nope, q_rope, 0); cb(q_states, "q_states", il); - struct ggml_tensor * k_states = ggml_concat(ctx0, k_nope, ggml_repeat(ctx0, k_pe, q_pe), 0); + struct ggml_tensor * k_states = ggml_concat(ctx0, k_nope, ggml_repeat(ctx0, k_rope, q_rope), 0); cb(k_states, "k_states", il); cur = llm_build_kv(ctx0, lctx, kv_self, gf, @@ -18054,28 +18035,34 @@ struct llama_context * llama_new_context_with_model( memory_size_v += ggml_nbytes(v); } - LLAMA_LOG_INFO("%s: KV self size = %7.2f MiB, K (%s): %7.2f MiB, V (%s): %7.2f MiB\n", __func__, - (float)(memory_size_k + memory_size_v) / (1024.0f * 1024.0f), - ggml_type_name(type_k), (float)memory_size_k / (1024.0f * 1024.0f), - ggml_type_name(type_v), (float)memory_size_v / (1024.0f * 1024.0f)); + if (memory_size_k + memory_size_v > 0) { + LLAMA_LOG_INFO("%s: KV self size = %7.2f MiB, K (%s): %7.2f MiB, V (%s): %7.2f MiB\n", __func__, + (float)(memory_size_k + memory_size_v) / (1024.0f * 1024.0f), + ggml_type_name(type_k), (float)memory_size_k / (1024.0f * 1024.0f), + ggml_type_name(type_v), (float)memory_size_v / (1024.0f * 1024.0f)); + } } - { - size_t memory_size_kr = 0; + { size_t memory_size_kv = 0; - - for (auto & kr : ctx->kv_self.kr_l) { - memory_size_kr += ggml_nbytes(kr); - } + size_t memory_size_kvt = 0; for (auto & kv : ctx->kv_self.kv_l) { memory_size_kv += ggml_nbytes(kv); } - LLAMA_LOG_INFO("%s: KV self size = %7.2f MiB, K^R (%s): %7.2f MiB, c^KV (%s): %7.2f MiB\n", __func__, - (float)(memory_size_kr + memory_size_kv) / (1024.0f * 1024.0f), - ggml_type_name(type_k), (float)memory_size_kr / (1024.0f * 1024.0f), - ggml_type_name(type_k), (float)memory_size_kv / (1024.0f * 1024.0f)); +#if MLA_USE_TRANSPOSED_CACHE + for (auto & kvt : ctx->kv_self.kvt_l) { + memory_size_kvt += ggml_nbytes(kvt); + } +#endif + + if (memory_size_kv + memory_size_kvt > 0) { + LLAMA_LOG_INFO("%s: KV self size = %7.2f MiB, c^KV (%s): %7.2f MiB, kv^T (%s): %7.2f MiB\n", __func__, + (float)(memory_size_kv + memory_size_kvt) / (1024.0f * 1024.0f), + ggml_type_name(type_v), (float)memory_size_kv / (1024.0f * 1024.0f), + ggml_type_name(type_v), (float)memory_size_kvt / (1024.0f * 1024.0f)); + } } // graph outputs buffer |