summaryrefslogtreecommitdiff
AgeCommit message (Collapse)Author
2024-01-22ci : fix Windows CI by updating Intel SDE version (#5053)bobqianic
2024-01-22llama : add more qwen2 models (#5071)Shijie
2024-01-21Revert LLAMA_NATIVE to OFF in flake.nix (#5066)iSma
2024-01-21add safetensors support to convert-lora-to-ggml.py (#5062)kuronekosaiko
* add safetensors support to convert-lora-to-ggml.py * Update convert-lora-to-ggml.py Remove white space in line 69.
2024-01-21add `#include <string>` to unicode.h (#5051)bobqianic
Co-authored-by: Jared Van Bortel <jared@nomic.ai>
2024-01-21Add ability to evauate multiple choice tasks (#5047)Kawrakow
* TruthfulQA: 1st attempt, does not look like it is working The same implementation can be used for HellaSwag as well, so I converted a HellaSwag validation dataset to the binary format used here and tested with that. The score is only around 50, so something is not quite right. * TruthfulQA: works but the result is bad I know it works because if I convert the HellaSwag validation data to the binary format used in the truthful_qa_score() function I get the exact same result as from the hellaswag_score() function. But I guess, the questions are tricky and the way I have done the combination of question + answer is very likely not the best. The TruthfulQA validation dataset contains 817 questions, with random chance result around 19%. With this version I get 29.1% for Mistral-7B and 55.2% for Mistral-7B-Instruct-v0.2. The HF leader board results for these two models are 42.2% and 68.3%, respectively. * TruthfulQA: fix random sample * TruthfulQA: prepare tasks in parallel for large test datasets * Rename truthful_qa to multiple_choice * Make MSVC happy I had forgotten that MSVC does not make constexpr's available inside a lambda. --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-01-21Slightly faster imatrix (#5050)Kawrakow
* imatrix: speedup by avoiding unnecessary allocations and copies * imatrix: add --no-ppl option to skip PPL calculations altogether --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-01-21flake.lock: Update (#5054)Georgi Gerganov
Flake lock file updates: • Updated input 'nixpkgs': 'github:NixOS/nixpkgs/9b19f5e77dd906cb52dade0b7bd280339d2a1f3d' (2024-01-13) → 'github:NixOS/nixpkgs/bbe7d8f876fbbe7c959c90ba2ae2852220573261' (2024-01-19) Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2024-01-20convert : partially revert PR #4818 (#5041)Jared Van Bortel
2024-01-20perplexity : fix MSVC build after #5020 (#5043)Jared Van Bortel
* perplexity : fix MSVC build after #5020 * try a differerent fix
2024-01-20llama : run all KQV ops on the CPU with no KV offload (#5049)slaren
ggml-ci
2024-01-20cmake : add support for ccache (#5002)Herman Semenov
* Added support ccache for speedup recompilation * cmake : option to disable ccache --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-01-20Add a dart/flutter binding to README.md (#4882)adel boussaken
2024-01-20cuda : fix compile error in jetson platform (#4975)Kylin
* cuda: fix compile error in jetson platform * cuda: update comment in ggml-cuda.cu * cuda: update ggml-cuda.cu comment
2024-01-19finetune : fix ggml_allocr lifetimes (tmp workaround) (#5033)Uzo Nweke
* Fix issue with alloc causing max_compute_size to be calculated * remove ggml_allocr_free as suggested in issue #4791
2024-01-19imatrix : add README.mdGeorgi Gerganov
2024-01-19llama : support upcoming Qwen2 (#5037)Shijie
2024-01-19py : fix flake8 lintGeorgi Gerganov
2024-01-19winogrande: evaluate log-probs in parallel (#5036)Kawrakow
This is a relatively minor performance tweak resulting in ~10% speedup on my system. Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-01-19llama : add CodeShell support (#5016)chiranko
* llama: add codeshell support * llama.cpp: fix codeshell with NeoX rope Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-01-19perplexity: avoid unnecessary alloocations and logit copies (#5035)Kawrakow
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-01-19perplexity : faster Winogrande via batching (#5024)Georgi Gerganov
* perplexity : faster Winogrande via batching ggml-ci * perplexity : remove unused function * perplexity : only tokenize selected tasks for Winogrande
2024-01-19llama : fix falcon arch for tied output embeddings (#4978)John
* falcon arch fix for tied output embeddings * Update llama.cpp Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update llama.cpp * Update llama.cpp Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update llama.cpp --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-01-18cmake : add ggml public headers (#5011)Georgi Gerganov
2024-01-18server : defer tasks when "slot unavailable" (#5018)Xuan Son Nguyen
* server: defer task when no slot is available * remove unnecessary log --------- Co-authored-by: Xuan Son Nguyen <xuanson.nguyen@snowpack.eu>
2024-01-18llama : fix mlock with no-mmap with Metal (#5025)slaren
2024-01-18imatrix : fix assert for src0 non-cont checkGeorgi Gerganov
2024-01-18perplexity : fix winogrande N tasks optionGeorgi Gerganov
2024-01-18scripts : add get-winogrande.shGeorgi Gerganov
2024-01-18convert.py : fix llama/llama2 conversion due to vocab_size=-1 (#5019)David Sommers
PR #4818 (merged last week) reintroduced a config check for vocab_size that was addressed in PR #4258 (merged 2023-11-30). Without the fix, llama2 models can't be converted. The error is: `ValueError: The model's vocab size is set to -1 in params.json. Please update it manually. Maybe 32000?`
2024-01-18HellaSwag: speed up by parallelizing log-prob evaluation (#5020)Kawrakow
For Mistral-7B and fp16, time on my system goes down from 536 seconds to 423 seconds for the full evaluation dataset (10042 tasks). Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-01-18perplexity : faster HellaSwag via batching (#5017)Georgi Gerganov
* perplexity : faster HellaSwag ggml-ci * perplexity : clean-up ggml-ci * perplexity : no need for decode_helper ggml-ci * perplexity : add comments * perplexity : option to specify max batched tasks via `n_parallel` * perplexity : remove HellaSwag restruction for n_batch
2024-01-18Add Winogrande evaluation (#5015)Kawrakow
* winogrande: simple implementation It doesn't look like it is working - why? For Mistral-7B it is barely better than random chance (score ~60% for 1267 tasks), while I see Mistral-7B scoring 78.4% on the HF leader board. 1-sigma statistical uncertainty for 1267 tasks is ~1.4, so no way the difference is due to statistics. * winogrande: somewhat better Score for Mistrali7-B is now 68.9 on the validation set of winogrande_debiased. Still far from the reported 78.4, but better than what I had before. * winogrande: improving Mistral-7B score is now 73.56. Still not quite 78.4 but getting there. We are also getting a lower score on HellaSwag compared to HF leader board, so I'm not expecting we will get up to 78.4 anyway. It looks like it is better to skip the choice word(s) when evaluating the average log-likelihood. This kind of makes sense because a more common word (in Winogrande this is often a name) will have a higher probability without knowing about the follow up context, and this will skew the log-likelihood towards the more common word. We can only do this if the choice words are not last in the sentence. It also looks like it is better to skip the punctuation at the end of the sentence, provided the choice words are not last. * winogrande: add dataset instructions --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-01-18scritps : add helper script to get hellaswag data in txt formatGeorgi Gerganov
2024-01-18metal : fix memory leak, dangling pointer and unused autorel (#5007)Paul Tsochantaris
* Metal memory: Small memory leak on init, dangling pointer, and unused autorelease pool in graph compute * SPM header potential fix * Reverting symlinks
2024-01-17sync : ggmlGeorgi Gerganov
2024-01-17ggml : add IQ2 to test-backend-ops + refactoring (#4990)Georgi Gerganov
* ggml : add IQ2 to test-backend-ops + refactoring ggml-ci * cuda : update supports_op for IQ2 ggml-ci * ci : enable LLAMA_CUBLAS=1 for CUDA nodes ggml-ci * cuda : fix out-of-bounds-access in `mul_mat_vec_q` ggml-ci * tests : avoid creating RNGs for each Q tensor ggml-ci * tests : avoid creating RNGs for each tensor ggml-ci
2024-01-17imatrix : offload to GPU support (#4957)Georgi Gerganov
* backend : add eval callback ggml-ci * backend : group nodes in a single compute when user don't need them * backend : clean-up the implementation ggml-ci * simple : do not perform tensor data copy if not needed * simple : fix * imatrix : offload to GPU support * imatrix : fix ggml_mul_mat_id hanlding ggml-ci * ci : add imatrix test ggml-ci * ci : rearrange output ggml-ci
2024-01-17backend : add eval callback (#4935)Georgi Gerganov
* backend : add eval callback ggml-ci * backend : group nodes in a single compute when user don't need them * backend : clean-up the implementation ggml-ci * simple : do not perform tensor data copy if not needed * simple : fix * simple : no need for ggml_is_contiguous + fix bool parse * llama : fix callback placement in llama_context_params * backend : avoid double-ask callback calls * simple : restore examples, imatrix will serve as a demo
2024-01-17metal : create autorelease pool during library build (#4970)Georgi Gerganov
* metal : create autorelease pool during library build ggml-ci * test : simplify ggml-ci
2024-01-17py : fix whitespaceGeorgi Gerganov
2024-01-17py : fix missing added_tokens_dict for SPM and BPE vocabs (#4971)Georgi Gerganov
* py : fix missing added_tokens_dict for SPM vocab * py : pad with unknown tokens when data is missing ggml-ci * py : fix BPE vocab conversion ggml-ci * py : fix padded dummy tokens (I hope)
2024-01-17llama : use Q4_K for attn_v for Q2_K_S when n_gqa >= 4 (#4996)Kawrakow
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-01-17metal : remove unnecessary nil check (#4986)Paul Tsochantaris
2024-01-17llama : fix copy/paste error in llama_sampling_params comment (#4994)David Renshaw
2024-01-16py : remove unnecessary hasattr (#4903)Georgi Gerganov
2024-01-16nix: remove nixConfig from flake.nix (#4984)Philip Taron
2024-01-16finetune : add training data file to log message (#4979)Daniel Bevenius
This commit adds the name of the training data file to the log message printed when the training data is tokenized. The motivation for this change is that it can be useful to show which file is being tokenized when running the finetune example. Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>
2024-01-16ggml : importance matrix support for legacy quants (#4969)Kawrakow
* imatrix: adding support for legacy quants * imatrix: guard Q4_0/Q5_0 against ffn_down craziness --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-01-16examples : add complete parallel function calling example (#4974)Maximilian Winter