summaryrefslogtreecommitdiff
path: root/tests/test-rope.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'tests/test-rope.cpp')
-rw-r--r--tests/test-rope.cpp221
1 files changed, 221 insertions, 0 deletions
diff --git a/tests/test-rope.cpp b/tests/test-rope.cpp
new file mode 100644
index 00000000..26c1f42d
--- /dev/null
+++ b/tests/test-rope.cpp
@@ -0,0 +1,221 @@
+#include "ggml.h"
+
+#include <cmath>
+#include <cstdio>
+#include <cstdlib>
+#include <cassert>
+#include <vector>
+
+#if defined(_MSC_VER)
+#pragma warning(disable: 4244 4267) // possible loss of data
+#endif
+
+#if defined(__GNUC__)
+#pragma GCC diagnostic ignored "-Wdouble-promotion"
+#endif
+
+#define MAX_NARGS 3
+
+#undef MIN
+#undef MAX
+#define MIN(a, b) ((a) < (b) ? (a) : (b))
+#define MAX(a, b) ((a) > (b) ? (a) : (b))
+
+#define GGML_SILU_FP16
+
+//
+// logging
+//
+
+#if (GGML_DEBUG >= 1)
+#define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
+#else
+#define GGML_PRINT_DEBUG(...)
+#endif
+
+#if (GGML_DEBUG >= 5)
+#define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
+#else
+#define GGML_PRINT_DEBUG_5(...)
+#endif
+
+#if (GGML_DEBUG >= 10)
+#define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
+#else
+#define GGML_PRINT_DEBUG_10(...)
+#endif
+
+#define GGML_PRINT(...) printf(__VA_ARGS__)
+
+static float frand(void) {
+ return (float)rand()/(float)RAND_MAX;
+}
+
+static int irand(int n) {
+ if (n == 0) return 0;
+ return rand()%n;
+}
+
+static void get_random_dims(int64_t * dims, int ndims) {
+ dims[0] = dims[1] = dims[2] = dims[3] = 1;
+
+ for (int i = 0; i < ndims; i++) {
+ dims[i] = 1 + irand(4);
+ }
+}
+
+static struct ggml_tensor * get_random_tensor_f32(
+ struct ggml_context * ctx0,
+ int ndims,
+ const int64_t ne[],
+ float fmin,
+ float fmax) {
+ struct ggml_tensor * result = ggml_new_tensor(ctx0, GGML_TYPE_F32, ndims, ne);
+
+ switch (ndims) {
+ case 1:
+ for (int i0 = 0; i0 < ne[0]; i0++) {
+ ((float *)result->data)[i0] = frand()*(fmax - fmin) + fmin;
+ }
+ break;
+ case 2:
+ for (int i1 = 0; i1 < ne[1]; i1++) {
+ for (int i0 = 0; i0 < ne[0]; i0++) {
+ ((float *)result->data)[i1*ne[0] + i0] = frand()*(fmax - fmin) + fmin;
+ }
+ }
+ break;
+ case 3:
+ for (int i2 = 0; i2 < ne[2]; i2++) {
+ for (int i1 = 0; i1 < ne[1]; i1++) {
+ for (int i0 = 0; i0 < ne[0]; i0++) {
+ ((float *)result->data)[i2*ne[1]*ne[0] + i1*ne[0] + i0] = frand()*(fmax - fmin) + fmin;
+ }
+ }
+ }
+ break;
+ case 4:
+ for (int i3 = 0; i3 < ne[3]; i3++) {
+ for (int i2 = 0; i2 < ne[2]; i2++) {
+ for (int i1 = 0; i1 < ne[1]; i1++) {
+ for (int i0 = 0; i0 < ne[0]; i0++) {
+ ((float *)result->data)[i3*ne[2]*ne[1]*ne[0] + i2*ne[1]*ne[0] + i1*ne[0] + i0] = frand()*(fmax - fmin) + fmin;
+ }
+ }
+ }
+ }
+ break;
+ default:
+ assert(false);
+ };
+
+ return result;
+}
+
+static void ggml_graph_compute_helper(std::vector<uint8_t> & buf, ggml_cgraph * graph, int n_threads) {
+ struct ggml_cplan plan = ggml_graph_plan(graph, n_threads);
+
+ if (plan.work_size > 0) {
+ buf.resize(plan.work_size);
+ plan.work_data = buf.data();
+ }
+
+ ggml_graph_compute(graph, &plan);
+}
+
+int main(int /*argc*/, const char ** /*argv*/) {
+ struct ggml_init_params params = {
+ /* .mem_size = */ 128*1024*1024,
+ /* .mem_buffer = */ NULL,
+ /* .no_alloc = */ false,
+ };
+
+ std::vector<uint8_t> work_buffer;
+
+ struct ggml_context * ctx0 = ggml_init(params);
+
+ struct ggml_tensor * x;
+
+ // rope f32
+ for (int m = 0; m < 3; ++m) {
+ const int ndims = 4;
+
+ const int64_t n_rot = 128;
+ const int64_t ne[4] = { 2*n_rot, 32, 73, 1 };
+
+ const int n_past_0 = 100;
+ const int n_past_2 = 33;
+
+ struct ggml_tensor * p0 = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, ne[2]);
+ struct ggml_tensor * p1 = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, ne[2]);
+ struct ggml_tensor * p2 = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, ne[2]);
+
+ for (int i = 0; i < ne[2]; ++i) {
+ ((int32_t *) p0->data)[i] = n_past_0 + i;
+ ((int32_t *) p1->data)[i] = n_past_2 - n_past_0;
+ ((int32_t *) p2->data)[i] = n_past_2 + i;
+ }
+
+ // test mode 0, 2, 4 (standard, GPT-NeoX, GLM)
+ const int mode = m == 0 ? 0 : m == 1 ? 2 : 4;
+
+ x = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
+
+ // 100, 101, 102, ..., 172
+ struct ggml_tensor * r0 = ggml_rope(ctx0, x, p0, n_rot, mode, 1024);
+ // -67, -67, -67, ..., -67
+ struct ggml_tensor * r1 = ggml_rope(ctx0, r0, p1, n_rot, mode, 1024); // "context swap", i.e. forget n_past_0 - n_past_2 tokens
+
+ // 33, 34, 35, ..., 105
+ struct ggml_tensor * r2 = ggml_rope(ctx0, x, p2, n_rot, mode, 1024);
+
+ ggml_cgraph * gf = ggml_new_graph(ctx0);
+
+ ggml_build_forward_expand(gf, r0);
+ ggml_build_forward_expand(gf, r1);
+ ggml_build_forward_expand(gf, r2);
+
+ ggml_graph_compute_helper(work_buffer, gf, 4);
+
+ // check that r1 and r2 are the same
+ {
+ double sum0 = 0.0f;
+ double sum1 = 0.0f;
+ double diff = 0.0f;
+
+ const float * r1_data = (float *) r1->data;
+ const float * r2_data = (float *) r2->data;
+
+ const int n_elements = ggml_nelements(r1);
+
+ for (int i = 0; i < n_elements; ++i) {
+ sum0 += fabs(r1_data[i]);
+ sum1 += fabs(r2_data[i]);
+ diff += fabs(r1_data[i] - r2_data[i]);
+ //if (fabs(r1_data[i] - r2_data[i]) > 0.0001f) {
+ // printf("%d: %f %f\n", i, r1_data[i], r2_data[i]);
+ // printf("diff: %f\n", fabs(r1_data[i] - r2_data[i]));
+ //}
+ }
+
+ //for (int i = 4096; i < 4096 + 128; ++i) {
+ // printf("%f %f\n", r1_data[i], r2_data[i]);
+ //}
+
+ printf("mode: %d\n", mode);
+ printf("sum0: %f\n", sum0);
+ printf("sum1: %f\n", sum1);
+ printf("diff: %f\n", diff);
+ printf("rel err: %f\n", diff / sum0);
+ printf("rel err: %f\n", diff / sum1);
+
+ GGML_ASSERT(diff / sum0 < 0.0001f);
+ GGML_ASSERT(diff / sum1 < 0.0001f);
+ }
+ }
+
+ ggml_free(ctx0);
+
+ return 0;
+}
+