Age | Commit message (Collapse) | Author |
|
I always use cmake, so had forgotten to pay attention to the
Makefile.
|
|
See comments in f3a823ce729a7db33e7d4375eae7291bbe6196db
|
|
|
|
About 4% slower than Q6_K for PP-512, but 10% faster for TG-128.
Someone has screwed up Q6_K TG performance on Metal? With the
cobntinuous "improvements" in ggml I wouldn't be surprised.
Need to look into it later.
|
|
Respectable performance, only slightly slower than Q6_K.
|
|
We now arrive at pp-512 = 147 t/s for LLaMA-3.1-8B.
TG-128 is 9.5 t/s. This is better than last commit,
but still kind of slow compared to Q6_K.
My last commit message is wrong: also iq3_k needs a fix
for overflow.
|
|
We need to do 4 shuffles to get the non-uniform values, so this
makes it slower than other iqX_k quants.
And then I realized that I was using the standard Zen4 template for
all iqX_k quants. The standard template converts the 32-bit integers
obtained after _mm512_dpbusds_epi32 back to 16 bits, and then multiples
with 16-bit block scales. But this can overfow for iq4_k, iq5_k, and
iq6_k. I guess, I did not notice with iq4_k and iq5_k because the
PPL difference to CUDA was relatively small, and I attributed it to
Q8_K not being accurate enough for the activations. But for iq6_k
the PPL difference was much too big to be attributable to Q8_K
inaccuracies, so that's when I realized that I cannot be packing
the _mm512_dpbusds_epi32 result into 16 bit for 4-,5-,6-bit iqX_k
quants.
For now I fixed it for iq6_k, but the outcome is that it is
significantly slower than Q6_K: I get PP-512 = 125 t/s for
LLaMA-3.1-8B vs 180 t/s for Q6_K, so I need to look for a better
approach.
|
|
90.2 t/s for LLaMA-3.1-8B. Q6_K gives 91.2 t/s, so we are good.
|
|
We get a slightly better PPL for LLaMA-3.1-8B compared to q6_K
(0.14% vs 0.26% quantization error).
|
|
|
|
|
|
* iq2_tn: TriLM specific 2.0625 bpw quantization
Quantize/dequantize/scale dot product.
I get 46 t/s for the TriLM-3.9B with any SIMD!
Finally a compiler doing a decent job auto-vectorizing the
scalar implementation.
* iq2_tn: AVX512
Just reusing the k-quants template gets us to PP-512 = 376 t/s,
TG-128 = 47.6 t/s for TriLM-3.9B.
* iq2_tn: AVX512
With this tweak we get to PP-512 = 431 t/s.
* iq2_tn: AVX512
With this tweak we get TG-128 = 19.58 / 35.18 t/s for 1 / 2 threads.
At 4 threads we saturate at 48.41 t/s, and then performance slowly
degrades with increasing number of threads.
* iq2_tn: AVX2
PP512 = 440 t/s on the Ryzen-5975WX.
We should be able to do better.
* iq2_tn: initial NEON version
* iq2_tn: NEON
For TriLM-3.9B running on the M2-Max we get PP-512 = 193.5 t/s,
TG-128 = 75.5 t/s. This is in line with what we have for
iq2_bn ant 3.3B Bitnet.
* iq2_tn: Metal
For TriLM-3.9B on a 30-core M2-Max we get PP-512 = 890 t/s,
TG-128 = 98.5 t/s.
* iq2_tn: CUDA
For TriLM-3.9B running on RTX-4080 we get PP-512 = 9936 t/s,
TG-128 = 299.2 t/s.
* iq2_tn: AVX2 PP improvement
We now get PP-512 = 490.73 t/s for TriLM-3.9B on the Ryzen-5975WX.
We have PP-512 = 636.61 t/s for Bintnet-3B quantized with iq2_bn.
Bintnet-3B is actually 3.4B, TriLM-3.9B is 3.99B, so we would
expect 3.43/3.99 * 636 = 546 t/s, so it seems we still have something
that is not quite optimal in iq2_tn.
* iq2_tn: small NEON improvement
For TriLM-3.9B we now get PP-512 = 206.6 t/s and TG-128 = 76.4 t/s.
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
|
|
There have been a few minor improvements here and there, so updated the AVX2 Bitnet performance values to current main branch.
|
|
Just use the same trick as iq4_k
|
|
|
|
|
|
|
|
PP-512 goes to 473 t/s up from 452 t/s.
|
|
Quite slow: 43 t/s for a 7B model
|
|
It is slow: 45.4 t/s for 7B model vs 50 t/s for iq2_xs,
or 63.3 t/s for q2_K_S.
|
|
|
|
|
|
We get PP-512 = 196 t/s for LLaMA-3.1-8B on the Ryzen-5975WX.
|
|
We get PP-512 = 180 t/s, TG-128(4 threads) = 16.35 on the Ryzen-7950X
for LLaMA-3.1-8B.
In comparison, iq3_s has PP-512 = 96 t/s, TG-128 = 7.6 t/s with
iqk_mul_mat, and PP-512 = 28 t/s, TG-128 = 6.8 t/s in mainline llama.cpp
|
|
138 t/s for LLaMA-3.1-8B, which is almost on par with iq3_s.
|
|
Slightly slower than iq3_s - 132 t/s vs 138 t/s for
LLaMA-3.1-8B.
|
|
Quantize/dequantize, CUDA dequantize.
PPL of LLaMA-3.1-8B is better than iq3_s and iq3_m.
|
|
169.2 t/s vs 167.8 t/s before.
|
|
Almost on par with iq2_xs (168 t/s vs 172 t/s).
|
|
Performance is pathetic: 140 t/s for LLaMA-3.1-8B vs
172 t/s for iq2_xs.
|
|
|
|
I cannot possibly wait for a 5 minutes nvcc compilation
each time I touch vecdotq.cuh.
Also, cmake was adding --options-file X.rsp to the nvcc
compile commands, which confuses clangd, so I have turned
that off.
|
|
|
|
Performance is roughly on par with q5_0.
|
|
|
|
|
|
|
|
Quantize/dequantize, CUDA dequantize
|
|
|
|
|
|
|
|
|
|
|
|
Quantize/dequantize, CUDA deqantize, AVX512 iqk_mul_mat.
|
|
* iq4_k: basics
* quantize/dequantize works
* CUDA dequantize works and one can run PPL calcs. I get
PPL = 6.5258 for LlaMA-3.1-8B, which is 1.77% above fp16.
In comparison, q4_K_S (same size) is 2.88% above fp16.
* TG on CUDA does not work. Johannes has changed the way i-quant dot
products are done, so need to sort out what he had in mind
* iqk_mul_mat is not implemented.
* iq4_k: TG now works on CUDA
* iq4_k: AVX512 implementation
For LLaMA-3.1-8B we get PP-512 = 182.6 t/s, TG-128 = 13.6 t/s,
so almost the same as q4_K_S.
* iq4_k: AVX2 implementation
For LLaMA-3.1-8B we get PP-512 = 203.1 t/s, TG-128 = 12.9 t/s
on the Ryzen-5975X.
* iq4_k: NEON implementation
For LLaMA-3.1-8B we get PP-512 = 60.7 t/s, TG-128 = 25.0 t/s
on the M2-Max. TG is on par with q4_K_S, PP is ~10% slower.
* iq4_k: Metal implementation
For LLaMA-3.1-8B we get PP-512 = 445 t/s, TG-128 = 46.3 t/s
on a 30-core M2-Max GPU. This is to be compared with (currently)
PP-512 = 460 t/s, TG-128 = 51 t/s for q4_K_S.
* iq4_k: scalar dot product
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
It seemed Gemma-2 performance is lower than expected for its size.
Looking at the architecture, I noticed that tanh is used in each layer,
and then at the end for softcaping the final output. ggml had tanh
set to be computed with a single thread. Combined with tanh(x) being a
pretty expensive operation, this resulted in a significant fraction
of the time being spent in the tanh operation.
After multi-threading ggml_vec_soft_max_f32 and simd-ifying the
tanh computation, I observe a 33% gain in prompt processing speed (!!!)
TG is of course memory bound, but despite this, we still get a
~2% boost at 4 threads (which gives max TG performance on my
Ryzen-7950X).
Simd-ifying:
We have
tanh(x) = (exp(2*x) - 1)/(exp(2*x) + 1)
so we can just use Justine Tunney's SIMD exp implementation.
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
* Merging mainline - WIP
* Merging mainline - WIP
AVX2 and CUDA appear to work.
CUDA performance seems slightly (~1-2%) lower as it is so often
the case with llama.cpp/ggml after some "improvements" have been made.
* Merging mainline - fix Metal
* Remove check
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
OK, I should have checked how it was done for Gemma and do
the same for Bitnet. But better late than never.
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
* bitnet: put token embeddings on the GPU
* Update README with the new CUDA/Meat performance
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|