Age | Commit message (Collapse) | Author |
|
* ggml : group mul_mat_id rows by matrix (cpu only)
* remove mmid parameters from mm forward
* store row groups in wdata and calculate only once in GGML_TASK_INIT
ggml-ci
|
|
* ggml : use ggml_row_size where possible
ggml-ci
* ggml : move ggml_nbytes_split to ggml-cuda.cu
|
|
ggml-ci
|
|
|
|
* Fixes "Not enough space in the context's memory pool" encountered on certain models, which seems to be caused by some imprecision related to the automatic casting of floating point values
* do not cast to size_t, instead just use doubles
* ggml : add ggml_row_size(), deprecate ggml_type_sizef()
* ggml : fix row size compute to avoid overflows
* tests : fix sizey -> sizez
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
|
|
|
|
* Add HFVocab into convert.py
* Update convert.py
* Update convert.py
* add bytes_to_unicode function
* change add_meta_vocab fucntion
* remove debug code
* remove byte_encoder
* Add newline between classes
* Check tokenizer.json when tokenizer.model is not exist.
* Move transformers dependency to local code
* Add error context with 'raise from'
* Add fast tokenizer option to BpeVocab
* Update convert.py
* Add VocabLoader and remove *Vocab class
* Add transformers dependency
* remove added tokens and check newline token to decide spm or bpe
* Update convert.py
* Add special token type
* Update convert.py
* Update convert.py
* Update convert.py
* Fix typo in convert.py
* Fix when params.n_vocab < tokenizer vocab size
* update vocab class
* change funtion name
* Remove unused variable/functions, add types to class variable and methods, delete blank liens
* fix flake8 warnings
* code style cleanup
* make mypy happy
* change exception
---------
Co-authored-by: Jared Van Bortel <jared@nomic.ai>
|
|
|
|
(#4446)
|
|
* sync : ggml (SD ops, tests, kernels)
ggml-ci
* cuda : restore im2col
ggml-ci
* metal : fix accuracy of dequantization kernels
ggml-ci
* cuda : restore correct im2col
ggml-ci
* metal : try to fix moe test by reducing expert size
ggml-ci
* cuda : fix bin bcast when src1 and dst have different types
ggml-ci
---------
Co-authored-by: slaren <slarengh@gmail.com>
|
|
|
|
|
|
|
|
* convert : support Mixtral as LLAMA arch
* convert : fix n_ff typo
* llama : model loading
* ggml : sync latest ggml_mul_mat_id
* llama : update graph to support MoE
* llama : fix cur -> cur_expert
* llama : first working version
* llama : fix expert weighting in the FFN
* ggml : ggml_get_rows support 2D indexing [n_tokens, n_experts] (cpu only)
* ggml : add n_as argument to ggml_mul_mat_id
* ggml : fix ggml_get_rows to take into account ne02 / ne11
* metal : add more general support for ggml_get_rows + tests
* llama : add basic support for offloading moe with CUDA
* metal : add/mul/div use general kernel when src1 not cont
* metal : reduce the kernel launches for ggml_mul_mat_id
* ggml : get_rows : support non-contiguos tensors with gaps, generalize up to 3D
* ggml : update get_rows f16 and q
* cuda : support non-contiguous src1 in get_rows
* llama : offload missing ffn_moe_silu
* metal : fix ggml_get_rows to work with non-cont src1
* metal : add indirect mat-vec kernels for all quantization types
* llama : do not quantize expert gating tensors
* llama : add n_expert and n_expert_used to hparams + change quants
* test-backend-ops : add moe test
* cuda : fix get_rows when ncols is odd
* convert : determine n_ctx correctly
* metal : fix ggml_mul_mat_id for F32
* test-backend-ops : make experts more evenly probable (test_moe)
* test-backend-ops : cleanup, add moe test for batches
* test-backend-ops : add cpy from f32 -> all types test
* test-backend-ops : fix dequantize block offset
* llama : fix hard-coded number of experts
* test-backend-ops : simplify and disable slow tests to avoid CI timeout
* test-backend-ops : disable MOE test with thread sanitizer
* cuda : fix mul_mat_id with multi gpu
* convert : use 1e6 rope_freq_base for mixtral
* convert : fix style
* convert : support safetensors format
* gguf-py : bump version
* metal : add cpy f16 -> f32 kernel
* metal : fix binary ops for ne10 % 4 != 0
* test-backend-ops : add one more sum_rows test
* ggml : do not use BLAS with ggml_mul_mat_id
* convert-hf : support for mixtral-instruct (#4428)
* convert : typo fix, add additional hyperparameters, use LLaMA arch for Mixtral-instruct
* convert : use sentencepiece tokenizer for Mixtral-instruct
* convert : make flake8 happy
* metal : fix soft_max kernels
ref: https://github.com/ggerganov/ggml/pull/621/commits/1914017863d2f9ab8ecc0281cc2a56d683668b92
* metal : limit kernels to not use more than the allowed threads
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: Radek Pilar <github@mrkva.eu>
|
|
* Set a more typical Top P setting as the default
* Update temp max
|
|
|
|
* build : target Windows 8 for standard mingw-w64
* make : fix missing console.o deps
This was causing a link error with `make all` on Windows.
|
|
llama_context_params.logits_all is a parameter for controlling
llama_eval. This documents that logits_all should not be used with
llama_decode and llama_batch.
|
|
|
|
|
|
Fix small typo.
|
|
(#4396)
|
|
* sync : ggml (part 1)
* sync : ggml (part 2, CUDA)
* sync : ggml (part 3, Metal)
* ggml : build fixes
ggml-ci
* cuda : restore lost changes
* cuda : restore lost changes (StableLM rope)
* cmake : enable separable compilation for CUDA
ggml-ci
* ggml-cuda : remove device side dequantize
* Revert "cmake : enable separable compilation for CUDA"
This reverts commit 09e35d04b1c4ca67f9685690160b35bc885a89ac.
* cuda : remove assert for rope
* tests : add test-backend-ops
* ggml : fix bug in ggml_concat
* ggml : restore `ggml_get_n_tasks()` logic in `ggml_graph_plan()`
* ci : try to fix macOS
* ggml-backend : remove backend self-registration
* ci : disable Metal for macOS cmake build
ggml-ci
* metal : fix "supports family" call
* metal : fix assert
* metal : print resource path
ggml-ci
---------
Co-authored-by: slaren <slarengh@gmail.com>
|
|
* per-layer KV
* remove unnecessary copies
* less code duplication, offload k and v separately
* llama : offload KV cache per-layer
* llama : offload K shift tensors
* llama : offload for rest of the model arches
* llama : enable offload debug temporarily
* llama : keep the KV related layers on the device
* llama : remove mirrors, perform Device -> Host when partial offload
* common : add command-line arg to disable KV cache offloading
* llama : update session save/load
* llama : support quantum K cache (#4312)
* llama : support quantum K cache (wip)
* metal : add F32 -> Q8_0 copy kernel
* cuda : add F32 -> Q8_0 copy kernel
ggml-ci
* cuda : use mmv kernel for quantum cache ops
* llama : pass KV cache type through API
* llama : fix build
ggml-ci
* metal : add F32 -> Q4_0 copy kernel
* metal : add F32 -> Q4_1 copy kernel
* cuda : wip
* cuda : add F32 -> Q4_0 and F32 -> Q4_1 copy kernels
* llama-bench : support type_k/type_v
* metal : use mm kernel only for quantum KV cache
* cuda : add comment
* llama : remove memory_f16 and kv_f16 flags
---------
Co-authored-by: slaren <slarengh@gmail.com>
* readme : add API change notice
---------
Co-authored-by: slaren <slarengh@gmail.com>
|
|
examples/train-text-from-scratch/train-text-from-scratch.cpp) (#4351)
On commit b1108 (44c117f4) xaedes added
ggml_allocr * alloc = NULL;
... (many lines in between)
if (alloc) {
ggml_allocr_free(alloc);
}
Which is correct, but it's easy to lose context after many lines in between.
On commit b1287 (0e76a899) xaedes made a big change. From here on, alloc is freed eagerly.
alloc = ggml_allocr_new(...)
... (short lines of code)
ggml_allocr_free(alloc)
This happens a few times, but alloc is never set to NULL, and many lines below,
we still have
if (alloc) {
ggml_allocr_free(alloc);
}
which causes a double-free.
|
|
|
|
|
|
* speculative: add some colors
* minor : add braces
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
|
|
* reserve space for codepoints
* improvement for the appended 0
* used precomputed token text for grammar sample
* reserve canidates_decoded
* reserve canidates_grammar
* remove candidates_decoded
* Revert "remove candidates_decoded"
This reverts commit 3773328080e6a139ee83198329a13cf4ff61d707.
* changed decode_utf8 to take src by ref
|
|
* feat: Allow overriding GGUF metadata when loading model
* Fix the one time GCC is stricter than clang about something
* Step1
* Refactor... basically everything!
* Nuke obsolete GetArrayLen struct
* simplify std::string specialization
* Various cleanups
Add informational output when overrides are applied
Warn user when an override with the wrong type is specified
* Fix broken logic for parsing bool KV overrides
Fix issue where overrides didn't apply when key missing in GGUF metadata
Resolve merge changes
* llama : rearrange model params
* Update new GET_KEY call
Add note that metadata KV overrides aren't reflected in initial metadata KV info dump
---------
Co-authored-by: cebtenzzre <cebtenzzre@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
|
|
* Samplers sequence order w parameter
* Cleaned commented code
* Fixed formatting
* Rewrote with unordered_map
* Revert and rewrite, too many problems and safeguards would be needed
* Fixed code style
* Code style fixes according to review
* More readable samplers input string, fixed help
* Style fix in sampler_queue
* Formatting fixes
* Fixing whitespaces
|
|
|
|
This commit updates the error message that is printed when the
KV cache is not big enough to hold all the prompt and generated
tokens. Specifically it removes the reference to n_parallel and
replaces it with n_len.
Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>
|
|
|
|
|
|
preceeding -> preceding
|
|
* ggml : fix soft max out-of-bounds access
ggml-ci
* ggml : reuse ggml_get_n_tasks() in ggml_graph_plan()
ggml-ci
|
|
ggml-ci
|
|
(cherry picked from commit Mozilla-Ocho/llamafile@e8c92bcb84ae3bcbf0d617b7ee6a5413bcbd58af)
|
|
|
|
* llama : pad KV cache size to 32
* metal : try to improve batched decoding
|
|
|
|
|
|
* Fix token_to_piece implementation in Swift
* Fix errors
|
|
|
|
* Support attention_bias on LLaMA architecture
QKVO bias, should fix InternLM (https://github.com/ggerganov/llama.cpp/issues/3133) and works for LLaMAfied Qwen models (https://github.com/ggerganov/llama.cpp/pull/3743#issuecomment-1825923608).
* check existence of qkvo bias while loading llama models
Tested on LLaMA2, CUDA and CPU.
* Update llama.cpp
|
|
* enable qwen to llama.cpp
* llama : do not GPU split bias tensors
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
|
|
happens with multi-threaded quantization of Qwen-72B
ggml-ci
|
|
This commit adds a requirements file for the convert-hf-to-gguf.py
script, and also add the torch and transformers packages to it.
The motivation for this is that currently running convert-hf-to-gguf.py
will produce the following error:
```console
$ python3 -m venv venv
$ source venv/bin/activate
(venv) $ pip install -r requirements.txt
Collecting numpy==1.24.4
Collecting sentencepiece==0.1.98
Collecting gguf>=0.1.0
Installing collected packages: sentencepiece, numpy, gguf
Successfully installed gguf-0.5.1 numpy-1.24.4 sentencepiece-0.1.98
(venv) $ python convert-hf-to-gguf.py --help
Traceback (most recent call last):
File "llama.cpp/convert-hf-to-gguf.py", line 16, in <module>
import torch
ModuleNotFoundError: No module named 'torch'
```
With this commit, and using requirements-hf-to-gguf.txt instead of
requirements.txt, the script can be run and shows the help output.
Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>
|
|
* metal : implement soft_max_ext
* cuda : implement soft_max_ext
* ggml : implement soft_max_ext (CPU)
* batched-bench : print threads
ggml-ci
* metal : simplify soft_max encoding
ggml-ci
* cuda : use 512 threads for soft_max instead of 32
* ggml : update soft max cpu
* cuda : do warp-based block reduce
* cuda : increase max block size to 1024
* cuda : fix warp reduction initialization of shared mem
* metal : warp-based reduction for soft max kernel
* metal : warp-based reduce for rms_norm
* metal : simplify soft max kernel
ggml-ci
* alloc : fix build with debug
|