summaryrefslogtreecommitdiff
path: root/tests/test-tokenizer-random.py
diff options
context:
space:
mode:
Diffstat (limited to 'tests/test-tokenizer-random.py')
-rw-r--r--tests/test-tokenizer-random.py345
1 files changed, 240 insertions, 105 deletions
diff --git a/tests/test-tokenizer-random.py b/tests/test-tokenizer-random.py
index a07c52fb..9ebe6c89 100644
--- a/tests/test-tokenizer-random.py
+++ b/tests/test-tokenizer-random.py
@@ -6,6 +6,8 @@
# python3 tests/test-tokenizer-random.py ./models/ggml-vocab-llama-bpe.gguf ./models/tokenizers/llama-bpe
#
+from __future__ import annotations
+
import time
import logging
import argparse
@@ -13,10 +15,12 @@ import subprocess
import random
import unicodedata
-from typing import Callable, Iterator
+from pathlib import Path
+from typing import Any, Iterator, cast
+from typing_extensions import Buffer
import cffi
-from transformers import AutoTokenizer
+from transformers import AutoTokenizer, PreTrainedTokenizer
logger = logging.getLogger("test-tokenizer-random")
@@ -24,17 +28,20 @@ logger = logging.getLogger("test-tokenizer-random")
class LibLlama:
- DEFAULT_PATH_LLAMA_H = "./llama.h"
- DEFAULT_PATH_LIBLLAMA = "./build/libllama.so" # CMakeLists.txt: BUILD_SHARED_LIBS ON
+ DEFAULT_PATH_LLAMA_H = "./include/llama.h"
+ DEFAULT_PATH_INCLUDES = ["./ggml/include/", "./include/"]
+ DEFAULT_PATH_LIBLLAMA = "./build/src/libllama.so" # CMakeLists.txt: BUILD_SHARED_LIBS ON
- def __init__(self, path_llama_h: str = None, path_libllama: str = None):
+ def __init__(self, path_llama_h: str | None = None, path_includes: list[str] = [], path_libllama: str | None = None):
path_llama_h = path_llama_h or self.DEFAULT_PATH_LLAMA_H
+ path_includes = path_includes or self.DEFAULT_PATH_INCLUDES
path_libllama = path_libllama or self.DEFAULT_PATH_LIBLLAMA
- (self.ffi, self.lib) = self._load_libllama_cffi(path_llama_h, path_libllama)
+ (self.ffi, self.lib) = self._load_libllama_cffi(path_llama_h, path_includes, path_libllama)
self.lib.llama_backend_init()
- def _load_libllama_cffi(self, path_llama_h: str, path_libllama: str):
- cmd = ["gcc", "-E", "-P", "-D__restrict=", "-D__attribute__(x)=", "-D__asm__(x)=", path_llama_h]
+ def _load_libllama_cffi(self, path_llama_h: str, path_includes: list[str], path_libllama: str) -> tuple[cffi.FFI, Any]:
+ cmd = ["gcc", "-O0", "-E", "-P", "-D__restrict=", "-D__attribute__(x)=", "-D__asm__(x)="]
+ cmd += ["-I" + path for path in path_includes] + [path_llama_h]
res = subprocess.run(cmd, stdout=subprocess.PIPE)
assert (res.returncode == 0)
source = res.stdout.decode()
@@ -65,7 +72,7 @@ class LibLlama:
class LibLlamaModel:
def __init__(self, libllama: LibLlama, path_model: str, mparams={}, cparams={}):
- self.lib = libllama.lib
+ self.lib: Any = libllama.lib
self.ffi = libllama.ffi
if isinstance(mparams, dict):
mparams = libllama.model_default_params(**mparams)
@@ -79,6 +86,7 @@ class LibLlamaModel:
raise RuntimeError("error: failed to create context for model '%s'" % path_model)
n_tokens_max = self.lib.llama_n_ctx(self.ctx)
self.token_ids = self.ffi.new("llama_token[]", n_tokens_max)
+ self.text_buff = self.ffi.new("uint8_t[]", 1024)
def free(self):
if self.ctx:
@@ -89,14 +97,78 @@ class LibLlamaModel:
self.model = None
self.lib = None
- def tokenize(self, text: str, n_tokens_max: int = 0, add_special: bool = False, parse_special: bool = False) -> list[int]:
- n_tokens_max = n_tokens_max if n_tokens_max > 0 else len(self.token_ids)
- text = text.encode("utf-8")
- num = self.lib.llama_tokenize(self.model, text, len(text), self.token_ids, n_tokens_max, add_special, parse_special)
- if num < 0:
- return []
+ def tokenize(self, text: str, add_special: bool = False, parse_special: bool = False) -> list[int]:
+ encoded_text: bytes = text.encode("utf-8")
+ num = self.lib.llama_tokenize(self.model, encoded_text, len(encoded_text), self.token_ids, len(self.token_ids), add_special, parse_special)
+ while num < 0 and len(self.token_ids) < (16 << 20):
+ self.token_ids = self.ffi.new("llama_token[]", -2 * num)
+ num = self.lib.llama_tokenize(self.model, encoded_text, len(encoded_text), self.token_ids, len(self.token_ids), add_special, parse_special)
return list(self.token_ids[0:num])
+ def detokenize(self, ids: list[int], remove_special: bool = False, unparse_special: bool = False) -> str:
+ if len(self.token_ids) < len(ids):
+ self.token_ids = self.ffi.new("llama_token[]", 2 * len(ids))
+ for i, id in enumerate(ids):
+ self.token_ids[i] = id
+ num = self.lib.llama_detokenize(self.model, self.token_ids, len(ids), self.text_buff, len(self.text_buff), remove_special, unparse_special)
+ while num < 0 and len(self.text_buff) < (16 << 20):
+ self.text_buff = self.ffi.new("uint8_t[]", -2 * num)
+ num = self.lib.llama_detokenize(self.model, self.token_ids, len(ids), self.text_buff, len(self.text_buff), remove_special, unparse_special)
+ return str(cast(Buffer, self.ffi.buffer(self.text_buff, num)), encoding="utf-8", errors="replace") # replace errors with '\uFFFD'
+
+
+class Tokenizer:
+
+ def encode(self, text: str) -> list[int]:
+ raise NotImplementedError
+
+ def decode(self, ids: list[int]) -> str:
+ raise NotImplementedError
+
+
+class TokenizerGroundtruth (Tokenizer):
+
+ def __init__(self, dir_tokenizer: str):
+ self.model: PreTrainedTokenizer = AutoTokenizer.from_pretrained(dir_tokenizer)
+ # guess BOS and EOS
+ ids = self.encode("a")
+ assert 1 <= len(ids) <= 3
+ add_bos_token = len(ids) > 1 and self.model.bos_token_id == ids[0]
+ add_eos_token = len(ids) > 1 and self.model.eos_token_id == ids[-1]
+ self.add_bos_token = getattr(self.model, "add_bos_token", add_bos_token)
+ self.add_eos_token = getattr(self.model, "add_eos_token", add_eos_token)
+ # build vocab
+ tokens = list(self.model.get_vocab().values())
+ self.vocab = self.model.batch_decode(tokens, skip_special_tokens=True)
+ self.vocab = list(sorted(self.vocab))
+ # tokens and lists
+ self.special_tokens = list(self.model.all_special_tokens)
+ self.added_tokens = self.model.batch_decode(self.model.added_tokens_encoder.values(), skip_special_tokens=False)
+ self.bos_token = self.model.bos_token
+ self.eos_token = self.model.eos_token
+
+ def encode(self, text: str) -> list[int]:
+ return self.model.encode(text, add_special_tokens=True)
+
+ def decode(self, ids: list[int]) -> str:
+ return self.model.decode(ids, skip_special_tokens=False)
+
+
+class TokenizerLlamaCpp (Tokenizer):
+
+ libllama: LibLlama | None = None
+
+ def __init__(self, vocab_file: str):
+ if not self.libllama:
+ self.libllama = LibLlama()
+ self.model = LibLlamaModel(self.libllama, vocab_file, mparams=dict(vocab_only=True), cparams=dict(n_ctx=4096))
+
+ def encode(self, text: str) -> list[int]:
+ return self.model.tokenize(text, add_special=True, parse_special=True)
+
+ def decode(self, ids: list[int]) -> str:
+ return self.model.detokenize(ids, remove_special=False, unparse_special=True)
+
def generator_custom_text() -> Iterator[str]:
"""General tests"""
@@ -160,24 +232,54 @@ def generator_custom_text_edge_cases() -> Iterator[str]:
'a\na', # bert fail
'"`', # falcon
' \u2e4e', # falcon
+ '\n\x0b ', # falcon
'a\xa0\xa0\x00b', # jina-v2-es
'one <mask>', # jina-v2-es <mask> lstrip=true
'a </s> b', # rstrip phi-3
'a <mask> b', # lstrip jina-v2
'\xa0aC', # deepseek
+ '\u2029 \uA3E4', # deepseek-llm
+ "a ?",
+ 'å', # mpt
+ '\U000ac517', # utf-8 encode error, falcon
+ '\U000522f4', # utf-8 encode error, starcoder
+ "<s><s><unk><s>a<s>b<s>c<unk>d<unk></s>",
+ "<s> <s> <unk><s>a<s>b<s>c<unk>d<unk></s>",
]
-def generator_vocab_words(vocab: list[str]) -> Iterator[str]:
+def generator_vocab_words(tokenizer: TokenizerGroundtruth) -> Iterator[str]:
"""Brute force check all vocab words"""
- yield from vocab
-
-
-def generator_added_lr_strip(tokenizer) -> Iterator[str]:
- WHITESPACES = ["", " ", " ", " "]
- special_tokens = list(tokenizer.all_special_tokens)
- added_tokens = list(tokenizer.added_tokens_encoder)
- all_tokens = list(sorted(set(special_tokens + added_tokens)))
+ yield from tokenizer.vocab
+
+
+def generator_ascii_lr_strip() -> Iterator[str]:
+ WHITESPACES = ["", " ", " "]
+ CHARACTERS = list(chr(i) for i in range(1, 0x80)) + [""]
+ for char1 in CHARACTERS:
+ for char2 in CHARACTERS:
+ for lstrip in WHITESPACES:
+ for rstrip in WHITESPACES:
+ yield lstrip + char1 + char2 + rstrip
+ yield lstrip + char1 + rstrip + char2
+ yield char1 + lstrip + char2 + rstrip
+
+
+def generator_apostrophe() -> Iterator[str]:
+ WHITESPACES = ["", " ", " "]
+ CHARACTERS = list(chr(i) for i in range(1, 0x80)) + [""]
+ for char1 in CHARACTERS:
+ for char2 in CHARACTERS:
+ for lstrip in WHITESPACES:
+ for rstrip in WHITESPACES:
+ yield char1 + lstrip + "'" + rstrip + char2
+ yield char1 + char2 + lstrip + "'" + rstrip + "z"
+ yield "a" + lstrip + "'" + rstrip + char1 + char2
+
+
+def generator_added_lr_strip(tokenizer: TokenizerGroundtruth) -> Iterator[str]:
+ WHITESPACES = ["", " ", " ", "\n", "\r\n", "\n\n", "\t", "\t\t"]
+ all_tokens = list(sorted(set(tokenizer.special_tokens + tokenizer.added_tokens)))
for token in all_tokens:
for lstrip in WHITESPACES:
for rstrip in WHITESPACES:
@@ -187,11 +289,9 @@ def generator_added_lr_strip(tokenizer) -> Iterator[str]:
yield "a" + lstrip + token + rstrip + "z"
-def generator_random_added_tokens(tokenizer, iterations=100) -> Iterator[str]:
- special_tokens = list(tokenizer.all_special_tokens)
- added_tokens = list(tokenizer.added_tokens_encoder)
- separations = [" ", "\n", "\t", "-", "!", "one", "1", "<s>", "</s>"]
- all_tokens = list(sorted(set(special_tokens + added_tokens + separations)))
+def generator_random_added_tokens(tokenizer: TokenizerGroundtruth, iterations=100) -> Iterator[str]:
+ separations = [" ", "\n", "\t", "-", "!", "one", "1", "<s>", "</s>"]
+ all_tokens = list(sorted(set(tokenizer.special_tokens + tokenizer.added_tokens + separations)))
rand = random.Random()
for m in range(iterations):
rand.seed(m)
@@ -242,13 +342,13 @@ def generator_unicodes() -> Iterator[str]:
def _valid(cpt):
if cpt >= 0x30000: # unassigned and supplement­ary
return False
- if 0x00D800 <= cpt <= 0x00F8FF: # Surrogates
- return False
- if unicodedata.category(chr(cpt)) == "Cn":
+ # if cpt == 0x2029: # deepseek-llm
+ # return False
+ if unicodedata.category(chr(cpt)) in ("Cn", "Cs", "Co"): # undefined, surrogates, private
return False
return True
- characters = [chr(cpt) for cpt in range(1, MAX_CODEPOINTS) if _valid(cpt)]
+ characters = [chr(cpt) for cpt in range(0, MAX_CODEPOINTS) if _valid(cpt)]
yield from characters
@@ -273,11 +373,11 @@ def generator_random_unicodes(iterations=100) -> Iterator[str]:
yield "".join(text)
-def generator_random_vocab_chars(vocab: list[str], iterations=100) -> Iterator[str]:
+def generator_random_vocab_chars(tokenizer: TokenizerGroundtruth, iterations=100) -> Iterator[str]:
"""Brute force random text with vocab characters"""
vocab_chars = set()
- for word in vocab:
+ for word in tokenizer.vocab:
vocab_chars.update(word)
vocab_chars = list(sorted(vocab_chars))
@@ -288,10 +388,10 @@ def generator_random_vocab_chars(vocab: list[str], iterations=100) -> Iterator[s
yield "".join(text)
-def generator_random_vocab_words(vocab: list[str], iterations=100) -> Iterator[str]:
+def generator_random_vocab_words(tokenizer: TokenizerGroundtruth, iterations=100) -> Iterator[str]:
"""Brute force random text from vocab words"""
- vocab = [w.strip() for w in vocab]
+ vocab = [w.strip() for w in tokenizer.vocab]
yield from vocab
rand = random.Random()
@@ -307,9 +407,9 @@ def generator_random_vocab_words(vocab: list[str], iterations=100) -> Iterator[s
yield "".join(text)
-def compare_tokenizers(func_tokenize1: Callable, func_tokenize2: Callable, generator: Iterator[str]):
+def compare_tokenizers(tokenizer1: TokenizerGroundtruth, tokenizer2: TokenizerLlamaCpp, generator: Iterator[str]):
- def find_first_mismatch(ids1: list[int], ids2: list[int]):
+ def find_first_mismatch(ids1: list[int] | str, ids2: list[int] | str):
for i, (a, b) in enumerate(zip(ids1, ids2)):
if a != b:
return i
@@ -317,115 +417,150 @@ def compare_tokenizers(func_tokenize1: Callable, func_tokenize2: Callable, gener
return -1
return min(len(ids1), len(ids2))
- t_tokenizer1 = 0
- t_tokenizer2 = 0
+ def check_detokenizer(text: str, text1: str, text2: str) -> bool:
+ if text1 == text2: # equal to TokenizerGroundtruth?
+ return True
+ # equal to source text?
+ if tokenizer1.add_bos_token: # remove BOS
+ if text2.startswith(tokenizer1.bos_token):
+ text2 = text2[len(tokenizer1.bos_token):]
+ if tokenizer1.add_eos_token: # remove EOS
+ if text2.endswith(tokenizer1.eos_token):
+ text2 = text2[:-len(tokenizer1.eos_token)]
+ return text == text2
+
+ t_encode1 = 0
+ t_encode2 = 0
+ t_decode1 = 0
+ t_decode2 = 0
t_start = time.perf_counter()
- num_errors = 10
+ encode_errors = 0
+ decode_errors = 0
+ MAX_ERRORS = 10
- logger.info("%s: %s" % (generator.__name__, "ini"))
+ logger.info("%s: %s" % (generator.__qualname__, "ini"))
for text in generator:
+ # print(repr(text), text.encode())
# print(repr(text), hex(ord(text[0])), text.encode())
t0 = time.perf_counter()
- ids1 = func_tokenize1(text)
+ ids1 = tokenizer1.encode(text)
t1 = time.perf_counter()
- ids2 = func_tokenize2(text)
+ ids2 = tokenizer2.encode(text)
t2 = time.perf_counter()
- t_tokenizer1 += t1 - t0
- t_tokenizer2 += t2 - t1
- if ids1 != ids2:
+ text1 = tokenizer1.decode(ids1)
+ t3 = time.perf_counter()
+ text2 = tokenizer2.decode(ids1)
+ t4 = time.perf_counter()
+ t_encode1 += t1 - t0
+ t_encode2 += t2 - t1
+ t_decode1 += t3 - t2
+ t_decode2 += t4 - t3
+ if encode_errors < MAX_ERRORS and ids1 != ids2:
i = find_first_mismatch(ids1, ids2)
ids1 = list(ids1)[max(0, i - 2) : i + 5 + 1]
ids2 = list(ids2)[max(0, i - 2) : i + 5 + 1]
- logger.error(" TokenIDs: " + str(ids1))
- logger.error(" Expected: " + str(ids2))
+ logger.error(" Expected: " + str(ids1))
+ logger.error(" Result: " + str(ids2))
+ encode_errors += 1
+ logger.error(f" {encode_errors=}")
+ if decode_errors < MAX_ERRORS and not check_detokenizer(text, text1, text2):
+ i = find_first_mismatch(text1, text2)
+ text1 = list(text1[max(0, i - 2) : i + 5 + 1])
+ text2 = list(text2[max(0, i - 2) : i + 5 + 1])
+ logger.error(" Expected: " + " ".join(hex(ord(x)) for x in text1))
+ logger.error(" Result: " + " ".join(hex(ord(x)) for x in text2))
+ decode_errors += 1
+ logger.error(f" {decode_errors=}")
+ if encode_errors >= MAX_ERRORS and decode_errors >= MAX_ERRORS:
+ logger.error(f" EXIT: {encode_errors=} {decode_errors=}")
# raise Exception()
- num_errors += 1
- if num_errors > 10:
- break
+ break
t_total = time.perf_counter() - t_start
- logger.info("%s: end, tok1: %.3f tok2: %.3f total: %.3f" % (generator.__name__, t_tokenizer1, t_tokenizer2, t_total))
+ logger.info(f"{generator.__qualname__}: end, {t_encode1=:.3f} {t_encode2=:.3f} {t_decode1=:.3f} {t_decode2=:.3f} {t_total=:.3f}")
-def main(argv: list[str] = None):
+def main(argv: list[str] | None = None):
parser = argparse.ArgumentParser()
- parser.add_argument("vocab_file", help="path to vocab 'gguf' file")
- parser.add_argument("dir_tokenizer", help="directory containing 'tokenizer.model' file")
+ parser.add_argument("vocab_file", type=str, help="path to vocab 'gguf' file")
+ parser.add_argument("dir_tokenizer", type=str, help="directory containing 'tokenizer.model' file")
parser.add_argument("--verbose", action="store_true", help="increase output verbosity")
args = parser.parse_args(argv)
logging.basicConfig(level = logging.DEBUG if args.verbose else logging.INFO)
logger.info(f"VOCABFILE: '{args.vocab_file}'")
- model = LibLlamaModel(LibLlama(), args.vocab_file, mparams=dict(vocab_only=True), cparams=dict(n_ctx=4096))
- tokenizer = AutoTokenizer.from_pretrained(args.dir_tokenizer)
-
- def func_tokenize1(text: str):
- return model.tokenize(text, add_special=True, parse_special=True)
-
- def func_tokenize2(text: str):
- return tokenizer.encode(text, add_special_tokens=True)
+ tokenizer1 = TokenizerGroundtruth(args.dir_tokenizer)
+ tokenizer2 = TokenizerLlamaCpp(args.vocab_file)
- ids = func_tokenize2("a")
- assert 1 <= len(ids) <= 3
- add_bos_token = len(ids) > 1 and tokenizer.bos_token_id == ids[0]
- add_eos_token = len(ids) > 1 and tokenizer.eos_token_id == ids[-1]
- tokenizer.add_bos_token = getattr(tokenizer, "add_bos_token", add_bos_token)
- tokenizer.add_eos_token = getattr(tokenizer, "add_eos_token", add_eos_token)
+ # compare_tokenizers(tokenizer1, tokenizer2, generator_custom_text())
+ # compare_tokenizers(tokenizer1, tokenizer2, generator_custom_text_edge_cases())
+ compare_tokenizers(tokenizer1, tokenizer2, generator_ascii_lr_strip())
+ compare_tokenizers(tokenizer1, tokenizer2, generator_apostrophe())
+ compare_tokenizers(tokenizer1, tokenizer2, generator_unicodes())
+ compare_tokenizers(tokenizer1, tokenizer2, generator_vocab_words(tokenizer1))
+ compare_tokenizers(tokenizer1, tokenizer2, generator_added_lr_strip(tokenizer1))
+ # compare_tokenizers(tokenizer1, tokenizer2, generator_random_added_tokens(tokenizer1, 10_000))
+ # compare_tokenizers(tokenizer1, tokenizer2, generator_random_chars(10_000))
+ # compare_tokenizers(tokenizer1, tokenizer2, generator_random_unicodes(10_000))
+ # compare_tokenizers(tokenizer1, tokenizer2, generator_random_vocab_chars(tokenizer1, 10_000))
+ # compare_tokenizers(tokenizer1, tokenizer2, generator_random_vocab_words(tokenizer1, 5_000))
- vocab = list(sorted(tokenizer.batch_decode(list(tokenizer.get_vocab().values()), skip_special_tokens=True)))
-
- compare_tokenizers(func_tokenize1, func_tokenize2, generator_custom_text())
- compare_tokenizers(func_tokenize1, func_tokenize2, generator_custom_text_edge_cases())
- compare_tokenizers(func_tokenize1, func_tokenize2, generator_unicodes())
- compare_tokenizers(func_tokenize1, func_tokenize2, generator_vocab_words(vocab))
- compare_tokenizers(func_tokenize1, func_tokenize2, generator_added_lr_strip(tokenizer))
- compare_tokenizers(func_tokenize1, func_tokenize2, generator_random_added_tokens(tokenizer, 10_000))
- compare_tokenizers(func_tokenize1, func_tokenize2, generator_random_chars(10_000))
- compare_tokenizers(func_tokenize1, func_tokenize2, generator_random_unicodes(10_000))
- compare_tokenizers(func_tokenize1, func_tokenize2, generator_random_vocab_chars(vocab, 10_000))
- compare_tokenizers(func_tokenize1, func_tokenize2, generator_random_vocab_words(vocab, 5_000))
-
- model.free()
+ tokenizer2.model.free()
if __name__ == "__main__":
# main()
+ if True:
+ logging.basicConfig(
+ level = logging.DEBUG,
+ format = "%(asctime)s.%(msecs)03d %(name)s %(levelname)s %(message)s",
+ datefmt = "%Y-%m-%d %H:%M:%S",
+ filename = logger.name + ".log",
+ filemode = "a"
+ )
logging.basicConfig(
level = logging.DEBUG,
- format = "%(asctime)s.%(msecs)03d %(name)s %(levelname)s %(message)s",
- datefmt = "%Y-%m-%d %H:%M:%S",
- filename = logger.name + ".log",
- filemode = "a"
+ format = "%(levelname)s %(message)s",
)
- path_tokenizers = "./models/tokenizers/"
+ path_tokenizers = Path("./models/tokenizers/")
path_vocab_format = "./models/ggml-vocab-%s.gguf"
- # import os
- # tokenizers = os.listdir(path_tokenizers)
tokenizers = [
- # "llama-spm", # SPM
- # "phi-3", # SPM
- # "bert-bge", # WPM
- # "jina-v2-en", # WPM
- "gpt-2", # BPE
+ "llama-spm", # SPM
+ "phi-3", # SPM
+ "gemma", # SPM
+ "gemma-2", # SPM
+ "baichuan", # SPM
+ "bert-bge", # WPM
+ "jina-v2-en", # WPM
"llama-bpe", # BPE
+ "phi-2", # BPE
+ "deepseek-llm", # BPE
+ "deepseek-coder", # BPE
"falcon", # BPE
+ "mpt", # BPE
"starcoder", # BPE
+ "gpt-2", # BPE
+ "stablelm2", # BPE
+ "refact", # BPE
+ "qwen2", # BPE
+ "olmo", # BPE
"jina-v2-es", # BPE
"jina-v2-de", # BPE
- "jina-v2-code", # BPE
"smaug-bpe", # BPE
- "phi-2", # BPE
- "deepseek-coder", # BPE
- "deepseek-llm", # BPE
+ "poro-chat", # BPE
+ "jina-v2-code", # BPE
+ "viking", # BPE
+ "jais", # BPE
]
+ logger.info("=" * 50)
for tokenizer in tokenizers:
- logger.info("=" * 50)
+ logger.info("-" * 50)
logger.info(f"TOKENIZER: '{tokenizer}'")
- vocab_file = path_vocab_format % tokenizer
- dir_tokenizer = path_tokenizers + "/" + tokenizer
- main([vocab_file, dir_tokenizer, "--verbose"])
+ vocab_file = Path(path_vocab_format % tokenizer)
+ dir_tokenizer = path_tokenizers / tokenizer
+ main([str(vocab_file), str(dir_tokenizer), "--verbose"])