summaryrefslogtreecommitdiff
path: root/examples/imatrix
AgeCommit message (Collapse)Author
2025-05-13Fix imatrix calculation for MLA models (#411)Kawrakow
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-04-14imatrix: collect layer influence statistics (#328)Kawrakow
* imatrix: collect layer influence statistics * imatrix: collect layer influence statiscs also for the last layer For the last layer we need to use the input for the output.weight tensor. Last layer(s) tend(s) to be important, so it is useful to also have its influence metric. * imatrix: separate metric for attention and ffn importance * Use stripped tensor name, not src0->name --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-03-10DeepSeek imatrix stuff (#250)Kawrakow
* This gives us ~20% TG speedup for DeepSeek on CUDA * Slightly better * Also do it for plain (not fused) mul_mat_id * Guard against numerical precision issues for MLA on CUDA * imatrix: wv_b <-> wkv_b --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-02-12Fix imatrix overprotectiveness (#202)Kawrakow
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-08-12Merge mainline - Aug 12 2024 (#17)Kawrakow
* Merge mainline * Fix after merge * Remove CI check --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-07-27Merge mainline llama.cpp (#3)Kawrakow
* Merging mainline - WIP * Merging mainline - WIP AVX2 and CUDA appear to work. CUDA performance seems slightly (~1-2%) lower as it is so often the case with llama.cpp/ggml after some "improvements" have been made. * Merging mainline - fix Metal * Remove check --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-07-24Add copyright noticesIwan Kawrakow
Only on the files where I have contributed in a significant way, or the files I wrote myself.
2024-06-26imatrix: be able to specify the name of the output tensorIwan Kawrakow
For some models the same tensor is used for token embeddings and output. This tensor tends to be named token_embedding.weight rather than output.weight, which prevernts us from collecting imatrix data for this tensor. With this commit we can tell the name of the output tensor to the imatrix tool.
2024-06-13`build`: rename main → llama-cli, server → llama-server, llava-cli → ↵Olivier Chafik
llama-llava-cli, etc... (#7809) * `main`/`server`: rename to `llama` / `llama-server` for consistency w/ homebrew * server: update refs -> llama-server gitignore llama-server * server: simplify nix package * main: update refs -> llama fix examples/main ref * main/server: fix targets * update more names * Update build.yml * rm accidentally checked in bins * update straggling refs * Update .gitignore * Update server-llm.sh * main: target name -> llama-cli * Prefix all example bins w/ llama- * fix main refs * rename {main->llama}-cmake-pkg binary * prefix more cmake targets w/ llama- * add/fix gbnf-validator subfolder to cmake * sort cmake example subdirs * rm bin files * fix llama-lookup-* Makefile rules * gitignore /llama-* * rename Dockerfiles * rename llama|main -> llama-cli; consistent RPM bin prefixes * fix some missing -cli suffixes * rename dockerfile w/ llama-cli * rename(make): llama-baby-llama * update dockerfile refs * more llama-cli(.exe) * fix test-eval-callback * rename: llama-cli-cmake-pkg(.exe) * address gbnf-validator unused fread warning (switched to C++ / ifstream) * add two missing llama- prefixes * Updating docs for eval-callback binary to use new `llama-` prefix. * Updating a few lingering doc references for rename of main to llama-cli * Updating `run-with-preset.py` to use new binary names. Updating docs around `perplexity` binary rename. * Updating documentation references for lookup-merge and export-lora * Updating two small `main` references missed earlier in the finetune docs. * Update apps.nix * update grammar/README.md w/ new llama-* names * update llama-rpc-server bin name + doc * Revert "update llama-rpc-server bin name + doc" This reverts commit e474ef1df481fd8936cd7d098e3065d7de378930. * add hot topic notice to README.md * Update README.md * Update README.md * rename gguf-split & quantize bins refs in **/tests.sh --------- Co-authored-by: HanClinto <hanclinto@gmail.com>
2024-06-09imatrix : handle partial entries (#7833)Georgi Gerganov
2024-06-07check for nans in imatrix and quantize (#7807)slaren
* imatrix : detect nan/inf values * quantize : check imatrix for nan/inf values
2024-06-06imatrix : migrate to gpt_params (#7771)Georgi Gerganov
* imatrix : migrate to gpt_params ggml-ci * imatrix : add --save-frequency cli arg * common : fix --no-ppl
2024-06-04common : refactor cli arg parsing (#7675)Georgi Gerganov
* common : gpt_params_parse do not print usage * common : rework usage print (wip) * common : valign * common : rework print_usage * infill : remove cfg support * common : reorder args * server : deduplicate parameters ggml-ci * common : add missing header ggml-ci * common : remote --random-prompt usages ggml-ci * examples : migrate to gpt_params ggml-ci * batched-bench : migrate to gpt_params * retrieval : migrate to gpt_params * common : change defaults for escape and n_ctx * common : remove chatml and instruct params ggml-ci * common : passkey use gpt_params
2024-05-22common : normalize naming style (#7462)Georgi Gerganov
* common : normalize naming style ggml-ci * common : match declaration / definition order * zig : try to fix build
2024-05-08Fixed save_imatrix to match old behaviour for MoE (#7099)jukofyork
* Fixed save_imatrix to match old behaviour for MoE This fix is simple and clear, but unnecessarily doubles the memory overhead.. * Fixed missing idx variable * Unconditionally increment ncall Co-authored-by: slaren <slarengh@gmail.com> * Fixed 2 bugs in save_imatrix() - Fixed segfault bug because the counts vector needed to be created. - Fixed pre-existing bug didn't actually add to the counts for "--combine" option. * ncall needs summing too * Trailing whitespace --------- Co-authored-by: slaren <slarengh@gmail.com>
2024-04-26quantize: add imatrix and dataset metadata in GGUF (#6658)Pierrick Hymbert
* imatrix: save the dataset file used in the output file * llama: support kv overrides type string string * common: factorize KV Overrides parsing between common and server * quantize: add imatrix n entries and dataset KV metadata quantize: factorize KV Overrides parsing between common #6656 * llama: remove kv override str_value initialization as it does not compile on some toolchain * quantize: add imatrix m_last_call as `quantize.imatrix.chunks_count` * quantize: add imatrix filename in KV * llama: add llama_model_kv_override_free * common: add llama_model_kv_override_free common: free kv override if used after model loading * llama: finally move the string KV override value to the stack * llama : minor * no need to add a NUL to the std::vector, std::string can be initialized from a pair of iterators. Co-authored-by: slaren <slarengh@gmail.com> * kv override: ensure string termination --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> Co-authored-by: slaren <slarengh@gmail.com>
2024-04-18ggml : group all experts in a single ggml_mul_mat_id (#6505)slaren
* ggml : group all experts in a single ggml_mul_mat_id cuda : improve mmid row copy * cuda : fix bin bcast with non-cont src0 * test-backend-ops : only run all mul mat tests for base types * llama : disable moe offloading with SYCL --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-04-12imatrix : remove invalid assert (#6632)Georgi Gerganov
2024-04-11eval-callback: Example how to use eval callback for debugging (#6576)Pierrick Hymbert
* gguf-debug: Example how to use ggml callback for debugging * gguf-debug: no mutex, verify type, fix stride. * llama: cv eval: move cb eval field in common gpt_params * ggml_debug: use common gpt_params to pass cb eval. Fix get tensor SIGV random. * ggml_debug: ci: add tests * ggml_debug: EOL in CMakeLists.txt * ggml_debug: Remove unused param n_batch, no batching here * ggml_debug: fix trailing spaces * ggml_debug: fix trailing spaces * common: fix cb_eval and user data not initialized * ci: build revert label * ggml_debug: add main test label * doc: add a model: add a link to ggml-debug * ggml-debug: add to make toolchain * ggml-debug: tests add the main label * ggml-debug: ci add test curl label * common: allow the warmup to be disabled in llama_init_from_gpt_params * ci: add curl test * ggml-debug: better tensor type support * gitignore : ggml-debug * ggml-debug: printing also the sum of each tensor * ggml-debug: remove block size * eval-callback: renamed from ggml-debug * eval-callback: fix make toolchain --------- Co-authored-by: slaren <slarengh@gmail.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-04-09BERT tokenizer fixes (#6498)Jared Van Bortel
Key changes: * BERT conversion: fix abuse of LlamaHfVocab, do not set BOS or EOS * Nomic Embed conversion: pad vocab instead of slicing embedding tensor * llama_tokenize: handle added special tokens like HF does
2024-04-03ggml : mul_mat_id use the same tensor for all the experts (#6387)slaren
* ggml : update mul_mat_id to use the same tensor for all the experts * update cuda * minor * update metal * update test-backend-ops * fix cuda * Update ggml-metal.m Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * update convert.py * update convert-hf-to-gguf.py * update convert.py for mixtral hf models * Update convert-hf-to-gguf.py Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * cuda : support non-pow-2 number of experts * allow quantize to work for split and merged experts models in the same way * cleanup + disable mmap automatically with split tensors models * update imatrix * test-backend-ops : test qwen argsort * update grok model loading * llama : add merged experts tensors to the grok tensor map * minor * gguf : bump version * fix quantizing of merged experts * convert-hf-to-gguf.py : update grok (untested) * make linter happy * cuda/argsort : use shared memory instead of pool memory * convert : fix grok tensor names * metal : add support for non-pow-2 argsort * llama : more loader cleanup, better error checking * cuda : fix warning * llama : still use mmap for loading old models, but copy the data to a host buffer * add review note * llama : remove ffn tensor counting + add sanity check ggml-ci * convert : fix handling of n_experts == None ggml-ci * imatrix : fix ncall counters * llama : produce error if imatrix size does not match * quantize : terminate on errors + trace logs ggml-ci * metal : pad shared memory to 16 bytes --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-03-26llama : greatly reduce output buffer memory usage (#6122)compilade
* llama : greatly reduce logits memory usage * llama : more compact state saving and reloading * llama : fix lctx.n_outputs not being set before building graph * perplexity : adapt to the logits API changes * perplexity : fix Winogrande, use correct logits for second choice start The first logits used to evaluate the second choice were not from the end of the common prefix; instead, they were the logits from the end of the first choice. This has been corrected. The previous implementation sometimes had outliers in the scores of choices for some tasks, and the logic to skip choices words in the log-likelihood evaluation probably was an attempt to reduce those, but it was complex and didn't quite seem to be the right thing. This is simpler now, and the outlier scores aren't there anymore. * perplexity : normalize spaces and punctuation in Winogrande sentences * llama : fix embedding conditions * llama : fix llama_get_embeddings_ith when the resulting id is 0 * llama : fix wrong n_outputs in llama_set_inputs A mismatch happened when using a smaller n_ubatch than n_batch and then using llama_batch_get_one(). The decision of what n_outputs should be now almost fully depends on how lctx.n_outputs is set in llama_decode_internal. The conditions are simpler this way. * llama : when saving the state, recalculate n_outputs This ensures the correct number of outputs for the entire previous batch is stored in the session file, even when n_ubatch is smaller than n_batch. * llama : fix not-skipping outputs of non-causal models * llama : fix running a batch with n_outputs == 0 It previously worked because lctx.inp_out_ids was not initialized, so it pointed to some garbage address which was somehow still valid when I ran my tests. * llama : keep same graph topology even when n_outputs == 0 * ggml : saner ggml_can_repeat with empty tensors * ggml : future-proof ggml_is_empty by using GGML_MAX_DIMS - 1 * ggml : do not multi-thread ops returning empty tensors * ggml : make ggml_is_empty public and work with views * llama : use a vector for ctx->output_ids * llama : rework reallocation logic for llama_output_reserve Now comparing the actual size with the new total size of the output buffer to allow more efficient enabling and disabling of the embeddings and/or logits output in the future. * ggml : skip empty tensors in all backends * llama : fix llama_output_reserve nullptr deref when new_size is 0 * perplexity : make Winogrande work as it does on master The problems with the Winogrande implementation will need to be fixed in a separate PR to ease review. * llama : clearer error messages for invalid logits or embeddings ids * llama : assert all models that can have inp_out_ids Since the graph topology is now constant, this presence check can be done even when there are no outputs. * llama : assert logits and embd buffers exist before writing to them * llama : handle errors from llama_output_reserve at call sites * perplexity : make hellaswag and multiple-choice outputs identical to master Due to how the KV cache is updated, the logprobs for tokens in a batch are very slightly affected by the other tokens present in the batch, so to make hellaswag and multiple-choice return exactly the same results as on master, the last token of each sequence needs to be evaluated even though its output is not used at all. This will probably be changed back in the future to make these benchmarks a tiny bit faster. * perplexity : fix division by zero when using less than 100 multiple-choice tasks * llama : allow loading state saved with a different ctx size When loading a session file, the context size is now only required to be at least enough to load the KV cells contained in that session file, instead of requiring to use exactly the same context size as when saving. Doing this enables the use-case of extending or shrinking the context size of a saved session. This breaks existing session files because the meaning of kv_buf_size is slightly changed (previously it was the size of the whole KV cache, now it's only the size of the saved part of it). This allows for finer-grained sanity checks when loading in an effort to keep kv_buf_size useful even when the kv_size is changed. * llama : minor ggml-ci * readme : update recent API changes, and warn about Vulkan --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-03-26cuda : rename build flag to LLAMA_CUDA (#6299)slaren
2024-03-24imatrix : fix wname for mul_mat_id ops (#6271)Georgi Gerganov
* imatrix : fix wname for mul_mat_id ops * also filter tensor names in mul_mat_id ops --------- Co-authored-by: slaren <slarengh@gmail.com>
2024-03-18backend : offload large batches to GPU (#6083)slaren
* backend : offload large batches to GPU * fix hip * code cleanup * fix CUDA split buffers * Update ggml-backend-impl.h Co-authored-by: Johannes Gäßler <johannesg@5d6.de> * cuda : fix memset without set_device * imatrix : remove sched affix from weight names * sched : add a new split if the current one has too many inputs reduce max inputs per split more cleanup * update backends ggml-ci --------- Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2024-02-16ggml : add numa options (#5377)bmwl
* Added numa options to allow finer grained control as well as plumbing for a new mirror mode that will require numa.h * Reverted Makefile * Fixed include * Removed sched.h from ggml.h, moved ggml_get_numa_affinity into ggml.c, removed trailing whitespace and fixed up a few inconsistent variables * removed trailing whitespace * Added numa options to allow finer grained control as well as plumbing for a new mirror mode that will require numa.h * Reverting Makefile * Fixed a number of issues with the move from BOOL to ggml_numa_strategies. Added a note about mirror mode note being implemented yet * Removing MIRROR_MODE code for this PR * Removing last bit of MIRROR_MODE code for this PR * Removing unneeded branch in server.cpp example and moving get_numa_affinity and making it static * Fixed lingering init_llama_backend() bool calls in tests and examples * Remote enum llama_numa_strategies * Revert bad merge with dynatemp flags * add missing enum ggml_numa_strategies declaration and revert sync problem with master * add missing enum ggml_numa_strategies declaration * fixed ggml_init_numa variable * Update ggml.h Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> * Update READMEs with info about numa flags, change INTERLEAVE strategy name to DISTRIBUTE everywhere, implement the improved distribution strategy from @rankaiyx, fix a spelling mistake and un-merge some bad merges * split numa init out from llama_backend_init and created llama_numa_init. Updated all code paths and samples * Fix up some boolean vs enum comparisons * Added #ifdefs for non-Linux OS that don't have cpu_set_t datatype * Update ggml.h Align enum values Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update ggml.c Remove whitespace Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update ggml.c align paremeters Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update examples/server/server.cpp remove whitespace and align brace Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update common/common.cpp Remove whitespace and align brace Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * unified ggml_numa_strategy enum and fixed text alignment in server.cpp example * Update ggml.c simplified return for platforms without NUMA support Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> * removed redundant else from cli argument processing of --numa * whitespace --------- Co-authored-by: root <root@nenya.lothlorien.ca> Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> Co-authored-by: Jared Van Bortel <jared@nomic.ai>
2024-02-04Adding some imatrix tools (#5302)Kawrakow
* imatrix: adding --combine and --continue-from * imatrix: be able to start from a specific chunk --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-01-22imatrix : keep intermediate imatrix results (#5077)Kawrakow
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-01-21Slightly faster imatrix (#5050)Kawrakow
* imatrix: speedup by avoiding unnecessary allocations and copies * imatrix: add --no-ppl option to skip PPL calculations altogether --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-01-19imatrix : add README.mdGeorgi Gerganov
2024-01-18imatrix : fix assert for src0 non-cont checkGeorgi Gerganov
2024-01-17imatrix : offload to GPU support (#4957)Georgi Gerganov
* backend : add eval callback ggml-ci * backend : group nodes in a single compute when user don't need them * backend : clean-up the implementation ggml-ci * simple : do not perform tensor data copy if not needed * simple : fix * imatrix : offload to GPU support * imatrix : fix ggml_mul_mat_id hanlding ggml-ci * ci : add imatrix test ggml-ci * ci : rearrange output ggml-ci
2024-01-12Importance Matrix calculation (#4861)Kawrakow
* imatrix: 1st version * imatrix: WIP * Cleanup * Update examples/imatrix/imatrix.cpp Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>