Age | Commit message (Collapse) | Author |
|
|
|
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
* Fix FA bug on AVX2
* Also this was wrong
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
Co-authored-by: junhuihe <junhui-he@outlook.com>
|
|
* Update README.md
* Edits
* Updates
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
* Fix IQK_FA_ALL_QUANTS on AVX2
* Make it also work, not just compile
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
|
|
Add @ubergarm
|
|
* FA: provide work buffer for K repacking
* Add header to avoid comp0iler warnings
* WIP
* WIP
* WIP
* WIP
* Slightly better
* WIP (Zen4)
* WIP
* Try to improve for unusual number of heads/number of threads
* Use mul_mat_qX_0_q8_2_Tx for q6_0 in FA
* Use mul_mat_qX_0_q8_2_Tx for q4_0 in FA
* Use Sum4q4 for q4_0
* WIP
* WIP
* Much better FA TG with q8_0 KV cache
Just repack it even for TG. But do the repacking for k_step rows,
not the whole K tensor.
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
* Add GLM-4-0414 model support
Based on zRzRzRzRzRzRzR's PR on mainline llama.cpp.
Still some issues where it doesn't work:
* offloading >=60 layers to GPU
* no flash attention
* Remove seemingly unused llm_tensor enums
Both of these seem unused and LLM_TENSOR_ATTN_POST_NORM already
existed which seems pretty similar? Don't think they were used in the
python code either...
So removed these as possibly just cruft:
* LLM_TENSOR_POST_ATTN_NORM
* LLM_TENSOR_POST_MLP_NORM
* Set flash attention precision to f32 on GLM4 arch
* Set non flash attention precision to f32 on GLM4
* Remove reshape_3d() for Vcur in build_glm4()
This fixes the non-flash-attention inferencing on both CPU and CUDA.
|
|
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
* Add support for Cohere2
* Fixe IQ4_NL on AVX2
* Command-A needs fp32 precision for K*Q
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
* Update GGMLQuantizationType
* Update LlamaFileType
* Update GGML_QUANT_SIZES
|
|
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
* add support for bitnet2b_2501 model
* Fixes
* Support both model names
---------
Co-authored-by: potassiummmm <zhou.hansong@outlook.com>
|
|
* Attempt fix
* Attempt fix 2
* Attempt fix 3
* Attempt fix 4
* Attempt fix 5
* Attempt fix 6
* Attempt fix 7
* Attempt fix 8
* Attempt fix 9
* Attempt fix 10
* Attempt fix 11
* Attempt fix 12
* Attempt fix 13
|
|
* Slightly better CPU TG performance for GQA
* Better CPU FA implementation for TG when GQA
* Minor
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
* Allow q8_0 KV cache for head size 256
* We need also these
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
* imatrix: collect layer influence statistics
* imatrix: collect layer influence statiscs also for the last layer
For the last layer we need to use the input for the output.weight
tensor. Last layer(s) tend(s) to be important, so it is useful to also
have its influence metric.
* imatrix: separate metric for attention and ffn importance
* Use stripped tensor name, not src0->name
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
* Much faster and it looks like better iq1_m quantiation
* Cleanup
* Minor
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
* llama4: WIP
* llama4: this seems to be working
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
Well, there was also the initial MLA PR, which was derived from @fairydreaming
|
|
Forgot to add @Nexesenex
|
|
* Use links for ggml/llama.cpp authors
* This file is not html
* More
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
I did not realize until today that the [ggml authors](https://github.com/ggml-org/ggml/blob/master/AUTHORS) is not the same thing as the [llama.cpp authors](https://github.com/ggml-org/llama.cpp/blob/master/AUTHORS).
This PR corrects my mistake.
|
|
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
* Metal: WIP to update Metal FA implementation
Dk=192, Dv=128 works, but not Dk = 576, Dv = 512
* Metal FA: go to float
* WIP
* Metal FA: MLA options now all work
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
* Fix GCC compilation errors on ARM
* One more
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
* MoE improvements on Metal
This version beats mainline, there are things I don't understand:
* Mianline has effectively gone to GEMV for MUL_MAT_ID. We can do the
same, but we are 30% slower. Why?
* Using actual GEMM, we beat mainline with ubtach size of 128. But then
performance degrades. Why?
* Some cleanup
* Much better
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
|
|
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
* iq3_k: slightly better quantization
Not much of a difference for most models, but this change
avoids what it looks like a catastrophic failure for DeepSeek-Lite
(PPL is now 7.041 vs 7.314 on main).
* Small improvement for type-1 quants
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
* Make sure no interleaved quants are being used for token embeddings
also with `--pure` and/or `--custom-q`.
* Simplify
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
* Better make_qx_quants
Tested with q4_0 and q3_K (pure, imatrix), and the improvement is
quite significant.
* Sae for iq4_nl, iq4_xs
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
with --pure (#294)
* WIP - not working
* q8_0 without bells and wistles works
* It works for q8_0
* Use bf16 instead of f16,int16
* q4_0_r8
* q5_0_r4
* q6_0_r4
* Also q4_1 and q5_1
* Add check if selected type is possible with --pure
I often want to quantize with --pure to see quantization performance
without quantization mixes. But for models where there qre tensors
with row sizes that are not multiple of 256, this results in a crash
for k- and i-quants. Hence, lets add a check if the quant selected
via --pure is applicable, and change it if not.
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|