summaryrefslogtreecommitdiff
AgeCommit message (Collapse)Author
2023-12-29scripts : print list of sync commitsGeorgi Gerganov
2023-12-29ci : build with CLBlast + ggml-opencl use GGML_API (whisper/1576)Tamotsu Takahashi
* Build with CLBlast * Declare GGML_API After rebasing, examples/talk-llama failed: "D:\a\whisper.cpp\whisper.cpp\build\ALL_BUILD.vcxproj" (build target) (1) -> "D:\a\whisper.cpp\whisper.cpp\build\examples\talk-llama\talk-llama.vcxproj" (default target) (14) -> (Link target) -> llama.obj : error LNK2019: unresolved external symbol ggml_cl_free_data referenced in function "public: __cdecl llama_model::~llama_model(void)" (??1llama_model@@QEAA@XZ) [D:\a\whisper.cpp\whisper.cpp\build\examples\talk-llama\talk-llama.vcxproj] llama.obj : error LNK2019: unresolved external symbol ggml_cl_transform_tensor referenced in function "public: void __cdecl llama_model_loader::load_all_data(struct ggml_context *,void (__cdecl*)(float,void *),void *,struct llama_mlock *)" (?load_all_data@llama_model_loader@@QEAAXPEAUggml_context@@P6AXMPEAX@Z1PEAUllama_mlock@@@Z) [D:\a\whisper.cpp\whisper.cpp\build\examples\talk-llama\talk-llama.vcxproj] D:\a\whisper.cpp\whisper.cpp\build\bin\Release\talk-llama.exe : fatal error LNK1120: 2 unresolved externals [D:\a\whisper.cpp\whisper.cpp\build\examples\talk-llama\talk-llama.vcxproj]
2023-12-29sync : ggmlGeorgi Gerganov
2023-12-29ggml : fix some mul mat cases + add tests for src1 F16 (ggml/669)bssrdf
* fixed mul-mat error for old GPUs * style fixes * add mul mat src1 f16 test cases, fix more cases ggml-ci --------- Co-authored-by: bssrdf <bssrdf@gmail.com> Co-authored-by: slaren <slarengh@gmail.com>
2023-12-29scripts : do not sync commits from this repoGeorgi Gerganov
2023-12-28Fix OpenAI server sampling w.r.t. temp and seed (#4668)Justine Tunney
The default values for tfs_z and typical_p were being set to zero, which caused the token candidates array to get shrunk down to one element thus preventing any sampling. Note this only applies to OpenAI API compatible HTTP server requests. The solution is to use the default values that OpenAI documents, as well as ensuring we use the llama.cpp defaults for the rest. I've tested this change still ensures deterministic output by default. If a "temperature" greater than 0 is explicitly passed, then output is unique each time. If "seed" is specified in addition to "temperature" then the output becomes deterministic once more. See mozilla-Ocho/llamafile#117 See mozilla-Ocho/llamafile@9e4bf29
2023-12-28gpt2 : Add gpt2 architecture integration (#4555)manikbhandari
2023-12-27llama : add AWQ for llama, llama2, mpt, and mistral models (#4593)Nam D. Tran
* update: awq support llama-7b model * update: change order * update: benchmark results for llama2-7b * update: mistral 7b v1 benchmark * update: support 4 models * fix: Readme * update: ready for PR * update: readme * fix: readme * update: change order import * black * format code * update: work for bot mpt and awqmpt * update: readme * Rename to llm_build_ffn_mpt_awq * Formatted other files * Fixed params count * fix: remove code * update: more detail for mpt * fix: readme * fix: readme * update: change folder architecture * fix: common.cpp * fix: readme * fix: remove ggml_repeat * update: cicd * update: cicd * uppdate: remove use_awq arg * update: readme * llama : adapt plamo to new ffn ggml-ci --------- Co-authored-by: Trần Đức Nam <v.namtd12@vinai.io> Co-authored-by: Le Hoang Anh <v.anhlh33@vinai.io> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-12-27finetune : fix output formatting in print_params (#4653)Daniel Bevenius
This commit fixes the output formatting in the print_params function which currently looks like this: ```console print_params: n_vocab: 32000 print_params: n_ctx: 128 print_params: n_embd: 4096 print_params: n_ff: 11008 print_params: n_head: 32 print_params: n_head_kv: 32 print_params: n_layer: 32 print_params: norm_rms_eps : 0.000010 print_params: rope_freq_base : 10000.000000 print_params: rope_freq_scale : 1.000000 ``` With this comit the output will look like this: ```console print_params: n_vocab : 32000 print_params: n_ctx : 128 print_params: n_embd : 4096 print_params: n_ff : 11008 print_params: n_head : 32 print_params: n_head_kv : 32 print_params: n_layer : 32 print_params: norm_rms_eps : 0.000010 print_params: rope_freq_base : 10000.000000 print_params: rope_freq_scale : 1.000000 ``` Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>
2023-12-27scripts : add sync-ggml-am.shGeorgi Gerganov
2023-12-27ggml : fix dot product for ARM (#4630)Georgi Gerganov
ggml-ci
2023-12-27Add byte token type when tokenizer.model is not exists (#4641)wonjun Jang
* Add byte token type to hf format * remove unused variable
2023-12-26cuda : fix vmm pool with multi GPU (#4620)slaren
* cuda : fix vmm pool with multi GPU * hip * use recommended granularity instead of minimum * better error checking * fix mixtral * use cudaMemcpy3DPeerAsync * use cuda_pool_alloc in ggml_cuda_op_mul_mat * consolidate error checking in ggml_cuda_set_device * remove unnecessary inlines ggml-ci * style fixes * only use vmm for the main device * fix scratch buffer size, re-enable vmm pool for all devices * remove unnecessary check id != g_main_device
2023-12-26Update comment for AdamW implementation reference. (#4604)WillCorticesAI
Co-authored-by: Will Findley <findley@gmail.com>
2023-12-26Fix new CUDA10 compilation errors (#4635)FantasyGmm
2023-12-25Adding Emeltal reference to UI list (#4629)Paul Tsochantaris
2023-12-24simplify bug issue template (#4623)slaren
2023-12-24llama : add PLaMo model (#3557)Shintarou Okada
* add plamo mock * add tensor loading * plamo convert * update norm * able to compile * fix norm_rms_eps hparam * runnable * use inp_pos * seems ok * update kqv code * remove develop code * update README * shuffle attn_q.weight and attn_output.weight for broadcasting * remove plamo_llm_build_kqv and use llm_build_kqv * fix style * update * llama : remove obsolete KQ_scale * plamo : fix tensor names for correct GPU offload --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-12-24cuda : improve cuda pool efficiency using virtual memory (#4606)slaren
* cuda : improve cuda pool efficiency using virtual memory * fix mixtral * fix cmake build * check for vmm support, disable for hip ggml-ci * fix hip build * clarify granularity * move all caps to g_device_caps * refactor error checking * add cuda_pool_alloc, refactor most pool allocations ggml-ci * fix hip build * CUBLAS_TF32_TENSOR_OP_MATH is not a macro * more hip crap * llama : fix msvc warnings * ggml : fix msvc warnings * minor * minor * cuda : fallback to CPU on host buffer alloc fail * Update ggml-cuda.cu Co-authored-by: Johannes Gäßler <johannesg@5d6.de> * Update ggml-cuda.cu Co-authored-by: Johannes Gäßler <johannesg@5d6.de> * ensure allocations are always aligned * act_size -> actual_size --------- Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2023-12-23fallback to CPU buffer if host buffer alloc fails (#4610)slaren
2023-12-23ci(docker): fix tags in "Build and push docker image (tagged)" (#4603)Samuel Maynard
2023-12-23server : allow to specify custom prompt for penalty calculation (#3727)Alexey Parfenov
2023-12-23grammar : check the full vocab only if necessary (opt) (#4306)kalomaze
* Check the full vocab for grammar only if necessary * Fix missing logit restoration step (?) Does this matter, actually? * Fix whitespace / formatting * Adjust comment * Didn't mean to push test gbnf * Split sampling into the helper function (?) And also revert the changes made to the header * common : fix final newline --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-12-23CUDA: fixed row rounding for 0 tensor splits (#4594)Johannes Gäßler
2023-12-22lookup : add prompt lookup decoding example (#4484)LeonEricsson
* initial commit, going through initializations * main loop finished, starting to debug * BUG: generates gibberish/repeating tokens after a while * kv_cache management * Added colors to distinguish drafted tokens (--color). Updated README * lookup : fix token positions in the draft batch * lookup : use n_draft from CLI params * lookup : final touches --------- Co-authored-by: Leon Ericsson <leon.ericsson@icloud.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-12-22sync : ggml (fix im2col) (#4591)Georgi Gerganov
* cuda : fix im2col_f32_f16 (ggml/#658) ggml-ci * ggml-alloc : fix ggml_tallocr_is_own --------- Co-authored-by: leejet <leejet714@gmail.com>
2023-12-22cuda : fix jetson compile error (#4560)FantasyGmm
* fix old jetson compile error * Update Makefile * update jetson detect and cuda version detect * update cuda marco define * update makefile and cuda,fix some issue * Update README.md Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update Makefile * Update README.md --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-12-22Fix CudaMemcpy direction (#4599)Henrik Forstén
2023-12-22llama : fix platforms without mmap (#4578)slaren
* llama : fix platforms without mmap * win32 : limit prefetch size to the file size * fix win32 error clobber, unnecessary std::string in std::runtime_error
2023-12-22ggml : add comment about backward GGML_OP_DIAG_MASK_INF (#4203)Herman Semenov
2023-12-22make : add LLAMA_HIP_UMA option (#4587)Michael Kesper
NB: LLAMA_HIP_UMA=1 (or any value) adds MK_CPPFLAG -DGGML_HIP_UMA
2023-12-22ci : tag docker image with build number (#4584)rhuddleston
2023-12-22readme : add zig bindings (#4581)Deins
2023-12-22ggml : extend `enum ggml_log_level` with `GGML_LOG_LEVEL_DEBUG` (#4579)bobqianic
2023-12-22llama : add ability to cancel model loading (#4462)crasm
* llama : Add ability to cancel model load Updated llama_progress_callback so that if it returns false, the model loading is aborted. * llama : Add test for model load cancellation * Fix bool return in llama_model_load, remove std::ignore use * Update llama.cpp Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> * Fail test if model file is missing * Revert "Fail test if model file is missing" This reverts commit 32ebd525bf7e5a87ee8a3dbaab3d92ce79fbf23d. * Add test-model-load-cancel to Makefile * Revert "Revert "Fail test if model file is missing"" This reverts commit 2796953257ee5383fa7c8fe8fa8fc888c048fb0b. * Simplify .gitignore for tests, clang-tidy fixes * Label all ctest tests * ci : ctest uses -L main * Attempt at writing ctest_with_model * ci : get ci/run.sh working with test-model-load-cancel * ci : restrict .github/workflows/build.yml ctest to -L main * update requirements.txt * Disable test-model-load-cancel in make * Remove venv before creation * Restructure requirements.txt Top-level now imports the specific additional requirements for each python file. Using `pip install -r requirements.txt` will fail if versions become mismatched in the per-file requirements. * Make per-python-script requirements work alone This doesn't break the main requirements.txt. * Add comment * Add convert-persimmon-to-gguf.py to new requirements.txt scheme * Add check-requirements.sh script and GitHub workflow * Remove shellcheck installation step from workflow * Add nocleanup special arg * Fix merge see: https://github.com/ggerganov/llama.cpp/pull/4462#discussion_r1434593573 * reset to upstream/master * Redo changes for cancelling model load --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>
2023-12-21ggml : change ggml_scale to take a float instead of tensor (#4573)Georgi Gerganov
* ggml : change ggml_scale to take a float instead of tensor * ggml : fix CPU implementation * tests : fix test-grad0 ggml-ci
2023-12-21gguf-py : fix broken linkGeorgi Gerganov
2023-12-21gguf : simplify example dependenciesGeorgi Gerganov
2023-12-21ci : add `jlumbroso/free-disk-space` to docker workflow (#4150)Samuel Maynard
* [github][workflows][docker]: removes hardcoded `ggerganov` from `ghcr` repo * [github][workflows][docker]: adds `jlumbroso/free-disk-space`
2023-12-21llama : initial ggml-backend integration (#4520)slaren
* llama : initial ggml-backend integration * add ggml-metal * cuda backend can be used though ggml-backend with LLAMA_GGML_BACKEND_CUDA_TEST access all tensor data with ggml_backend_tensor_get/set * add ggml_backend_buffer_clear zero-init KV cache buffer * add ggml_backend_buffer_is_hos, used to avoid copies if possible when accesing tensor data * disable gpu backends with ngl 0 * more accurate mlock * unmap offloaded part of the model * use posix_fadvise64(.., POSIX_FADV_SEQUENTIAL) to improve performance with mmap * update quantize and lora * update session copy/set to use ggml-backend ggml-ci * use posix_fadvise instead of posix_fadvise64 * ggml_backend_alloc_ctx_tensors_from_buft : remove old print * llama_mmap::align_offset : use pointers instead of references for out parameters * restore progress_callback behavior * move final progress_callback call to load_all_data * cuda : fix fprintf format string (minor) * do not offload scales * llama_mmap : avoid unmapping the same fragments again in the destructor * remove unnecessary unmap * metal : add default log function that prints to stderr, cleanup code ggml-ci --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-12-21llama : allow getting n_batch from llama_context in c api (#4540)Marcus Dunn
* allowed getting n_batch from llama_context in c api * changed to use `uint32_t` instead of `int` * changed to use `uint32_t` instead of `int` in `llama_n_ctx` * Update llama.h --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-12-21metal : fix `ggml_metal_log` vargs (#4373)Finn Voorhees
2023-12-21cuda : ROCm AMD Unified Memory Architecture (UMA) handling (#4449)Erik Garrison
* AMD ROCm: handle UMA memory VRAM expansions This resolves #2797 by allowing ROCm AMD GPU users with a UMA to dynamically expand the VRAM allocated to the GPU. Without this, AMD ROCm users with shared CPU/GPU memory usually are stuck with the BIOS-set (or fixed) framebuffer VRAM, making it impossible to load more than 1-2 layers. Note that the model is duplicated in RAM because it's loaded once for the CPU and then copied into a second set of allocations that are managed by the HIP UMA system. We can fix this later. * clarify build process for ROCm on linux with cmake * avoid using deprecated ROCm hipMallocHost * keep simplifying the change required for UMA * cmake: enable UMA-compatible allocation when LLAMA_HIP_UMA=ON
2023-12-21ggml-cuda: Fix HIP build by adding define for __trap (#4569)arlo-phoenix
Regression of 139882392258671ffe5acdfcadc0bc08572d6eef HIP doesn't have trap, only abort
2023-12-21common : remove incorrect --model-draft default (#4568)Jared Van Bortel
2023-12-21CUDA: mul_mat_id always on GPU for batches >= 32 (#4553)Johannes Gäßler
2023-12-21readme : update coding guidelinesGeorgi Gerganov
2023-12-21py : open merges file as 'utf-8' (#4566)howlger
Otherwise, on Windows converting bling-phi-2-v0 (<https://huggingface.co/llmware/bling-phi-2-v0>) via convert-hf-to-gguf.py will fail with the following error: ``` Traceback (most recent call last): File "C:\Users\User\git\gguf\convert-hf-to-gguf.py", line 1061, in <module> model_instance.set_vocab() File "C:\Users\User\git\gguf\convert-hf-to-gguf.py", line 52, in set_vocab self._set_vocab_gpt2() File "C:\Users\User\git\gguf\convert-hf-to-gguf.py", line 264, in _set_vocab_gpt2 special_vocab = gguf.SpecialVocab(dir_model, load_merges=True) File "C:\Users\User\git\gguf\gguf\vocab.py", line 33, in __init__ self._load(Path(path)) File "C:\Users\User\git\gguf\gguf\vocab.py", line 81, in _load self._try_load_merges_txt(path) File "C:\Users\User\git\gguf\gguf\vocab.py", line 95, in _try_load_merges_txt for line in fp: File "C:\Users\User\miniconda3\envs\gguf\lib\encodings\cp1252.py", line 23, in decode return codecs.charmap_decode(input,self.errors,decoding_table)[0] UnicodeDecodeError: 'charmap' codec can't decode byte 0x81 in position 1415: character maps to <undefined> ```
2023-12-21cuda : better error message for ggml_get_rows (#4561)bobqianic
* Update ggml-cuda.cu * Update ggml-cuda.cu * Update ggml-cuda.cu --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-12-21cuda : replace asserts in wrong architecture checks with __trap (#4556)slaren
* cuda : replace asserts in wrong architecture checks with __trap * make bad_arch noreturn, remove returns