summaryrefslogtreecommitdiff
path: root/examples/quantize-stats
AgeCommit message (Collapse)Author
2025-07-14Adding IQ2_KL (#602)Kawrakow
* Experiments for 2.6875 bpw quants At least according to rmse, this is significantly better than q2_K, while using only 1/16 more bits per weight. * iq2_kl: basics * iq2_kl: CUDA dequantize * iq2_kl: small improvement in PPL Also check the two neighbouring values for the block scale and use the one that minimizes RMSE. * iq2_kl: MMQ Quite good: PP-512(L3-8B) = 8472 t/s. * iq2_kl: MMVQ We get PP-128(L3-8B) = 162 t/s. Which means that this is not quite as good as it should be as (almost) same bpq q2_K is at 170 t/s. * iq2_kl: Zen4 GEMM/GEMV Not particularly fast. I may need to think about rearranging the bits. * iq2_kl: better Zen4 * iq2_kl: convert/repack to q8_k_r8 (AVX2) * iq2_kl: AVX2 GEMM/GEMV * iq2_kl: WIP NEON The compiler started crashing!!! * iq2_kl: NEON Had to work around a compiler crash when using vzip2q_u8 using vqtbl2q_u8. * iq2_kl: convert/repack to q8_k_r8 (NEON) * iq2_kl: Metal dequantize * iq2_kl: Metal GEMV - pretty slow * iq2_kl: Metal GEMV - slightly better (40 t/s -> 44.5 t/s) * iq2_kl: Metal GEMV - slightly better (44.5 t/s -> 46.5 t/s) * iq2_kl: Metal GEMV - slightly better (46.5 t/s -> 47.2 t/s) * iq2_kl: slightly better Metal dequantize PP-512 goes to 476 t/s up from 466 t/s. * iq2_kl: slightly better Metal dequantize PP-512 goes to 492 t/s up from 476 t/s. * Add iq2_kl to constants.py --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-05-23Fix MSVC compilation (#448)Kawrakow
* Fix MSVC compilation * MSVC cannot capture constexpr in lambdas * Arghhh --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-05-23Fix typo in non-AVX2 code branch (#445)Kawrakow
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-05-23Trellis quants with CPU inference (#441)Andrew Chan
* WIP * WIP * WIP * Testing Trellis quantization Using 12 bits per 8 weights I get a better rmse than iq2_xxs. I still need to see how quantizing the group-of-8 scales will affect accuracy. By AVX2 SIMDifying the search for the best code, LLaMA-3.1-8B gets quantized in 130 seconds on the Ryzen-7950X CPU - sluggish but still acceptable. * Testing Trellis quantization: 4-bit quantized block scales rmse increases by just 3%, so this is beating iq2_xss in terms of rmse at the same 2.0625 bpw. * Testing Trellis quantization: playing with scales and generators * iq2_kt: quantize / dequantize I now see that I was comparing apples to oranges: iq2_xxs was using a weight of sigma^2/4 + x^2, while the Trellis approach wasn't (weight = 1). Once I use the same weight, iq2_kt is actually slightly worse than iq2_xxs in terms of rmse, so does not look promising at this point. Also, once each group of 8 Trellis values no longer has a constant sum(q^2) that we can precompute, quantization becomes significantly slower (476 seconds for LLaMA-3.1-8B). * iq2_kt: CUDA dequantize so we can run perplexity calcs. As already indicated by rmse, the 2-bit trellis approach is quite a bit worse than iq2_xxs. * WIP * WIP * WIP - try larger blocks With blocks of 32 and 16 bits per groups of 8 the brute force seach becomes prohibitive in terms of CPU time (30+ minutes for 8B LLaMA after SIMDifying with AVX2). The trick is to group the points in clusters, find the nearest cluster, and only search within the cluster. * iq2_kt - this is better Using blocks of 32 and 16 bits per group of 8 weights it beats iq2_xxs in terms of PPL by a significant margin. It is 0.0625 bpw larger, but even if we go to 15 bits per group od 8 (so 0.0625 bpw less than iq2_xxs), PPL is still lower. * iq2_kt - even better Re-quantize after determining block scales (at the epxense of much longer quantization time). * iq2_kt: CUDA dot product Implemented as DMMV. Very slow - just 81 t/s for LLaMA-3.1-8B. Then again, Q2_K_S with forced to use DMMV only gets 112 t/s vs 145 t/s via MMVQ. My memory is that when the DMMV kernels were properly maintained/used, DMMV was about on par with MMVQ for k-quants on my GPU. * iq2_kt: very slightly faster CUDA dot product * iq2_kt: f16 CUDA dot product We arrive at 112 t/s. * iq2_kt: faster f16 CUDA dot product We arrive at 139 t/s (no FA), and 149 t/s (FA). My RTX-4080 is ~20% slower than the RTX-6000 quoted in the QTIP repository, so with FA (which I'm sure they also used) we are at around ~180 t/s on their GPU, so almost matching their performance. * iq2_kt: faster f16 CUDA dot product We arrive at 146 t/s (no FA), and 158 t/s (FA). This is measured for LLaMA-3.1-8B with output.weight left as f16. * Minor * Adding iq3_kt 3.125 bpw. So far does not look good on the PPL vs bpw plot. * Forgotten change * WIP * WIP * iq3_kt WIP: slowly improving PPL(LLaMA-3.1-8B-Instruct, 8192) is now 6.8322, which is starting to be competitive/slightly better than other quants. * WIP * iq3_kt WIP: slowly improving PPL(LLaMA-3.1-8B-Instruct, 8192) is now 6.7892 * iq3_kt WIP: slowly improving PPL(LLaMA-3.1-8B-Instruct, 8192) is now 6.7689 after shrinking by 0.015 bpw by using iq4_k instead of q5_k for attn_v. * iq3_kt WIP: speed up quantization Nearly 60% improvement of quantization speed by having the points nelonging to a cluster copied to contiguous memory during initialization, and then accessed sequantially while searching for the closest point. LLaMA-3.1-8B now gets quantized in ~150 seconds on the Ryzen-5975WX. * iq3_kt speed up quantization Same trick as last commit applied to iq2_kt. Here we get an even larger speedup: quantization time on the Ryzen-5975WX for LLaMA-3.1-8B drops to 195 seconds from 375 seconds! * iq3_kt: CUDA dot product * iq2_kt: SOTA We arrive at PPL(LLaMA-3.1-8B-Instruct, 8192) = 9.2406 PPL(LLaMA-2-7B, 4096) = 6.4179 * iq2_kt: SOTA We arrive at PPL(LLaMA-3.1-8B-Instruct, 8192) = 9.1642 PPL(LLaMA-2-7B, 4096) = 6.3920 * Adding iq4_kt - not competitive at this point * WIP * WIP * iq4_kt: CUDA dot product * iq4_kt: minor tweaks * iq2_kt: SOTA We arrive at PPL(LLaMA-3.1-8B-Instruct, 8192) = 9.1642 PPL(LLaMA-2-7B, 4096) = 6.3920 * iq2_kt: SOTA We arrive at PPL(LLaMA-3.1-8B-Instruct, 8192) = 9.0297 PPL(LLaMA-2-7B, 4096) = 6.3913 Ah, quantization is faster too. About 20% faster. * iq3_kt: small improvements and faster quantization * iq2_kt: SOTA We arrive at PPL(LLaMA-3.1-8B-Instruct, 8192) = 8.9627 PPL(LLaMA-2-7B, 4096) = 6.3825 Quantization is faster too: ~200 seconds for LLaMA-3.1-8B on Ryzen-5975WX. * iq3_kt: small progress * WIP * iq4_kt: go to 4.0 bpw 15 bits per group of 4, plus 8 bit scales ifor blocks of 32. This gives a slightly better PPL than iq4_kss. * iq4_kt: very slightly better at the expense of much longer quantization time. * iq4_kt: failed attemt to adjust CUDA dot product It was working for 4.125 bpw. But after changing to 4.0 bpw there is something wrong and I don't see the bug. * DRY * DRY * iq4_kt: CUDA dot product works * DRY * Report actual bpw * Minor tweaks * Checkpoint Go to groups of 8 for iq3_kt. 2 x 8 = 16 bits for the magnitude plus 1 bpw for the sign. It goves a visible improvement in the PPL vs bpw plot, but that comes at the expense of much longer quantization time (7.5 minutes for LLaMA-3.1-8B on the Ryzen-5975WX). I also notices that the 3INST generator is not actually generating a Gaussian distribution. But going to a better generator means readjusting all the hyper-parameters, so leaving it for later. * WIP for IQ2_KT * WIP - working basic iq2_kt * still super slow (0.17t/s eval) * flatten 3inst iters + avx2 (0.3t/s eval) * iq3_kt (0.3t/s eval) and renames * wip buggy iq4_KT * fix (0.22t/s eval) * naming and remove unused fn * cleanup * more cleanup * delete unused and noncompiling mmvq functions * Some performance tweaks * Slighty faster iq2_kt * port Trellis struct to iq3_kt, iq4_kt * oops untracked files --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-04-07Add copyright notices (#317)Kawrakow
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-10-16Adding IQ4_KSS: 4.0 bpw quants (#89)Kawrakow
* iq4_kss: WIP * iq4_kss: CUDA dequantize works So we can run perplexity. Sadly, the result does not look good on the bpw vs quantization error plot. * iq4_kss: slightly better quantization * iq4_kss: another small quantization improvement * iq4_kss: CUDA works TG-128 performance is very decent with 131 t/s for LLaMA-3.1-8B. In comparison, we have 123 t/s for q4_0 and 128 t/s for iq4_ks. I.e., the reduced model size more than offsets the additional bit fiddling required for iq4_kss. * iq4_kss: new bit arrangement - CUDA and Zen4 work Did not lose performance on CUDA. Zen4 is decent, but not great: PP-512(LLaMA-3.1-8B) = 163 t/s. TG-128 is of course better than other 4-bit quants due to smaller model size. We get 14.5 t/s @ 8 threads. * iq4_kss: ARM_NEON. Predictably very slow * iq4_kss: Metal PP is not too bad - just 10% slower than q4_0. But TG is 30% slower, i.e., predictably bad. * iq4_kss: somewhat faster Metal dot product 45.75 t/s -> 48.75 t/s. Still 22% slower than q4_0 * iq4_kss: AVX2 Bad, but better than I expected. PP-512(LLaMA-3.1-8B) = 167 t/s on the Ryzen-5950X. I.e., with 32 AVX2 threads we get the performance of 16 Zen4 threads. * iq4_kss: very slightly faster Metal dot product 48.7 t/s -> 49.3 t/s --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-10-13IQ2_KS: 2.1875 bpw non-linear quantization (#85)Kawrakow
* Experimenting * iq2k: Try make_qx_quants for the scale Slightly better for LLaMA-3.1, Gemma-2, slightly worse for Qwen2.5 * iq2k with make_qx_quants: adjust scale * iq2ks: basics * iq2_ks: CUDA works * iq2_ks: WIP * iq2_ks: WIP * iq2_ks: Zen4 * iq2_ks: AVX2 * iq2_ks: scalar dot product * iq2_ks: ARM_NEON * iq2_ks: Metal * iq2_ks: faster Metal LLaMA-3.1-8B: PP-512 = 475.22 ± 0.37 t/s TG-128 = 45.32 ± 0.03 t/s --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-10-10Better model info (#84)Kawrakow
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-08-19quantize_stats: print rmse and max error as fraction of <x> (#21)Kawrakow
This allows for a better comparison between different models or different tensors of the same model where the magnitude of the model weights may differ. Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-07-27Merge mainline llama.cpp (#3)Kawrakow
* Merging mainline - WIP * Merging mainline - WIP AVX2 and CUDA appear to work. CUDA performance seems slightly (~1-2%) lower as it is so often the case with llama.cpp/ggml after some "improvements" have been made. * Merging mainline - fix Metal * Remove check --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-06-22bitnet: add 2 bpw quantizationIwan Kawrakow
The scalar dot product already chieves 37 t/s for TG!
2024-06-13`build`: rename main → llama-cli, server → llama-server, llava-cli → ↵Olivier Chafik
llama-llava-cli, etc... (#7809) * `main`/`server`: rename to `llama` / `llama-server` for consistency w/ homebrew * server: update refs -> llama-server gitignore llama-server * server: simplify nix package * main: update refs -> llama fix examples/main ref * main/server: fix targets * update more names * Update build.yml * rm accidentally checked in bins * update straggling refs * Update .gitignore * Update server-llm.sh * main: target name -> llama-cli * Prefix all example bins w/ llama- * fix main refs * rename {main->llama}-cmake-pkg binary * prefix more cmake targets w/ llama- * add/fix gbnf-validator subfolder to cmake * sort cmake example subdirs * rm bin files * fix llama-lookup-* Makefile rules * gitignore /llama-* * rename Dockerfiles * rename llama|main -> llama-cli; consistent RPM bin prefixes * fix some missing -cli suffixes * rename dockerfile w/ llama-cli * rename(make): llama-baby-llama * update dockerfile refs * more llama-cli(.exe) * fix test-eval-callback * rename: llama-cli-cmake-pkg(.exe) * address gbnf-validator unused fread warning (switched to C++ / ifstream) * add two missing llama- prefixes * Updating docs for eval-callback binary to use new `llama-` prefix. * Updating a few lingering doc references for rename of main to llama-cli * Updating `run-with-preset.py` to use new binary names. Updating docs around `perplexity` binary rename. * Updating documentation references for lookup-merge and export-lora * Updating two small `main` references missed earlier in the finetune docs. * Update apps.nix * update grammar/README.md w/ new llama-* names * update llama-rpc-server bin name + doc * Revert "update llama-rpc-server bin name + doc" This reverts commit e474ef1df481fd8936cd7d098e3065d7de378930. * add hot topic notice to README.md * Update README.md * Update README.md * rename gguf-split & quantize bins refs in **/tests.sh --------- Co-authored-by: HanClinto <hanclinto@gmail.com>
2024-04-30Improve usability of --model-url & related flags (#6930)Olivier Chafik
* args: default --model to models/ + filename from --model-url or --hf-file (or else legacy models/7B/ggml-model-f16.gguf) * args: main & server now call gpt_params_handle_model_default * args: define DEFAULT_MODEL_PATH + update cli docs * curl: check url of previous download (.json metadata w/ url, etag & lastModified) * args: fix update to quantize-stats.cpp * curl: support legacy .etag / .lastModified companion files * curl: rm legacy .etag file support * curl: reuse regex across headers callback calls * curl: unique_ptr to manage lifecycle of curl & outfile * curl: nit: no need for multiline regex flag * curl: update failed test (model file collision) + gitignore *.gguf.json
2024-02-03refactor : switch to emplace_back to avoid extra object (#5291)Michael Klimenko
2024-01-30SOTA 3-bit quants (#5196)Kawrakow
* iq3_xxs: quantize/dequantize RMSE seems a bit high-ish at about half-way between q2_K and q3_K, so need to check more. * iq3_xxs: CUDA dequantize works * iq2_xxs: tuning quantization * iq3_xxs: starting to look better PPL on wiki.test.raw LLaMA-v1-7B: 6.4218 LLaMA-v2-7B: 6.3560 Mistral-7B : 6.0717 This is better than Q3_K_XS, with a 5% reduction in quantized model size. * iq3_xxs: CUDA dot product We have PP-512: 5891 t/s TG-128: 143.9 t/s * iq3_xxs: scalar and AVX2 dot products * iq3_xxs: ARM_NEON and Metal Metal performance is decent, ARM_NEON is pathetic * iq3_xxs: slightly better grid points * Faster iq3_xxs and iq2_xs dot products on CUDA * iq3_xxs: add some quant mix * iq3_xxs: fix failing quantization test Dot product still fails. Is this real? * iq3_xxs: hopefully fix ROCm * iq3_xxs: failing tests This time the dot product accuracy did find an actual bug in the AVX2 implementation. * Add IQ3_XXS to test-backend-ops --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2023-12-07llama : per-layer KV cache + quantum K cache (#4309)Georgi Gerganov
* per-layer KV * remove unnecessary copies * less code duplication, offload k and v separately * llama : offload KV cache per-layer * llama : offload K shift tensors * llama : offload for rest of the model arches * llama : enable offload debug temporarily * llama : keep the KV related layers on the device * llama : remove mirrors, perform Device -> Host when partial offload * common : add command-line arg to disable KV cache offloading * llama : update session save/load * llama : support quantum K cache (#4312) * llama : support quantum K cache (wip) * metal : add F32 -> Q8_0 copy kernel * cuda : add F32 -> Q8_0 copy kernel ggml-ci * cuda : use mmv kernel for quantum cache ops * llama : pass KV cache type through API * llama : fix build ggml-ci * metal : add F32 -> Q4_0 copy kernel * metal : add F32 -> Q4_1 copy kernel * cuda : wip * cuda : add F32 -> Q4_0 and F32 -> Q4_1 copy kernels * llama-bench : support type_k/type_v * metal : use mm kernel only for quantum KV cache * cuda : add comment * llama : remove memory_f16 and kv_f16 flags --------- Co-authored-by: slaren <slarengh@gmail.com> * readme : add API change notice --------- Co-authored-by: slaren <slarengh@gmail.com>
2023-11-02build : link against build info instead of compiling against it (#3879)cebtenzzre
* cmake : fix build when .git does not exist * cmake : simplify BUILD_INFO target * cmake : add missing dependencies on BUILD_INFO * build : link against build info instead of compiling against it * zig : make build info a .cpp source instead of a header Co-authored-by: Matheus C. França <matheus-catarino@hotmail.com> * cmake : revert change to CMP0115 --------- Co-authored-by: Matheus C. França <matheus-catarino@hotmail.com>
2023-09-28llama.cpp : split llama_context_params into model and context params (#3301)slaren
* llama.cpp : split llama_context_params into model and context params ggml-ci * fix metal build * fix freq_base/scale default to model value * llama-bench : keep the same model between tests when possible * move n_threads to llama_context_params, add n_threads_batch * fix mpi build * remove kv_size(), cuda scratch fixes * remove low-vram option * add n_threads_batch to system info, refactor to get_system_info() * add documentation about --threads-batch to the READMEs * llama-bench fix * main : fix rope freq/scale warning * llama.cpp : add llama_get_model common : add llama_tokenize from model * remove duplicated ctx/model functions ggml-ci * cuda : print total VRAM used
2023-09-18make : restore build-info.h dependency for several targets (#3205)Cebtenzzre
2023-09-15examples : add compiler version and target to build info (#2998)Cebtenzzre
2023-09-15check C++ code with -Wmissing-declarations (#3184)Cebtenzzre
2023-09-07fix some warnings from gcc and clang-tidy (#3038)Cebtenzzre
Co-authored-by: xaedes <xaedes@gmail.com>
2023-08-21gguf : new file format with flexible meta data (beta) (#2398)Georgi Gerganov
* gguf : first API pass * gguf : read header + meta data * gguf : read tensor info * gguf : initial model loading - not tested * gguf : add gguf_get_tensor_name() * gguf : do not support passing existing ggml_context to gguf_init * gguf : simplify gguf_get_val * gguf : gguf.c is now part of ggml.c * gguf : read / write sample models * gguf : add comments * refactor : reduce code duplication and better API (#2415) * gguf : expose the gguf_type enum through the API for now * gguf : add array support * gguf.py : some code style changes * convert.py : start a new simplified implementation by removing old stuff * convert.py : remove GGML vocab + other obsolete stuff * GGUF : write tensor (#2426) * WIP: Write tensor * GGUF : Support writing tensors in Python * refactor : rm unused import and upd todos * fix : fix errors upd writing example * rm example.gguf * gitignore *.gguf * undo formatting * gguf : add gguf_find_key (#2438) * gguf.cpp : find key example * ggml.h : add gguf_find_key * ggml.c : add gguf_find_key * gguf : fix writing tensors * gguf : do not hardcode tensor names to read * gguf : write sample tensors to read * gguf : add tokenization constants * quick and dirty conversion example * gguf : fix writing gguf arrays * gguf : write tensors one by one and code reuse * gguf : fix writing gguf arrays * gguf : write tensors one by one * gguf : write tensors one by one * gguf : write tokenizer data * gguf : upd gguf conversion script * Update convert-llama-h5-to-gguf.py * gguf : handle already encoded string * ggml.h : get array str and f32 * ggml.c : get arr str and f32 * gguf.py : support any type * Update convert-llama-h5-to-gguf.py * gguf : fix set is not subscriptable * gguf : update convert-llama-h5-to-gguf.py * constants.py : add layer norm eps * gguf.py : add layer norm eps and merges * ggml.h : increase GGML_MAX_NAME to 64 * ggml.c : add gguf_get_arr_n * Update convert-llama-h5-to-gguf.py * add gptneox gguf example * Makefile : add gptneox gguf example * Update convert-llama-h5-to-gguf.py * add gptneox gguf example * Update convert-llama-h5-to-gguf.py * Update convert-gptneox-h5-to-gguf.py * Update convert-gptneox-h5-to-gguf.py * Update convert-llama-h5-to-gguf.py * gguf : support custom alignment value * gguf : fix typo in function call * gguf : mmap tensor data example * fix : update convert-llama-h5-to-gguf.py * Update convert-llama-h5-to-gguf.py * convert-gptneox-h5-to-gguf.py : Special tokens * gptneox-main.cpp : special tokens * Update gptneox-main.cpp * constants.py : special tokens * gguf.py : accumulate kv and tensor info data + special tokens * convert-gptneox-h5-to-gguf.py : accumulate kv and ti + special tokens * gguf : gguf counterpart of llama-util.h * gguf-util.h : update note * convert-llama-h5-to-gguf.py : accumulate kv / ti + special tokens * convert-llama-h5-to-gguf.py : special tokens * Delete gptneox-common.cpp * Delete gptneox-common.h * convert-gptneox-h5-to-gguf.py : gpt2bpe tokenizer * gptneox-main.cpp : gpt2 bpe tokenizer * gpt2 bpe tokenizer (handles merges and unicode) * Makefile : remove gptneox-common * gguf.py : bytesarray for gpt2bpe tokenizer * cmpnct_gpt2bpe.hpp : comments * gguf.py : use custom alignment if present * gguf : minor stuff * Update gptneox-main.cpp * map tensor names * convert-gptneox-h5-to-gguf.py : map tensor names * convert-llama-h5-to-gguf.py : map tensor names * gptneox-main.cpp : map tensor names * gguf : start implementing libllama in GGUF (WIP) * gguf : start implementing libllama in GGUF (WIP) * rm binary commited by mistake * upd .gitignore * gguf : calculate n_mult * gguf : inference with 7B model working (WIP) * gguf : rm deprecated function * gguf : start implementing gguf_file_saver (WIP) * gguf : start implementing gguf_file_saver (WIP) * gguf : start implementing gguf_file_saver (WIP) * gguf : add gguf_get_kv_type * gguf : add gguf_get_kv_type * gguf : write metadata in gguf_file_saver (WIP) * gguf : write metadata in gguf_file_saver (WIP) * gguf : write metadata in gguf_file_saver * gguf : rm references to old file formats * gguf : shorter name for member variable * gguf : rm redundant method * gguf : get rid of n_mult, read n_ff from file * Update gguf_tensor_map.py * Update gptneox-main.cpp * gguf : rm references to old file magics * gguf : start implementing quantization (WIP) * gguf : start implementing quantization (WIP) * gguf : start implementing quantization (WIP) * gguf : start implementing quantization (WIP) * gguf : start implementing quantization (WIP) * gguf : start implementing quantization (WIP) * gguf : quantization is working * gguf : roper closing of file * gguf.py : no need to convert tensors twice * convert-gptneox-h5-to-gguf.py : no need to convert tensors twice * convert-llama-h5-to-gguf.py : no need to convert tensors twice * convert-gptneox-h5-to-gguf.py : simplify nbytes * convert-llama-h5-to-gguf.py : simplify nbytes * gptneox-main.cpp : n_layer --> n_block * constants.py : n_layer --> n_block * gguf.py : n_layer --> n_block * convert-gptneox-h5-to-gguf.py : n_layer --> n_block * convert-llama-h5-to-gguf.py : n_layer --> n_block * gptneox-main.cpp : n_layer --> n_block * Update gguf_tensor_map.py * convert-gptneox-h5-to-gguf.py : load model in parts to save memory * convert-llama-h5-to-gguf.py : load model in parts to save memory * convert : write more metadata for LLaMA * convert : rm quantization version * convert-gptneox-h5-to-gguf.py : add file_type key * gptneox-main.cpp : add file_type key * fix conflicts * gguf : add todos and comments * convert-gptneox-h5-to-gguf.py : tensor name map changes * Create gguf_namemap.py : tensor name map changes * Delete gguf_tensor_map.py * gptneox-main.cpp : tensor name map changes * convert-llama-h5-to-gguf.py : fixes * gguf.py : dont add empty strings * simple : minor style changes * gguf : use UNIX line ending * Create convert-llama-7b-pth-to-gguf.py * llama : sync gguf-llama.cpp with latest llama.cpp (#2608) * llama : sync gguf-llama.cpp with latest llama.cpp * minor : indentation + assert * llama : refactor gguf_buffer and gguf_ctx_buffer * llama : minor * gitignore : add gptneox-main * llama : tokenizer fixes (#2549) * Merge tokenizer fixes into the gguf branch. * Add test vocabularies * convert : update convert-new.py with tokenizer fixes (#2614) * Merge tokenizer fixes into the gguf branch. * Add test vocabularies * Adapt convert-new.py (and fix a clang-cl compiler error on windows) * llama : sync gguf-llama with llama (#2613) * llama : sync gguf-llama with llama * tests : fix build + warnings (test-tokenizer-1 still fails) * tests : fix wstring_convert * convert : fix layer names * llama : sync gguf-llama.cpp * convert : update HF converter to new tokenizer voodoo magics * llama : update tokenizer style * convert-llama-h5-to-gguf.py : add token types * constants.py : add token types * gguf.py : add token types * convert-llama-7b-pth-to-gguf.py : add token types * gguf-llama.cpp : fix n_head_kv * convert-llama-h5-to-gguf.py : add 70b gqa support * gguf.py : add tensor data layout * convert-llama-h5-to-gguf.py : add tensor data layout * convert-llama-7b-pth-to-gguf.py : add tensor data layout * gptneox-main.cpp : add tensor data layout * convert-llama-h5-to-gguf.py : clarify the reverse permute * llama : refactor model loading code (#2620) * llama : style formatting + remove helper methods * llama : fix quantization using gguf tool * llama : simplify gguf_file_saver * llama : fix method names * llama : simplify write_header() * llama : no need to pass full file loader to the file saver just gguf_ctx * llama : gguf_file_saver write I32 * llama : refactor tensor names (#2622) * gguf: update tensor names searched in quantization * gguf : define tensor names as constants * gguf : initial write API (not tested yet) * gguf : write to file API (not tested) * gguf : initial write API ready + example * gguf : fix header write * gguf : fixes + simplify example + add ggml_nbytes_pad() * gguf : minor * llama : replace gguf_file_saver with new gguf write API * gguf : streaming support when writing files * gguf : remove oboslete write methods * gguf : remove obosolete gguf_get_arr_xxx API * llama : simplify gguf_file_loader * llama : move hparams and vocab from gguf_file_loader to llama_model_loader * llama : merge gguf-util.h in llama.cpp * llama : reorder definitions in .cpp to match .h * llama : minor simplifications * llama : refactor llama_model_loader (WIP) wip : remove ggml_ctx from llama_model_loader wip : merge gguf_file_loader in llama_model_loader * llama : fix shape prints * llama : fix Windows build + fix norm_rms_eps key * llama : throw error on missing KV paris in model meta data * llama : improve printing + log meta data * llama : switch print order of meta data --------- Co-authored-by: M. Yusuf Sarıgöz <yusufsarigoz@gmail.com> * gguf : deduplicate (#2629) * gguf : better type names * dedup : CPU + Metal is working * ggml : fix warnings about unused results * llama.cpp : fix line feed and compiler warning * llama : fix strncpy warning + note token_to_str does not write null * llama : restore the original load/save session implementation Will migrate this to GGUF in the future * convert-llama-h5-to-gguf.py : support alt ctx param name * ggml : assert when using ggml_mul with non-F32 src1 * examples : dedup simple --------- Co-authored-by: klosax <131523366+klosax@users.noreply.github.com> * gguf.py : merge all files in gguf.py * convert-new.py : pick #2427 for HF 70B support * examples/gguf : no need to keep q option for quantization any more * llama.cpp : print actual model size * llama.cpp : use ggml_elements() * convert-new.py : output gguf (#2635) * convert-new.py : output gguf (WIP) * convert-new.py : add gguf key-value pairs * llama : add hparams.ctx_train + no longer print ftype * convert-new.py : minor fixes * convert-new.py : vocab-only option should work now * llama : fix tokenizer to use llama_char_to_byte * tests : add new ggml-vocab-llama.gguf * convert-new.py : tensor name mapping * convert-new.py : add map for skipping tensor serialization * convert-new.py : convert script now works * gguf.py : pick some of the refactoring from #2644 * convert-new.py : minor fixes * convert.py : update to support GGUF output * Revert "ci : disable CI temporary to not waste energy" This reverts commit 7e82d25f40386540c2c15226300ad998ecd871ea. * convert.py : n_head_kv optional and .gguf file extension * convert.py : better always have n_head_kv and default it to n_head * llama : sync with recent PRs on master * editorconfig : ignore models folder ggml-ci * ci : update ".bin" to ".gguf" extension ggml-ci * llama : fix llama_model_loader memory leak * gptneox : move as a WIP example * llama : fix lambda capture ggml-ci * ggml : fix bug in gguf_set_kv ggml-ci * common.h : .bin --> .gguf * quantize-stats.cpp : .bin --> .gguf * convert.py : fix HF tensor permuting / unpacking ggml-ci * llama.cpp : typo * llama : throw error if gguf fails to init from file ggml-ci * llama : fix tensor name grepping during quantization ggml-ci * gguf.py : write tensors in a single pass (#2644) * gguf : single pass for writing tensors + refactoring writer * gguf : single pass for writing tensors + refactoring writer * gguf : single pass for writing tensors + refactoring writer * gguf : style fixes in simple conversion script * gguf : refactor gptneox conversion script * gguf : rename h5 to hf (for HuggingFace) * gguf : refactor pth to gguf conversion script * gguf : rm file_type key and method * gguf.py : fix vertical alignment * gguf.py : indentation --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * convert-gptneox-hf-to-gguf.py : fixes * gguf.py : gptneox mapping * convert-llama-hf-to-gguf.py : fixes * convert-llama-7b-pth-to-gguf.py : fixes * ggml.h : reverse GGUF_MAGIC * gguf.py : reverse GGUF_MAGIC * test-tokenizer-0.cpp : fix warning * llama.cpp : print kv general.name * llama.cpp : get special token kv and linefeed token id * llama : print number of tensors per type + print arch + style * tests : update vocab file with new magic * editorconfig : fix whitespaces * llama : re-order functions * llama : remove C++ API + reorganize common source in /common dir * llama : minor API updates * llama : avoid hardcoded special tokens * llama : fix MPI build ggml-ci * llama : introduce enum llama_vocab_type + remove hardcoded string constants * convert-falcon-hf-to-gguf.py : falcon HF --> gguf conversion, not tested * falcon-main.cpp : falcon inference example * convert-falcon-hf-to-gguf.py : remove extra kv * convert-gptneox-hf-to-gguf.py : remove extra kv * convert-llama-7b-pth-to-gguf.py : remove extra kv * convert-llama-hf-to-gguf.py : remove extra kv * gguf.py : fix for falcon 40b * falcon-main.cpp : fix for falcon 40b * convert-falcon-hf-to-gguf.py : update ref * convert-falcon-hf-to-gguf.py : add tensor data layout * cmpnct_gpt2bpe.hpp : fixes * falcon-main.cpp : fixes * gptneox-main.cpp : fixes * cmpnct_gpt2bpe.hpp : remove non-general stuff * Update examples/server/README.md Co-authored-by: slaren <slarengh@gmail.com> * cmpnct_gpt2bpe.hpp : cleanup * convert-llama-hf-to-gguf.py : special tokens * convert-llama-7b-pth-to-gguf.py : special tokens * convert-permute-debug.py : permute debug print * convert-permute-debug-master.py : permute debug for master * convert-permute-debug.py : change permute type of attn_q * convert.py : 70b model working (change attn_q permute) * Delete convert-permute-debug-master.py * Delete convert-permute-debug.py * convert-llama-hf-to-gguf.py : fix attn_q permute * gguf.py : fix rope scale kv * convert-llama-hf-to-gguf.py : rope scale and added tokens * convert-llama-7b-pth-to-gguf.py : rope scale and added tokens * llama.cpp : use rope scale kv * convert-llama-7b-pth-to-gguf.py : rope scale fix * convert-llama-hf-to-gguf.py : rope scale fix * py : fix whitespace * gguf : add Python script to convert GGMLv3 LLaMA models to GGUF (#2682) * First pass at converting GGMLv3 LLaMA models to GGUF * Cleanups, better output during conversion * Fix vocab space conversion logic * More vocab conversion fixes * Add description to converted GGUF files * Improve help text, expand warning * Allow specifying name and description for output GGUF * Allow overriding vocab and hyperparams from original model metadata * Use correct params override var name * Fix wrong type size for Q8_K Better handling of original style metadata * Set default value for gguf add_tensor raw_shape KW arg * llama : improve token type support (#2668) * Merge tokenizer fixes into the gguf branch. * Add test vocabularies * Adapt convert-new.py (and fix a clang-cl compiler error on windows) * Improved tokenizer test But does it work on MacOS? * Improve token type support - Added @klosax code to convert.py - Improved token type support in vocabulary * Exclude platform dependent tests * More sentencepiece compatibility by eliminating magic numbers * Restored accidentally removed comment * llama : add API for token type ggml-ci * tests : use new tokenizer type API (#2692) * Merge tokenizer fixes into the gguf branch. * Add test vocabularies * Adapt convert-new.py (and fix a clang-cl compiler error on windows) * Improved tokenizer test But does it work on MacOS? * Improve token type support - Added @klosax code to convert.py - Improved token type support in vocabulary * Exclude platform dependent tests * More sentencepiece compatibility by eliminating magic numbers * Restored accidentally removed comment * Improve commentary * Use token type API in test-tokenizer-1.cpp * py : cosmetics * readme : add notice about new file format ggml-ci --------- Co-authored-by: M. Yusuf Sarıgöz <yusufsarigoz@gmail.com> Co-authored-by: klosax <131523366+klosax@users.noreply.github.com> Co-authored-by: goerch <jhr.walter@t-online.de> Co-authored-by: slaren <slarengh@gmail.com> Co-authored-by: Kerfuffle <44031344+KerfuffleV2@users.noreply.github.com>
2023-07-19cmake : install targets (#2256)wzy
fix #2252
2023-07-05ggml : generalize `quantize_fns` for simpler FP16 handling (#1237)Stephan Walter
* Generalize quantize_fns for simpler FP16 handling * Remove call to ggml_cuda_mul_mat_get_wsize * ci : disable FMA for mac os actions --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-06-24llama : make model stateless and context stateful (llama_state) (#1797)Didzis Gosko
* llama : make model stateless and context stateful * llama : minor cleanup * llama : update internal API declaration * Apply suggestions from code review fix style Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Missing model memory release * Fix style * Add deprecated warning for public API function llama_init_from_file * Update public API use cases: move away from deprecated llama_init_from_file * Deprecate public API function llama_apply_lora_from_file --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-06-16build : fix and ignore MSVC warnings (#1889)Borislav Stanimirov
2023-06-05ggml : add SOTA 2,3,4,5,6 bit k-quantizations (#1684)Kawrakow
* Starting to add k-quantization to ggml I think it is better to have quantization separate from ggml. For now just adding the k-quants there, but it would be better to also factor out the existing ggml quantizations. * Adding Q3_K and Q8_K (de)-quantization * Q3_K now working on CUDA and AVX2/scalar CUDA is not ideal - ~50% slower than Q4_0 for single token prediction, about the same in batch mode (perplexity). CPU single token is ~55 ms (on Ryzen 7950X). * Some improvement for Q3_K on CUDA It is now ~22.5 ms/token on my GPU, so ~30% slower than Q4_0. * Some more CUDA optimizations for Q3_K Single token is now 20.5 ms/token (~20% slower than Q4_0). Perplexity is on par with Q4_0. * Adding Q4_K - scalar, AVX2, CUDA Performance is the same or perhaps very slightly better than Q4_0 on the CPU. On the GPU, single token prediction is ~10% better than Q4_0, batch mode (perplexity is about the same). * Adding Q6_K - scalar, AVX2, CUDA Performance is ~40% lower compared to Q4_K on the CPU. This is to be expected, considering that we are memory bound on the CPU and the 6-bit model is ~44% larger than the 4-bit. On the GPU, single token prediction is ~6% lower than Q4_0, batch mode (perplexity) is even closer (but still slower). * Adding Q5_K - scalar, AVX2, CUDA Performance is ~20% lower compared to Q4_K on the CPU. This is to be expected, considering that we are memory bound on the CPU and the 5-bit model is ~22% larger than the 4-bit. On the GPU, single token prediction is about the same as Q4_0 for both, single token and batch prediction. * Per convention, all QX_K quantizations use Q5_K for output.weight * Adding quantization mixes * Quantization mixes: didn't quite get what I wanted in the last commit * Q4_K dot product for ARM_NEON * Q6_K dot product for ARM_NEON * Q5_K dot product for ARM_NEON * Adding Q3_K dot for ARM_NEON It is 22% slower than Q4_K, despite the smaller model size. On x86_64, where we are memory bound, the Q3_K model is quite a bit faster than Q4_K. * A very slightly faster ARM_NEON Q3_K dot * Adding Q2_K - just CUDA for now Token prediction is pretty good - about 15.5 ms on a RTX 4080. Perplexity is about the same as Q4_K. * Adding scalar and AVX2 Q2_K dot * Adding ARM_NEON Q2_K dot About the same performance as Q4_K. * A slightly faster ARM_NEON Q2_K dot Single token prediction is now ~36 ms on M2 Max. The code is much simpler too. * Fixed bug in Q2_K CUDA dot product kernel Stranegly enough, for the few prompts I tried with the 7B model the responses looked perfectly reasonable. Only realized something is not quite right when I tried the larger models and started getting nonse back. In any case, Q2_K single token evaluation time on an RTX 4080 in a Ryzen7950X box iusing CUDA and model fully loaded on the GPU are ~15.5 ms for 7B, ~25.4 ms for 13B, and ~55.8 ms for 30B. The max number of layers that fit in VRAM for The 65B is 32. With that, we get ~330 ms per token, which is not that much faster than just running on the CPU (~470 ms per token). * Don't print zeros/NaNs when no count histogram has been collected * A 10% faster CUDA vector dot kernel for Q3_K Q3_K is now running at ~18.5 ms / token on CUDA, so the gap to Q4_0 is only 10%. It seems memory acccess pattern is more important for performance than the amount of computation the kernel does. * A slightly daster Q4_K AVX2 dot product For perplexity, where we are less memory bound, time per pass drops by ~5%. Barely measurable difference for single token prediction. * A slightly faster ARM_NEON A4_K dot product * Minor * Fix quantization error test We cannot possibly be expecting rmse < 0.002 for 2- and 3-bit quantization variants. * Fix docker build I have been sloppy with vector reinterpret casts on ARM_NEON. It seems clang is very forgiving in that regard. * Added forgotten ggml.o dependence on k_quants.h to the Makefile * Had unintentionally committed the Makefile with -Ofast enabled * ggml : rename k_quants -> ggml-quants-k, use lowercase in code --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-05-17Remove unused n_parts parameter (#1509)Stephan Walter
2023-05-01Add git-based build information for better issue tracking (#1232)DannyDaemonic
* Add git-based build information for better issue tracking * macOS fix * "build (hash)" and "CMAKE_SOURCE_DIR" changes * Redo "CMAKE_CURRENT_SOURCE_DIR" and clearer build messages * Fix conditional dependency on missing target * Broke out build-info.cmake, added find_package fallback, and added build into to all examples, added dependencies to Makefile * 4 space indenting for cmake, attempt to clean up my mess in Makefile * Short hash, less fancy Makefile, and don't modify build-info.h if it wouldn't change it
2023-04-20llama : multi-threaded quantization (#1075)Kawrakow
* Multi-threading quantization. Not much gain for simple quantizations, bit it will be important for quantizations that require more CPU cycles. * Multi-threading for quantize-stats It now does the job in ~14 seconds on my Mac for Q4_0, Q4_1 and Q4_2. Single-threaded it was taking more than 2 minutes after adding the more elaborate version of Q4_2. * Reviewer comments * Avoiding compiler confusion After changing chunk_size to const int as suggested by @ggerganov, clang and GCC starting to warn me that I don't need to capture it in the lambda. So, I removed it from the capture list. But that makes the MSVC build fail. So, making it a constexpr to make every compiler happy. * Still fighting with lambda captures in MSVC --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-04-17quantize-stats : fix bug in --type argumentGeorgi Gerganov
2023-04-14Expose type name from ggml (#970)Pavol Rusnak
Avoid duplication of type names in utils Co-authored-by: Håkon H. Hitland <haakon@likedan.net>
2023-04-13llama : merge llama_internal.h into llama.hGeorgi Gerganov
Hide it behind an #ifdef
2023-04-10Rewrite loading code to try to satisfy everyone:comex
- Support all three formats (ggml, ggmf, ggjt). (However, I didn't include the hack needed to support GPT4All files without conversion. Those can still be used after converting them with convert.py from my other PR.) - Support both mmap and read (mmap is used by default, but can be disabled with `--no-mmap`, and is automatically disabled for pre-ggjt files or on platforms where mmap is not supported). - Support multi-file models like before, but automatically determine the number of parts rather than requiring `--n_parts`. - Improve validation and error checking. - Stop using the per-file type field (f16) entirely in favor of just relying on the per-tensor type/size fields. This has no immediate benefit, but makes it easier to experiment with different formats, and should make it easier to support the new GPTQ-for-LLaMa models in the future (I have some work in progress on that front). - Support VirtualLock on Windows (using the same `--mlock` option as on Unix). - Indicate loading progress when using mmap + mlock. (Which led me to the interesting observation that on my Linux machine, with a warm file cache, mlock actually takes some time, whereas mmap without mlock starts almost instantly...) - To help implement this, move mlock support from ggml to the loading code. - madvise/PrefetchVirtualMemory support (based on #740) - Switch from ifstream to the `fopen` family of functions to avoid unnecessary copying and, when mmap is enabled, allow reusing the same file descriptor for both metadata reads and mmap (whereas the existing implementation opens the file a second time to mmap). - Quantization now produces a single-file output even with multi-file inputs (not really a feature as much as 'it was easier this way'). Implementation notes: I tried to factor the code into more discrete pieces than before. Regarding code style: I tried to follow the code style, but I'm naughty and used a few advanced C++ features repeatedly: - Destructors to make it easier to ensure everything gets cleaned up. - Exceptions. I don't even usually use exceptions when writing C++, and I can remove them if desired... but here they make the loading code much more succinct while still properly handling a variety of errors, ranging from API calls failing to integer overflow and allocation failure. The exceptions are converted to error codes at the API boundary.) Co-authored-by: Pavol Rusnak <pavol@rusnak.io> (for the bit I copied from #740)
2023-04-08Add quantize-stats command for testing quantization (#728)unbounded
Command that calculates some statistics over the errors introduced by quantization, like mean square error, max error and some percentile errors for layer weights. Should be useful for testing quantization improvements. Exposes some internal state from ggml and llama for testing