summaryrefslogtreecommitdiff
path: root/utils.h
diff options
context:
space:
mode:
Diffstat (limited to 'utils.h')
-rw-r--r--utils.h94
1 files changed, 94 insertions, 0 deletions
diff --git a/utils.h b/utils.h
new file mode 100644
index 00000000..d291964a
--- /dev/null
+++ b/utils.h
@@ -0,0 +1,94 @@
+// Various helper functions and utilities
+
+#pragma once
+
+#include <string>
+#include <map>
+#include <vector>
+#include <random>
+#include <thread>
+
+//
+// CLI argument parsing
+//
+
+struct gpt_params {
+ int32_t seed = -1; // RNG seed
+ int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency());
+ int32_t n_predict = 200; // new tokens to predict
+
+ // sampling parameters
+ int32_t top_k = 100;
+ float top_p = 0.95f;
+ float temp = 0.8f;
+
+ int32_t n_batch = 8; // batch size for prompt processing
+
+ std::string model = "models/lamma-7B/ggml-model.bin"; // model path
+ std::string prompt;
+};
+
+bool gpt_params_parse(int argc, char ** argv, gpt_params & params);
+
+void gpt_print_usage(int argc, char ** argv, const gpt_params & params);
+
+std::string gpt_random_prompt(std::mt19937 & rng);
+
+//
+// Vocab utils
+//
+
+struct gpt_vocab {
+ using id = int32_t;
+ using token = std::string;
+
+ std::map<token, id> token_to_id;
+ std::map<id, token> id_to_token;
+};
+
+void replace(std::string & str, const std::string & needle, const std::string & replacement);
+
+// poor-man's JSON parsing
+std::map<std::string, int32_t> json_parse(const std::string & fname);
+
+// split text into tokens
+//
+// ref: https://github.com/openai/gpt-2/blob/a74da5d99abaaba920de8131d64da2862a8f213b/src/encoder.py#L53
+//
+// Regex (Python):
+// r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+"""
+//
+// Regex (C++):
+// R"('s|'t|'re|'ve|'m|'ll|'d| ?[[:alpha:]]+| ?[[:digit:]]+| ?[^\s[:alpha:][:digit:]]+|\s+(?!\S)|\s+)"
+//
+std::vector<gpt_vocab::id> gpt_tokenize(const gpt_vocab & vocab, const std::string & text);
+
+// TODO: this is probably wrong, but I cannot figure out how this tokenizer works ..
+// ref: https://github.com/google/sentencepiece
+std::vector<gpt_vocab::id> llama_tokenize(const gpt_vocab & vocab, const std::string & text, bool bos);
+
+// load the tokens from encoder.json
+bool gpt_vocab_init(const std::string & fname, gpt_vocab & vocab);
+
+// sample next token given probabilities for each embedding
+//
+// - consider only the top K tokens
+// - from them, consider only the top tokens with cumulative probability > P
+//
+// TODO: not sure if this implementation is correct
+// TODO: temperature is not implemented
+//
+gpt_vocab::id gpt_sample_top_k_top_p(
+ const gpt_vocab & vocab,
+ const float * logits,
+ int top_k,
+ double top_p,
+ double temp,
+ std::mt19937 & rng);
+
+//
+// Quantization
+//
+
+size_t ggml_quantize_q4_0(float * src, void * dst, int n, int k, int qk, int64_t * hist);
+size_t ggml_quantize_q4_1(float * src, void * dst, int n, int k, int qk, int64_t * hist);