diff options
Diffstat (limited to 'tests/test-tokenizer-random.py')
-rw-r--r-- | tests/test-tokenizer-random.py | 345 |
1 files changed, 240 insertions, 105 deletions
diff --git a/tests/test-tokenizer-random.py b/tests/test-tokenizer-random.py index a07c52fb..9ebe6c89 100644 --- a/tests/test-tokenizer-random.py +++ b/tests/test-tokenizer-random.py @@ -6,6 +6,8 @@ # python3 tests/test-tokenizer-random.py ./models/ggml-vocab-llama-bpe.gguf ./models/tokenizers/llama-bpe # +from __future__ import annotations + import time import logging import argparse @@ -13,10 +15,12 @@ import subprocess import random import unicodedata -from typing import Callable, Iterator +from pathlib import Path +from typing import Any, Iterator, cast +from typing_extensions import Buffer import cffi -from transformers import AutoTokenizer +from transformers import AutoTokenizer, PreTrainedTokenizer logger = logging.getLogger("test-tokenizer-random") @@ -24,17 +28,20 @@ logger = logging.getLogger("test-tokenizer-random") class LibLlama: - DEFAULT_PATH_LLAMA_H = "./llama.h" - DEFAULT_PATH_LIBLLAMA = "./build/libllama.so" # CMakeLists.txt: BUILD_SHARED_LIBS ON + DEFAULT_PATH_LLAMA_H = "./include/llama.h" + DEFAULT_PATH_INCLUDES = ["./ggml/include/", "./include/"] + DEFAULT_PATH_LIBLLAMA = "./build/src/libllama.so" # CMakeLists.txt: BUILD_SHARED_LIBS ON - def __init__(self, path_llama_h: str = None, path_libllama: str = None): + def __init__(self, path_llama_h: str | None = None, path_includes: list[str] = [], path_libllama: str | None = None): path_llama_h = path_llama_h or self.DEFAULT_PATH_LLAMA_H + path_includes = path_includes or self.DEFAULT_PATH_INCLUDES path_libllama = path_libllama or self.DEFAULT_PATH_LIBLLAMA - (self.ffi, self.lib) = self._load_libllama_cffi(path_llama_h, path_libllama) + (self.ffi, self.lib) = self._load_libllama_cffi(path_llama_h, path_includes, path_libllama) self.lib.llama_backend_init() - def _load_libllama_cffi(self, path_llama_h: str, path_libllama: str): - cmd = ["gcc", "-E", "-P", "-D__restrict=", "-D__attribute__(x)=", "-D__asm__(x)=", path_llama_h] + def _load_libllama_cffi(self, path_llama_h: str, path_includes: list[str], path_libllama: str) -> tuple[cffi.FFI, Any]: + cmd = ["gcc", "-O0", "-E", "-P", "-D__restrict=", "-D__attribute__(x)=", "-D__asm__(x)="] + cmd += ["-I" + path for path in path_includes] + [path_llama_h] res = subprocess.run(cmd, stdout=subprocess.PIPE) assert (res.returncode == 0) source = res.stdout.decode() @@ -65,7 +72,7 @@ class LibLlama: class LibLlamaModel: def __init__(self, libllama: LibLlama, path_model: str, mparams={}, cparams={}): - self.lib = libllama.lib + self.lib: Any = libllama.lib self.ffi = libllama.ffi if isinstance(mparams, dict): mparams = libllama.model_default_params(**mparams) @@ -79,6 +86,7 @@ class LibLlamaModel: raise RuntimeError("error: failed to create context for model '%s'" % path_model) n_tokens_max = self.lib.llama_n_ctx(self.ctx) self.token_ids = self.ffi.new("llama_token[]", n_tokens_max) + self.text_buff = self.ffi.new("uint8_t[]", 1024) def free(self): if self.ctx: @@ -89,14 +97,78 @@ class LibLlamaModel: self.model = None self.lib = None - def tokenize(self, text: str, n_tokens_max: int = 0, add_special: bool = False, parse_special: bool = False) -> list[int]: - n_tokens_max = n_tokens_max if n_tokens_max > 0 else len(self.token_ids) - text = text.encode("utf-8") - num = self.lib.llama_tokenize(self.model, text, len(text), self.token_ids, n_tokens_max, add_special, parse_special) - if num < 0: - return [] + def tokenize(self, text: str, add_special: bool = False, parse_special: bool = False) -> list[int]: + encoded_text: bytes = text.encode("utf-8") + num = self.lib.llama_tokenize(self.model, encoded_text, len(encoded_text), self.token_ids, len(self.token_ids), add_special, parse_special) + while num < 0 and len(self.token_ids) < (16 << 20): + self.token_ids = self.ffi.new("llama_token[]", -2 * num) + num = self.lib.llama_tokenize(self.model, encoded_text, len(encoded_text), self.token_ids, len(self.token_ids), add_special, parse_special) return list(self.token_ids[0:num]) + def detokenize(self, ids: list[int], remove_special: bool = False, unparse_special: bool = False) -> str: + if len(self.token_ids) < len(ids): + self.token_ids = self.ffi.new("llama_token[]", 2 * len(ids)) + for i, id in enumerate(ids): + self.token_ids[i] = id + num = self.lib.llama_detokenize(self.model, self.token_ids, len(ids), self.text_buff, len(self.text_buff), remove_special, unparse_special) + while num < 0 and len(self.text_buff) < (16 << 20): + self.text_buff = self.ffi.new("uint8_t[]", -2 * num) + num = self.lib.llama_detokenize(self.model, self.token_ids, len(ids), self.text_buff, len(self.text_buff), remove_special, unparse_special) + return str(cast(Buffer, self.ffi.buffer(self.text_buff, num)), encoding="utf-8", errors="replace") # replace errors with '\uFFFD' + + +class Tokenizer: + + def encode(self, text: str) -> list[int]: + raise NotImplementedError + + def decode(self, ids: list[int]) -> str: + raise NotImplementedError + + +class TokenizerGroundtruth (Tokenizer): + + def __init__(self, dir_tokenizer: str): + self.model: PreTrainedTokenizer = AutoTokenizer.from_pretrained(dir_tokenizer) + # guess BOS and EOS + ids = self.encode("a") + assert 1 <= len(ids) <= 3 + add_bos_token = len(ids) > 1 and self.model.bos_token_id == ids[0] + add_eos_token = len(ids) > 1 and self.model.eos_token_id == ids[-1] + self.add_bos_token = getattr(self.model, "add_bos_token", add_bos_token) + self.add_eos_token = getattr(self.model, "add_eos_token", add_eos_token) + # build vocab + tokens = list(self.model.get_vocab().values()) + self.vocab = self.model.batch_decode(tokens, skip_special_tokens=True) + self.vocab = list(sorted(self.vocab)) + # tokens and lists + self.special_tokens = list(self.model.all_special_tokens) + self.added_tokens = self.model.batch_decode(self.model.added_tokens_encoder.values(), skip_special_tokens=False) + self.bos_token = self.model.bos_token + self.eos_token = self.model.eos_token + + def encode(self, text: str) -> list[int]: + return self.model.encode(text, add_special_tokens=True) + + def decode(self, ids: list[int]) -> str: + return self.model.decode(ids, skip_special_tokens=False) + + +class TokenizerLlamaCpp (Tokenizer): + + libllama: LibLlama | None = None + + def __init__(self, vocab_file: str): + if not self.libllama: + self.libllama = LibLlama() + self.model = LibLlamaModel(self.libllama, vocab_file, mparams=dict(vocab_only=True), cparams=dict(n_ctx=4096)) + + def encode(self, text: str) -> list[int]: + return self.model.tokenize(text, add_special=True, parse_special=True) + + def decode(self, ids: list[int]) -> str: + return self.model.detokenize(ids, remove_special=False, unparse_special=True) + def generator_custom_text() -> Iterator[str]: """General tests""" @@ -160,24 +232,54 @@ def generator_custom_text_edge_cases() -> Iterator[str]: 'a\na', # bert fail '"`', # falcon ' \u2e4e', # falcon + '\n\x0b ', # falcon 'a\xa0\xa0\x00b', # jina-v2-es 'one <mask>', # jina-v2-es <mask> lstrip=true 'a </s> b', # rstrip phi-3 'a <mask> b', # lstrip jina-v2 '\xa0aC', # deepseek + '\u2029 \uA3E4', # deepseek-llm + "a ?", + 'å', # mpt + '\U000ac517', # utf-8 encode error, falcon + '\U000522f4', # utf-8 encode error, starcoder + "<s><s><unk><s>a<s>b<s>c<unk>d<unk></s>", + "<s> <s> <unk><s>a<s>b<s>c<unk>d<unk></s>", ] -def generator_vocab_words(vocab: list[str]) -> Iterator[str]: +def generator_vocab_words(tokenizer: TokenizerGroundtruth) -> Iterator[str]: """Brute force check all vocab words""" - yield from vocab - - -def generator_added_lr_strip(tokenizer) -> Iterator[str]: - WHITESPACES = ["", " ", " ", " "] - special_tokens = list(tokenizer.all_special_tokens) - added_tokens = list(tokenizer.added_tokens_encoder) - all_tokens = list(sorted(set(special_tokens + added_tokens))) + yield from tokenizer.vocab + + +def generator_ascii_lr_strip() -> Iterator[str]: + WHITESPACES = ["", " ", " "] + CHARACTERS = list(chr(i) for i in range(1, 0x80)) + [""] + for char1 in CHARACTERS: + for char2 in CHARACTERS: + for lstrip in WHITESPACES: + for rstrip in WHITESPACES: + yield lstrip + char1 + char2 + rstrip + yield lstrip + char1 + rstrip + char2 + yield char1 + lstrip + char2 + rstrip + + +def generator_apostrophe() -> Iterator[str]: + WHITESPACES = ["", " ", " "] + CHARACTERS = list(chr(i) for i in range(1, 0x80)) + [""] + for char1 in CHARACTERS: + for char2 in CHARACTERS: + for lstrip in WHITESPACES: + for rstrip in WHITESPACES: + yield char1 + lstrip + "'" + rstrip + char2 + yield char1 + char2 + lstrip + "'" + rstrip + "z" + yield "a" + lstrip + "'" + rstrip + char1 + char2 + + +def generator_added_lr_strip(tokenizer: TokenizerGroundtruth) -> Iterator[str]: + WHITESPACES = ["", " ", " ", "\n", "\r\n", "\n\n", "\t", "\t\t"] + all_tokens = list(sorted(set(tokenizer.special_tokens + tokenizer.added_tokens))) for token in all_tokens: for lstrip in WHITESPACES: for rstrip in WHITESPACES: @@ -187,11 +289,9 @@ def generator_added_lr_strip(tokenizer) -> Iterator[str]: yield "a" + lstrip + token + rstrip + "z" -def generator_random_added_tokens(tokenizer, iterations=100) -> Iterator[str]: - special_tokens = list(tokenizer.all_special_tokens) - added_tokens = list(tokenizer.added_tokens_encoder) - separations = [" ", "\n", "\t", "-", "!", "one", "1", "<s>", "</s>"] - all_tokens = list(sorted(set(special_tokens + added_tokens + separations))) +def generator_random_added_tokens(tokenizer: TokenizerGroundtruth, iterations=100) -> Iterator[str]: + separations = [" ", "\n", "\t", "-", "!", "one", "1", "<s>", "</s>"] + all_tokens = list(sorted(set(tokenizer.special_tokens + tokenizer.added_tokens + separations))) rand = random.Random() for m in range(iterations): rand.seed(m) @@ -242,13 +342,13 @@ def generator_unicodes() -> Iterator[str]: def _valid(cpt): if cpt >= 0x30000: # unassigned and supplementary return False - if 0x00D800 <= cpt <= 0x00F8FF: # Surrogates - return False - if unicodedata.category(chr(cpt)) == "Cn": + # if cpt == 0x2029: # deepseek-llm + # return False + if unicodedata.category(chr(cpt)) in ("Cn", "Cs", "Co"): # undefined, surrogates, private return False return True - characters = [chr(cpt) for cpt in range(1, MAX_CODEPOINTS) if _valid(cpt)] + characters = [chr(cpt) for cpt in range(0, MAX_CODEPOINTS) if _valid(cpt)] yield from characters @@ -273,11 +373,11 @@ def generator_random_unicodes(iterations=100) -> Iterator[str]: yield "".join(text) -def generator_random_vocab_chars(vocab: list[str], iterations=100) -> Iterator[str]: +def generator_random_vocab_chars(tokenizer: TokenizerGroundtruth, iterations=100) -> Iterator[str]: """Brute force random text with vocab characters""" vocab_chars = set() - for word in vocab: + for word in tokenizer.vocab: vocab_chars.update(word) vocab_chars = list(sorted(vocab_chars)) @@ -288,10 +388,10 @@ def generator_random_vocab_chars(vocab: list[str], iterations=100) -> Iterator[s yield "".join(text) -def generator_random_vocab_words(vocab: list[str], iterations=100) -> Iterator[str]: +def generator_random_vocab_words(tokenizer: TokenizerGroundtruth, iterations=100) -> Iterator[str]: """Brute force random text from vocab words""" - vocab = [w.strip() for w in vocab] + vocab = [w.strip() for w in tokenizer.vocab] yield from vocab rand = random.Random() @@ -307,9 +407,9 @@ def generator_random_vocab_words(vocab: list[str], iterations=100) -> Iterator[s yield "".join(text) -def compare_tokenizers(func_tokenize1: Callable, func_tokenize2: Callable, generator: Iterator[str]): +def compare_tokenizers(tokenizer1: TokenizerGroundtruth, tokenizer2: TokenizerLlamaCpp, generator: Iterator[str]): - def find_first_mismatch(ids1: list[int], ids2: list[int]): + def find_first_mismatch(ids1: list[int] | str, ids2: list[int] | str): for i, (a, b) in enumerate(zip(ids1, ids2)): if a != b: return i @@ -317,115 +417,150 @@ def compare_tokenizers(func_tokenize1: Callable, func_tokenize2: Callable, gener return -1 return min(len(ids1), len(ids2)) - t_tokenizer1 = 0 - t_tokenizer2 = 0 + def check_detokenizer(text: str, text1: str, text2: str) -> bool: + if text1 == text2: # equal to TokenizerGroundtruth? + return True + # equal to source text? + if tokenizer1.add_bos_token: # remove BOS + if text2.startswith(tokenizer1.bos_token): + text2 = text2[len(tokenizer1.bos_token):] + if tokenizer1.add_eos_token: # remove EOS + if text2.endswith(tokenizer1.eos_token): + text2 = text2[:-len(tokenizer1.eos_token)] + return text == text2 + + t_encode1 = 0 + t_encode2 = 0 + t_decode1 = 0 + t_decode2 = 0 t_start = time.perf_counter() - num_errors = 10 + encode_errors = 0 + decode_errors = 0 + MAX_ERRORS = 10 - logger.info("%s: %s" % (generator.__name__, "ini")) + logger.info("%s: %s" % (generator.__qualname__, "ini")) for text in generator: + # print(repr(text), text.encode()) # print(repr(text), hex(ord(text[0])), text.encode()) t0 = time.perf_counter() - ids1 = func_tokenize1(text) + ids1 = tokenizer1.encode(text) t1 = time.perf_counter() - ids2 = func_tokenize2(text) + ids2 = tokenizer2.encode(text) t2 = time.perf_counter() - t_tokenizer1 += t1 - t0 - t_tokenizer2 += t2 - t1 - if ids1 != ids2: + text1 = tokenizer1.decode(ids1) + t3 = time.perf_counter() + text2 = tokenizer2.decode(ids1) + t4 = time.perf_counter() + t_encode1 += t1 - t0 + t_encode2 += t2 - t1 + t_decode1 += t3 - t2 + t_decode2 += t4 - t3 + if encode_errors < MAX_ERRORS and ids1 != ids2: i = find_first_mismatch(ids1, ids2) ids1 = list(ids1)[max(0, i - 2) : i + 5 + 1] ids2 = list(ids2)[max(0, i - 2) : i + 5 + 1] - logger.error(" TokenIDs: " + str(ids1)) - logger.error(" Expected: " + str(ids2)) + logger.error(" Expected: " + str(ids1)) + logger.error(" Result: " + str(ids2)) + encode_errors += 1 + logger.error(f" {encode_errors=}") + if decode_errors < MAX_ERRORS and not check_detokenizer(text, text1, text2): + i = find_first_mismatch(text1, text2) + text1 = list(text1[max(0, i - 2) : i + 5 + 1]) + text2 = list(text2[max(0, i - 2) : i + 5 + 1]) + logger.error(" Expected: " + " ".join(hex(ord(x)) for x in text1)) + logger.error(" Result: " + " ".join(hex(ord(x)) for x in text2)) + decode_errors += 1 + logger.error(f" {decode_errors=}") + if encode_errors >= MAX_ERRORS and decode_errors >= MAX_ERRORS: + logger.error(f" EXIT: {encode_errors=} {decode_errors=}") # raise Exception() - num_errors += 1 - if num_errors > 10: - break + break t_total = time.perf_counter() - t_start - logger.info("%s: end, tok1: %.3f tok2: %.3f total: %.3f" % (generator.__name__, t_tokenizer1, t_tokenizer2, t_total)) + logger.info(f"{generator.__qualname__}: end, {t_encode1=:.3f} {t_encode2=:.3f} {t_decode1=:.3f} {t_decode2=:.3f} {t_total=:.3f}") -def main(argv: list[str] = None): +def main(argv: list[str] | None = None): parser = argparse.ArgumentParser() - parser.add_argument("vocab_file", help="path to vocab 'gguf' file") - parser.add_argument("dir_tokenizer", help="directory containing 'tokenizer.model' file") + parser.add_argument("vocab_file", type=str, help="path to vocab 'gguf' file") + parser.add_argument("dir_tokenizer", type=str, help="directory containing 'tokenizer.model' file") parser.add_argument("--verbose", action="store_true", help="increase output verbosity") args = parser.parse_args(argv) logging.basicConfig(level = logging.DEBUG if args.verbose else logging.INFO) logger.info(f"VOCABFILE: '{args.vocab_file}'") - model = LibLlamaModel(LibLlama(), args.vocab_file, mparams=dict(vocab_only=True), cparams=dict(n_ctx=4096)) - tokenizer = AutoTokenizer.from_pretrained(args.dir_tokenizer) - - def func_tokenize1(text: str): - return model.tokenize(text, add_special=True, parse_special=True) - - def func_tokenize2(text: str): - return tokenizer.encode(text, add_special_tokens=True) + tokenizer1 = TokenizerGroundtruth(args.dir_tokenizer) + tokenizer2 = TokenizerLlamaCpp(args.vocab_file) - ids = func_tokenize2("a") - assert 1 <= len(ids) <= 3 - add_bos_token = len(ids) > 1 and tokenizer.bos_token_id == ids[0] - add_eos_token = len(ids) > 1 and tokenizer.eos_token_id == ids[-1] - tokenizer.add_bos_token = getattr(tokenizer, "add_bos_token", add_bos_token) - tokenizer.add_eos_token = getattr(tokenizer, "add_eos_token", add_eos_token) + # compare_tokenizers(tokenizer1, tokenizer2, generator_custom_text()) + # compare_tokenizers(tokenizer1, tokenizer2, generator_custom_text_edge_cases()) + compare_tokenizers(tokenizer1, tokenizer2, generator_ascii_lr_strip()) + compare_tokenizers(tokenizer1, tokenizer2, generator_apostrophe()) + compare_tokenizers(tokenizer1, tokenizer2, generator_unicodes()) + compare_tokenizers(tokenizer1, tokenizer2, generator_vocab_words(tokenizer1)) + compare_tokenizers(tokenizer1, tokenizer2, generator_added_lr_strip(tokenizer1)) + # compare_tokenizers(tokenizer1, tokenizer2, generator_random_added_tokens(tokenizer1, 10_000)) + # compare_tokenizers(tokenizer1, tokenizer2, generator_random_chars(10_000)) + # compare_tokenizers(tokenizer1, tokenizer2, generator_random_unicodes(10_000)) + # compare_tokenizers(tokenizer1, tokenizer2, generator_random_vocab_chars(tokenizer1, 10_000)) + # compare_tokenizers(tokenizer1, tokenizer2, generator_random_vocab_words(tokenizer1, 5_000)) - vocab = list(sorted(tokenizer.batch_decode(list(tokenizer.get_vocab().values()), skip_special_tokens=True))) - - compare_tokenizers(func_tokenize1, func_tokenize2, generator_custom_text()) - compare_tokenizers(func_tokenize1, func_tokenize2, generator_custom_text_edge_cases()) - compare_tokenizers(func_tokenize1, func_tokenize2, generator_unicodes()) - compare_tokenizers(func_tokenize1, func_tokenize2, generator_vocab_words(vocab)) - compare_tokenizers(func_tokenize1, func_tokenize2, generator_added_lr_strip(tokenizer)) - compare_tokenizers(func_tokenize1, func_tokenize2, generator_random_added_tokens(tokenizer, 10_000)) - compare_tokenizers(func_tokenize1, func_tokenize2, generator_random_chars(10_000)) - compare_tokenizers(func_tokenize1, func_tokenize2, generator_random_unicodes(10_000)) - compare_tokenizers(func_tokenize1, func_tokenize2, generator_random_vocab_chars(vocab, 10_000)) - compare_tokenizers(func_tokenize1, func_tokenize2, generator_random_vocab_words(vocab, 5_000)) - - model.free() + tokenizer2.model.free() if __name__ == "__main__": # main() + if True: + logging.basicConfig( + level = logging.DEBUG, + format = "%(asctime)s.%(msecs)03d %(name)s %(levelname)s %(message)s", + datefmt = "%Y-%m-%d %H:%M:%S", + filename = logger.name + ".log", + filemode = "a" + ) logging.basicConfig( level = logging.DEBUG, - format = "%(asctime)s.%(msecs)03d %(name)s %(levelname)s %(message)s", - datefmt = "%Y-%m-%d %H:%M:%S", - filename = logger.name + ".log", - filemode = "a" + format = "%(levelname)s %(message)s", ) - path_tokenizers = "./models/tokenizers/" + path_tokenizers = Path("./models/tokenizers/") path_vocab_format = "./models/ggml-vocab-%s.gguf" - # import os - # tokenizers = os.listdir(path_tokenizers) tokenizers = [ - # "llama-spm", # SPM - # "phi-3", # SPM - # "bert-bge", # WPM - # "jina-v2-en", # WPM - "gpt-2", # BPE + "llama-spm", # SPM + "phi-3", # SPM + "gemma", # SPM + "gemma-2", # SPM + "baichuan", # SPM + "bert-bge", # WPM + "jina-v2-en", # WPM "llama-bpe", # BPE + "phi-2", # BPE + "deepseek-llm", # BPE + "deepseek-coder", # BPE "falcon", # BPE + "mpt", # BPE "starcoder", # BPE + "gpt-2", # BPE + "stablelm2", # BPE + "refact", # BPE + "qwen2", # BPE + "olmo", # BPE "jina-v2-es", # BPE "jina-v2-de", # BPE - "jina-v2-code", # BPE "smaug-bpe", # BPE - "phi-2", # BPE - "deepseek-coder", # BPE - "deepseek-llm", # BPE + "poro-chat", # BPE + "jina-v2-code", # BPE + "viking", # BPE + "jais", # BPE ] + logger.info("=" * 50) for tokenizer in tokenizers: - logger.info("=" * 50) + logger.info("-" * 50) logger.info(f"TOKENIZER: '{tokenizer}'") - vocab_file = path_vocab_format % tokenizer - dir_tokenizer = path_tokenizers + "/" + tokenizer - main([vocab_file, dir_tokenizer, "--verbose"]) + vocab_file = Path(path_vocab_format % tokenizer) + dir_tokenizer = path_tokenizers / tokenizer + main([str(vocab_file), str(dir_tokenizer), "--verbose"]) |