diff options
Diffstat (limited to 'utils.h')
-rw-r--r-- | utils.h | 94 |
1 files changed, 94 insertions, 0 deletions
diff --git a/utils.h b/utils.h new file mode 100644 index 00000000..d291964a --- /dev/null +++ b/utils.h @@ -0,0 +1,94 @@ +// Various helper functions and utilities + +#pragma once + +#include <string> +#include <map> +#include <vector> +#include <random> +#include <thread> + +// +// CLI argument parsing +// + +struct gpt_params { + int32_t seed = -1; // RNG seed + int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency()); + int32_t n_predict = 200; // new tokens to predict + + // sampling parameters + int32_t top_k = 100; + float top_p = 0.95f; + float temp = 0.8f; + + int32_t n_batch = 8; // batch size for prompt processing + + std::string model = "models/lamma-7B/ggml-model.bin"; // model path + std::string prompt; +}; + +bool gpt_params_parse(int argc, char ** argv, gpt_params & params); + +void gpt_print_usage(int argc, char ** argv, const gpt_params & params); + +std::string gpt_random_prompt(std::mt19937 & rng); + +// +// Vocab utils +// + +struct gpt_vocab { + using id = int32_t; + using token = std::string; + + std::map<token, id> token_to_id; + std::map<id, token> id_to_token; +}; + +void replace(std::string & str, const std::string & needle, const std::string & replacement); + +// poor-man's JSON parsing +std::map<std::string, int32_t> json_parse(const std::string & fname); + +// split text into tokens +// +// ref: https://github.com/openai/gpt-2/blob/a74da5d99abaaba920de8131d64da2862a8f213b/src/encoder.py#L53 +// +// Regex (Python): +// r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" +// +// Regex (C++): +// R"('s|'t|'re|'ve|'m|'ll|'d| ?[[:alpha:]]+| ?[[:digit:]]+| ?[^\s[:alpha:][:digit:]]+|\s+(?!\S)|\s+)" +// +std::vector<gpt_vocab::id> gpt_tokenize(const gpt_vocab & vocab, const std::string & text); + +// TODO: this is probably wrong, but I cannot figure out how this tokenizer works .. +// ref: https://github.com/google/sentencepiece +std::vector<gpt_vocab::id> llama_tokenize(const gpt_vocab & vocab, const std::string & text, bool bos); + +// load the tokens from encoder.json +bool gpt_vocab_init(const std::string & fname, gpt_vocab & vocab); + +// sample next token given probabilities for each embedding +// +// - consider only the top K tokens +// - from them, consider only the top tokens with cumulative probability > P +// +// TODO: not sure if this implementation is correct +// TODO: temperature is not implemented +// +gpt_vocab::id gpt_sample_top_k_top_p( + const gpt_vocab & vocab, + const float * logits, + int top_k, + double top_p, + double temp, + std::mt19937 & rng); + +// +// Quantization +// + +size_t ggml_quantize_q4_0(float * src, void * dst, int n, int k, int qk, int64_t * hist); +size_t ggml_quantize_q4_1(float * src, void * dst, int n, int k, int qk, int64_t * hist); |