Age | Commit message (Collapse) | Author |
|
* WIP
* WIP
* WIP
* Testing Trellis quantization
Using 12 bits per 8 weights I get a better rmse than
iq2_xxs. I still need to see how quantizing the group-of-8
scales will affect accuracy. By AVX2 SIMDifying the search
for the best code, LLaMA-3.1-8B gets quantized in 130 seconds
on the Ryzen-7950X CPU - sluggish but still acceptable.
* Testing Trellis quantization: 4-bit quantized block scales
rmse increases by just 3%, so this is beating iq2_xss in terms
of rmse at the same 2.0625 bpw.
* Testing Trellis quantization: playing with scales and generators
* iq2_kt: quantize / dequantize
I now see that I was comparing apples to oranges:
iq2_xxs was using a weight of sigma^2/4 + x^2, while
the Trellis approach wasn't (weight = 1). Once I use the same weight,
iq2_kt is actually slightly worse than iq2_xxs in terms
of rmse, so does not look promising at this point.
Also, once each group of 8 Trellis values no longer has a
constant sum(q^2) that we can precompute, quantization
becomes significantly slower (476 seconds for LLaMA-3.1-8B).
* iq2_kt: CUDA dequantize
so we can run perplexity calcs.
As already indicated by rmse, the 2-bit trellis approach is
quite a bit worse than iq2_xxs.
* WIP
* WIP
* WIP - try larger blocks
With blocks of 32 and 16 bits per groups of 8 the brute force
seach becomes prohibitive in terms of CPU time (30+ minutes
for 8B LLaMA after SIMDifying with AVX2). The trick is to
group the points in clusters, find the nearest cluster,
and only search within the cluster.
* iq2_kt - this is better
Using blocks of 32 and 16 bits per group of 8 weights
it beats iq2_xxs in terms of PPL by a significant margin.
It is 0.0625 bpw larger, but even if we go to 15 bits per
group od 8 (so 0.0625 bpw less than iq2_xxs), PPL is still
lower.
* iq2_kt - even better
Re-quantize after determining block scales
(at the epxense of much longer quantization time).
* iq2_kt: CUDA dot product
Implemented as DMMV.
Very slow - just 81 t/s for LLaMA-3.1-8B.
Then again, Q2_K_S with forced to use DMMV only
gets 112 t/s vs 145 t/s via MMVQ. My memory is that
when the DMMV kernels were properly maintained/used,
DMMV was about on par with MMVQ for k-quants on my GPU.
* iq2_kt: very slightly faster CUDA dot product
* iq2_kt: f16 CUDA dot product
We arrive at 112 t/s.
* iq2_kt: faster f16 CUDA dot product
We arrive at 139 t/s (no FA), and 149 t/s (FA).
My RTX-4080 is ~20% slower than the RTX-6000 quoted in the
QTIP repository, so with FA (which I'm sure they also used)
we are at around ~180 t/s on their GPU, so almost matching
their performance.
* iq2_kt: faster f16 CUDA dot product
We arrive at 146 t/s (no FA), and 158 t/s (FA).
This is measured for LLaMA-3.1-8B with output.weight
left as f16.
* Minor
* Adding iq3_kt
3.125 bpw. So far does not look good on the PPL vs bpw plot.
* Forgotten change
* WIP
* WIP
* iq3_kt WIP: slowly improving
PPL(LLaMA-3.1-8B-Instruct, 8192) is now 6.8322, which is
starting to be competitive/slightly better than other quants.
* WIP
* iq3_kt WIP: slowly improving
PPL(LLaMA-3.1-8B-Instruct, 8192) is now 6.7892
* iq3_kt WIP: slowly improving
PPL(LLaMA-3.1-8B-Instruct, 8192) is now 6.7689 after shrinking
by 0.015 bpw by using iq4_k instead of q5_k for attn_v.
* iq3_kt WIP: speed up quantization
Nearly 60% improvement of quantization speed by having the
points nelonging to a cluster copied to contiguous memory
during initialization, and then accessed sequantially while
searching for the closest point. LLaMA-3.1-8B now gets
quantized in ~150 seconds on the Ryzen-5975WX.
* iq3_kt speed up quantization
Same trick as last commit applied to iq2_kt. Here we get
an even larger speedup: quantization time on the Ryzen-5975WX
for LLaMA-3.1-8B drops to 195 seconds from 375 seconds!
* iq3_kt: CUDA dot product
* iq2_kt: SOTA
We arrive at
PPL(LLaMA-3.1-8B-Instruct, 8192) = 9.2406
PPL(LLaMA-2-7B, 4096) = 6.4179
* iq2_kt: SOTA
We arrive at
PPL(LLaMA-3.1-8B-Instruct, 8192) = 9.1642
PPL(LLaMA-2-7B, 4096) = 6.3920
* Adding iq4_kt - not competitive at this point
* WIP
* WIP
* iq4_kt: CUDA dot product
* iq4_kt: minor tweaks
* iq2_kt: SOTA
We arrive at
PPL(LLaMA-3.1-8B-Instruct, 8192) = 9.1642
PPL(LLaMA-2-7B, 4096) = 6.3920
* iq2_kt: SOTA
We arrive at
PPL(LLaMA-3.1-8B-Instruct, 8192) = 9.0297
PPL(LLaMA-2-7B, 4096) = 6.3913
Ah, quantization is faster too. About 20% faster.
* iq3_kt: small improvements and faster quantization
* iq2_kt: SOTA
We arrive at
PPL(LLaMA-3.1-8B-Instruct, 8192) = 8.9627
PPL(LLaMA-2-7B, 4096) = 6.3825
Quantization is faster too: ~200 seconds for LLaMA-3.1-8B
on Ryzen-5975WX.
* iq3_kt: small progress
* WIP
* iq4_kt: go to 4.0 bpw
15 bits per group of 4, plus 8 bit scales ifor blocks of 32.
This gives a slightly better PPL than iq4_kss.
* iq4_kt: very slightly better
at the expense of much longer quantization time.
* iq4_kt: failed attemt to adjust CUDA dot product
It was working for 4.125 bpw. But after changing to 4.0 bpw
there is something wrong and I don't see the bug.
* DRY
* DRY
* iq4_kt: CUDA dot product works
* DRY
* Report actual bpw
* Minor tweaks
* Checkpoint
Go to groups of 8 for iq3_kt. 2 x 8 = 16 bits for the magnitude
plus 1 bpw for the sign. It goves a visible improvement in the
PPL vs bpw plot, but that comes at the expense of much longer
quantization time (7.5 minutes for LLaMA-3.1-8B on the Ryzen-5975WX).
I also notices that the 3INST generator is not actually generating a
Gaussian distribution. But going to a better generator means
readjusting all the hyper-parameters, so leaving it for later.
* WIP for IQ2_KT
* WIP - working basic iq2_kt
* still super slow (0.17t/s eval)
* flatten 3inst iters + avx2 (0.3t/s eval)
* iq3_kt (0.3t/s eval) and renames
* wip buggy iq4_KT
* fix (0.22t/s eval)
* naming and remove unused fn
* cleanup
* more cleanup
* delete unused and noncompiling mmvq functions
* Some performance tweaks
* Slighty faster iq2_kt
* port Trellis struct to iq3_kt, iq4_kt
* oops untracked files
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
* iq5_ks_r4: basics
* iq5_ks_r4: Zen4 works
* iq5_ks_r4: AVX2 works
* iq5_ks_r4: NEON
* Fix iq5_ks on NEON
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
* iq5_ks: basics
* iq5_ks: quantize
* iq5_ks: CUDA dequantize works
* iq5_ks: dot product works on CUDA
* iq5_ks: MMQ works
* iq5_ks: Zen4
* iq5_ks: AVX2
But is is not quite right, just like iq4_k, iq5_k, iq6_k, iq4_ks.
All these need fixing on AVX2.
* iq5_ks: NEON
* iq5_ks: Metal dequantize
* iq5_ks: Metal dot product
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
* Repack a model with the quantize tool
* WIP
* Fixed various issues
As we don't have a way to tell if a repacked quant has been modified,
I had to remove the modification at the expense of a slight decrease
in performance. This affects q8_0_r8, q8_KV_r8, q8_k_r8 on Zen4, and
q4_0_r8 on ARM.
* Create wk_b and wv_b as Q8_0_R8 if the wkv_b type is interleaved
* Fix GCC 13.3 compilation error
* Another one
* Add missing include
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
* Custom quantization rules with regular expressions
* Add the --custom-q option to the help
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
* Adding q8_KV - Basics + AVX2 gemm/gemv
* q8_KV: Better AVX2 gemm
* q8_KV: Better Zen4 gemm
We get 225.7 t/s for L3-8B. In comparison q8_0 without
run-tinme-repacking is at 169 t/s.
* q8_KV: AVX2 gemm/gemv
We get 254 t/s for L3-8B vs 194 t/s for q8_0 without rtr.
* q8_KV: be able to use it for K cache
This required quite a few fixes in ggml and llama.cpp:
* ggml: do not calculate row size as n/block_size*type_size. I had
removed most of it when implementing the quants with per row scale,
bit it was stull lurking in ggml_copy. Not sure if these were the last
remnants of ggmil-style row sizes, or if there are still places left
* llama.cpp: get rid of the the 1d K cache assumption. Create and manage
the K-cache as a 2D tensor so we can have per row meta data as needed
by q8_KV.
Using q8_KV for K-cache results in non-negligible performance gains.
More details to follow, but for DeepSeek-Lite with MLA, we get
18% speedup for PP-8192 compared to q8_0 K-cache.
* q8_KV: be able to use it for K cache in FA
* q8_KV: repack it for K*Q in FA
* q8_KV: slightly faster gemv on Zen4
* q8_KV: slightly faster gemv on Zen4
* q8_KV: ARM_NEON
We get PP-512 = 167 t/s for L3-8B without interleaving!
We do the interleaving on the fly, so I wonder if this
could be done for other quants as well.
* q8_KV: use it in FA on NEON
* q8_KV_r8 - repacked q8_KV
On Zen4 it is slower than q8_k_r8 (292 vs 370 t/s)
This makes no sense whatsoever as the q8_KV_r8 GEMM is
basically the q8_k_r8 GEMM with the unnecessary block stuff
removed (so, one would think that it would be faster).
* q8_KV_r8: don't use nrc_y = 16 on Zen4
This is faster - 350 t/s. Why?
Much better than the 290 t/s we had before, but still slower
than the 370 t/s for q8_k_r8.
* q8_KV: nrc_y = 16 also doesn't pay off in FA
* Minor
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
* Rename q4_0_r4 to q4_0_r8 to reflect actual row interleaving
* Rename q8_0_r4 to q8_0_r8 to reflect actual row interleaving
* Rename iq4_xs_r4 to iq4_xs_r8 to reflect actual row interleaving
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
* iq1_m_r4: basics (quantize/dequantize)
* iq1_m_r4: Zen4 gemm
* iq1_m_r4: neon gemm
* iq1_m_r4: switch to q8_0_x4 also on AVX2/Zen4
With the deltas being per group of 8, we cannot make use
of the q8 sums stored in q8_1, so we get a tiny gain by
using q8_0_x4.
* iq1_m_r4: rename mul_mat_iq1_m_r4_q8_1 to mul_mat_iq1_m_r4_q8_0
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
* iq1_s_r4: basics - quantize/dequantize
* iq1_s_r4: gemm/gemv works on AVX2/Zen4
* Don't forget to make sure we have a multiple of 4 rows per thread
* iq1_s_r4: this is better
* iq1_s_r4: fix Zen4 after AVX2 changes
* iq1_s_r4: NEON gemm/gemv
* iq1_s_r4: more bits for shared experts
With this mix we arrive at PPL(512) = 9.4140
for Deepseek-Lite using 1.766 bpw for the repeating layers.
On the Ryzen-7950X we get PP-512 = 494 t/s and
TG-128 = 52 t/s @ 16 threads.
* Forgotten counter increment
* iq1_s_r4: slightly faster AVX2/Zen4 gemm/gemv
* Compiler warnings
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
* iq3_s_r4: WIP
* iq3_s_r4: Zen4
* iq3_s_r4: slightly better Zen4
* iq3_s_r4: AVX2
* iq3_s_r4: NEON
* iq3_s_r4: rearrange quants
* iq3_s_r4: rearranged quants - AVX2
* iq3_s_r4: rearranged quants - NEON
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
* iq2_s_r4: Zen4
* Minor
* iq2_s_r4: NEON
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
* iq2_xs_r4: Zen4
* iq2_xs_r4: AVX2
* iq2_xs_r4: slightly better matrix x vector on AVX2
* iq2_xs_r4: NEON - not much better than iq2_xs
* iq2_xs_r4: slightly better NEON
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
* iq2_xxs_r4: Zen4
Disapointing gain: 134.7 t/s -> 151.1 t/s for PP-512
TG-128 is better: 3.45 -> 4.61 t/s @ 1 thread
* Minor
* iq2_xxs_r4: NEON
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
* iq3_xxs_r4: 1st shot on Zen4
PP-512: 107 t/s -> 137 t/s
TG-128(1 thread): 2.64 t/s -> 3.44 t/s
* iq4_xxs_r4: WIP
* iq4_xxs_r4: 1st shot at AVX2
Note: there is a bug in the AVX2 implementation for nrc_y = 1
for IQ quants with blocks of 32. I have fixed it for now by
using the nrc_y > 1 implementation (which works) also for nrc_y = 1.
* iq3_xxs_r4: NEON
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
* iq4_ks_r4: Zen4
* iq4_ks_r4: AVX2
* iq4_ks_r4: WIP
* iq4_ks_r4: slightly better Zen4
* iq4_ks_r4: slightly better Zen4
* iq4_ks_r4: NEON
* Minor
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
* iq5_k_r4: Zen4
Much slower than the others.
* iq5_k_r5: WIP
* Minor
* iq5_k_r4: fix AVX2 nrc_y = 1 case
* iq5_k_r4: better Zen4
But TG is still slower than iq5_k
* iq5_k_r4: slightly better AVX2
* iq5_k_r4: NEON
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
* iq2_k_r4: Zen4
* iq2_k_r4: NEON
* iq2_k_r4: better matrix x vector multiplication on NEON
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
* iq3_k_r4 WIP
* iq3_k_r4: Zen4
* iq3_k_r4: AVX2
* iq3_k_r4: NEON
* iq3_k_r4: faster matrix x vector multiplication on NEON
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
* Not working bf16_r4
* Adding bf16_r8
Small performance gain compared to bf16 - 258 t/s vs 234 t/s.
I guess, this is still sub-obtimal.
* bf16_rx: Very slightly faster by interleaving 16 rows
258 t/s -> 263 t/s
* Rename bf16_r4 to bf16_r16
We are interleaving 16 rows now.
* Cleanup unused stuff
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
* q8_k_r8: fastest matrix multiplication known to human kind
We get PP-512(LLaMA-3.1-8B) = 370 t/s on a Ryzen-7950X!
* q8_k_r8: AVX2
I was worried that we don't have enough vector registrers on
AVX2, but it looks like it handles it just fine. We get
PP-512(LLaMA-3.1-8B) = 354 t/s on a Ryzen-5975WX.
Slightly slower than the Zen4 version with double the threads,
but still a huge upgrade compared to Q8_0_R4.
* q8_k_r4: NEON
We get PP-512(LLaMA-3.1-8B) = 159.2 t/s.
Compare this to the 128 t/s we have fr Q8_0_R4.
* q8_k_r4: go to signed ints
Why?
* On AVX2 _mm256_maddubs_epi16() may overflow, so we need to
stay within the signed int range and use _mm256_sign_epi8.
Not yet tested on the AVX2 comp, vut expect major slowdown.
* It is almost 10% faster on ARM_NEON. Somehow the veorrq_u8()
needed tto convert from unsigned to signed seems to be extremely
slow on the M2-Max
* We only lose ~0.5% in oerformance on Zen4 (there the exclusive
or that we now use to convert fro signed to unsigned seems to be
much faster than on M2-Max)
* Shutup useless compiler warnings
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
* iq4_k_r4: WIP
* iq4_k_r4: Zen4 and hopefully AVX2
On Zen4 we get PP-512(LLaMA-3.1-8B) = 232.6 t/s, up from 182.2 t/s
for iq4_k. Applying the extra shift costs a ~6 performance penalty.
* iq4_k_r4: AVX2
PP-512 = 227.60 t/s. The shifts are really costly.
* iq4_k_r4: NEON
We get PP-512(LLaMA-3.1-8B) = 108 t/s, up from 58.2 t/s for iq4_k.
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
* q2_k_r4: Zen4
PP-512(LLaMA-3.1-8B) = 256 t/s
* q3_k_r4: AVX2
* q2_k_r4: AVX2
We get PP-512(LLaMA-3.1-8B) = 287 t/s.
Also cherry-picked the q3_k_r4 AVX2 adaptation that I somehow
forgot to push upstream.
* q2_k_r4: NEON
We get PP-512(LLaMA-3.1-8B) = 106.2 t/s.
TG-128 is 36.02 t/s, which is ~10% higher than q2_K_S.
* Make sure rows per thread are a multiple of 4
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
* q3_k_r4: Zen4 works, but not as good as it should be
238 t/s, so sloghtly slower than q6_k_r4.
* q3_k_r4: NEON
We get PP-512(LLaMA-3.1-8B) = 106.9 t/s.
This is 1.93X faster than q3_K_S!
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
* q5_k_r4: WIP
* q5_k_r4: Zen4 and AVX2
We get PP-512(LLaMA-3.1-8B) = 248.3 t/s on Zen4.
Q5_K_S has PP-512 = 190 t/s.
* q5_k_r4: NEON
We get PP-512(LLaMA-3.1-8B) = 96.1 t/s.
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
* Adding q6_k_r4
* q6_k_r4: 1st functional AVX2 version
* q6_k_r4: AVX2 and simple Zen4
"Simple" as in processing 4 instead of 8 rows at once.
On Zen4 we get PP-512(LLaMA-3.1-8B) = 238.3 t/s vs
195.2 t/s for Q6_K. TG-128 @ 1 thread is 7.94 t/s
vs 5.38 t/s for Q6_K.
* q6_k_r4: 1st NEON version
PP-512(LLaMA-3.1-8B) = 78 t/s vs 57.6 t/s for q6_K.
TG-128 is slightly lower rthan q6_K for low number of threads,
becomes very slightly better at 8 threads.
* q6_k_r4: slightly faster NEON
PP-512(LLaMA-3.1-8B) = 83.25 t/s
* q6_k_r4: slightly faster Zen4
238.3 t/s -> 243.2 t/s
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
* Something is still wrong
* Simply don't see what is wrong
* q4_k_r4: finally works on Zen4
I had forgotten to prevent token_embd.weight being quantized
with q4_k_r4!
* q4_k_r4: AVX2
We get PP-512(LLaMA-3.1-8B) = 267 t/s on a Ryzen-5975WX.
This is ~30% better than Q4_K_S.
* q4_k_r4: NEON
We get PP-512(LLaMA-3.1-8B) = 110 t/s.
Not quite as good as q4_0_r4, but still a massive
improvement compared to he 69 t/s for q4_K.
* q4_k_r4: slightly better AVX2
PP-512 goes from 267 t/s to 282 t/s on Ryzen-5975WX
* Minor
* Minor
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
* Adding iq2_bn_r4
This Zen4-only implementation achieves PP-512 = 826 t/s (!!!)
for Bitnet-1.58b-3B, up from 620 t/s for iq2_bn.
* Make sure rows per thread are a multiple of the number of interleaved rows
With this I can run iq2_bn_r4 with 32 threads and this increases
PP-512 to 872 t/s.
* iq2_bn_r4: 1st shot at NEON
PP-512 is already faster than iq2_bn (284 t/s vs 246 t/s
for Bitnet-1.58b-3B). TG-128 is ~5% slower.
* iq2_bn_r4: NEON
PP-512 is now 296 t/s. TG-128 is ~20% faster than iq2_bn
for 1 thread, but saturates to about the same 93 t/s at
8 threads.
* iq2_bn_r4: Experimenting on NEON
The matrix x vvector multiplication is erratic.
iq2_bn_r4 is faster at 1, 2, and 4 threads, but
saturates to a lower t/s at 8 threads compared to
iq2_bn. iq2_bn actually manages 99 t/s at 8 threads
and not 93 as I wrore in the last commit. iq2_bn_r4
performance has huge fluctuations at 4 and 8 threads.
* Some cleanup
* iq2_bn_r4: AVX2
As expected, PP is slightly slower as we just don;t have
enough vector registers (690 vs 710 t/s). TG is slightly faster
(18.2 vs 16.7 t/s at 1 thread).
* iq2_bn_r4: use AVX2 implementation on Zen4 for matrix x vector
It is faster - we get 29.6 t/s at 1 thread vs 25.9 t/s for iq2_bn.
* iq2_bn_r4: simdify q8_K16 quantization (AVX2)
PP-512 becomes 834 t/s and TG-128 now saturates to the same
performance as iq2_bn for 4 threads.
* iq2_bn_r4: simdify q8_K16 quantization (NEON)
PP-512 is now 304.7 t/s, and TG-128 @ 8 threads
very slightly outperforms iq2_bn (100.7 t/s vs 99.6 t/s)
* iq2_bn_r4: fix AVX2 after breaking it two commits ago
* iq2_bn_r4: better AVX2
As we don't have enough vector registers on AVX2, it is better
to do two passes per row needing only half of the accumulator
registers that way.
With this, we now beat iq2_bn PP also on AVX2 by a small margin.
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
* Adding iq4_xs_r4
This is a 1st working version on Zen4.
We get PP-512(LLaMA-3.1-8B) = 226 t/s, so 16% slower
than iq4_nl_x4.
* iq4_xs_r4: WIP
* iq4_xs_r4: Use AVX2 version for matrix x vector on Zen4
* iq4_xs_r4: NEON
We get PP-512(LLaMA-3.1-8B) = 115.6 t/s on M2-Max,
up from 68.2 t/s for iq4_xs!
* DRY
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
* Adding q6_0_r4
We get PP-512(LLaMA-3.1-8B) = 257 t/s on a Ryzen-7950X.
* q6_0_r4: NEON
We get PP-512(LLaMA-3.1-8B) = 95 t/s on M2-Max.
In terms of ops, q6_0_r4 is identical to q5_0_r4
except for loading the high bits being
vld1q_u8_x2 instead of vld1q_u8. It is strange that
this can make a 5% difference in performance, especially
considering that this is amortized (re-used) over 8 columns
in the right matrix. Or am I running out of vector registers?
* Fix AVX2
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
* Adding q5_0_r4
We get PP-512(LLaMA-3.1-8B) = 256.7 t/s on a Ryzen-7950X.
We even get TG-128 improvement to 11.7 t/s from 11.1 t/s.
* q5_0_r4: NEON
We get PP-512(LLaMA-3.1-8B) = 99.6 t/s on M2-Max,
up from 71.0 t/s for Q5_0. The difference to mainline llama.cpp
is no longer funny: they get 26.5 t/s for Q5_0.
For TG, we are nor able to fully saturate memory bandwidth
and arrive at 22.1 t/s @ 8 threads. Mainline llama.cpp gets
20.6 t/s for Q5_0.
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
* Adding q8_0_r4
We get PP-512(LLaMA-3.1-8B) = 268 t/s on a Ryzen-7950X compared
to 175.6 t/s for Q8_0.
* q8_0_r4: NEON
We get PP-512(LLaMA-3.1-8B) = 112.6 t/s on M2-Max.
* q8_0_r4: Zen4 matrix-vector specialization
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
* Adding iq4_0_r4 - q4_0 repacked
We get PP-512(LLaMA-3.1-8B) = 278 t/s on a Ryzen-7950X CPU,
so ~5-6% faster than iq4_nl_x4.
* q4_0_r4: NEON
Here we get 115.8 t/s, so also ~5% better than iq4_nl_x4.
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
* Adding iq4_nl_x4
Looks very promising - I get PP-512(LLaMA-3.1-8B) = 230 t/s
on the Ryzen-7950X! This is faster than any other quant and
~40% faster than iq4_nl.
* iq4_nl_x4: getting amazing
This Zen4 variant gets us to PP-512(LLaMA-3.1-8B) = 263 t/s!
* iq4_nl_x4: AVX2
Here we gain only 25% compared to iq4_nl
* iq4_nl_x4: NEON
On M2-Max we get PP-512(LLaMA-3.1-8B) = 109.7 t/s, up from
82.4 t/s for iq4_nl.
* iq4_nl_x4: minor NEON improvement and cleanup
This gets us to 110.3 t/s. In comparison,
IQ4_NL_4_4 in mainline llama.cpp achieves 92.3 t/s.
* iq4_nl_x4: NEON specialization for matrix x vector
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
* Adapting iq2_bn to work without separate scale tensors
Why? It is becoming burdensome to maintain the special Bitnet
conversion in convert_hf_to_gguf.py, so I thnk it is better
to make iq1_bn and iq2_bn just work with the mainline
conversion script (which does not generate scales).
* Adapting iq1_bn to work without separate scale tensors
* Adapting iq2_bn: CUDA dequantize
* Adapting iq2_bn: CUDA works
* Adapting iq1_bn: CUDA works
* Adapting iq1_bn, iq2_bn: NEON
* Adapting iq1_bn, iq2_bn: Metal
Dequantize works, but there is still something wrong
with the dot products.
* WIP
Absoolutely don't see what is wrong with the iq1_bn and iq2_bn
vector dot product kernels.
* Remove iq1_tn and iq2_tn - Part 1
Now that iq1_bn and iq2_bn have per row scales, there is no
reason to also have iq1_tn and iq2_tn.
* Remove iq1_tn and iq2_tn - Part 2
* Bitnet: use the standard llm_build_kv to build self attention
My main motivation was to enable FA. But FA does not work anyway
because head size is 100 for the Botnet ternary models
(and I had forgotten this little detail).
* Revert "Avoid rebuild of GGML graph for each token (#98)"
This reverts commit f2d315b46f7aacc7df4b86bd8acba387b30e11ca.
As far as I can tell, the commit breaks Metal TG.
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
To complement the token_embd.weight and output.weight :
attn_v.weight
attn_k.weight.
attn_q_weight
attn_output.weight
attn_qkv.weight
ffn_gate
ffn_down
ffn_up
|
|
* iq4_kss: WIP
* iq4_kss: CUDA dequantize works
So we can run perplexity. Sadly, the result does not look good
on the bpw vs quantization error plot.
* iq4_kss: slightly better quantization
* iq4_kss: another small quantization improvement
* iq4_kss: CUDA works
TG-128 performance is very decent with 131 t/s for LLaMA-3.1-8B.
In comparison, we have 123 t/s for q4_0 and 128 t/s for iq4_ks.
I.e., the reduced model size more than offsets the additional
bit fiddling required for iq4_kss.
* iq4_kss: new bit arrangement - CUDA and Zen4 work
Did not lose performance on CUDA. Zen4 is decent, but not great:
PP-512(LLaMA-3.1-8B) = 163 t/s.
TG-128 is of course better than other 4-bit quants due to smaller model size.
We get 14.5 t/s @ 8 threads.
* iq4_kss: ARM_NEON. Predictably very slow
* iq4_kss: Metal
PP is not too bad - just 10% slower than q4_0.
But TG is 30% slower, i.e., predictably bad.
* iq4_kss: somewhat faster Metal dot product
45.75 t/s -> 48.75 t/s.
Still 22% slower than q4_0
* iq4_kss: AVX2
Bad, but better than I expected.
PP-512(LLaMA-3.1-8B) = 167 t/s on the Ryzen-5950X.
I.e., with 32 AVX2 threads we get the performance of
16 Zen4 threads.
* iq4_kss: very slightly faster Metal dot product
48.7 t/s -> 49.3 t/s
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
* Experimenting
* iq2k: Try make_qx_quants for the scale
Slightly better for LLaMA-3.1, Gemma-2, slightly worse for
Qwen2.5
* iq2k with make_qx_quants: adjust scale
* iq2ks: basics
* iq2_ks: CUDA works
* iq2_ks: WIP
* iq2_ks: WIP
* iq2_ks: Zen4
* iq2_ks: AVX2
* iq2_ks: scalar dot product
* iq2_ks: ARM_NEON
* iq2_ks: Metal
* iq2_ks: faster Metal
LLaMA-3.1-8B:
PP-512 = 475.22 ± 0.37 t/s
TG-128 = 45.32 ± 0.03 t/s
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
* iq4_k_xxs: basics
* WIP + adding iq3_kl quantization mix
* iq4_xxs: this looks very viable compared to iq4_xs
At the same 4.25 bpw PPL is always better, for some models
significantly better. I'll rename to iq4_ks and keep it.
* iq4_xxs: CUDA dot product
We get TG-128 = 126 t/s for LLaMA-3.1-8B, compared to 123 t/s for q4_0.
* iq4_xxs: scalar CPU dot product
Also fix the breakage I caused with the dedicated work buffer
quantization portion when the multiplication is not done
via iqk_mul_mat.
* iq4_xxs: Zen4
I noticed that iq4_xs is wrong on Zen4 (and possibly AVX2).
Again the same mistake of packing int32_t back to int16_t,
which overflows occasionally (just occasionally, that's why the
result doesn't look completely wrong, so I didn't notice).
* Fix iq4_xs (Zen4)
* iq4_xxs: AVX2
* iq4_xxs: ARM_NEON
* iq4_xxs: Metal
* iq4_xxs: slightly faster TG on Metal
* iq4_xxs: rename to iq4_ks
After all, tt is a smaller variant of iq4_k.
* iq3_kl: use iq4_ks instead of iq4_k/iq4_xs
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
* Adding q6_0 - basics + AVX2/Zen4 working
* Adding q6_0: CUDA dequantize works, but not mmvq
* Adding q6_0: CUDA mmvq works
* Adding q6_0: CUDA cpy, so Q6_0 can be used for KV-cache
* Add q6_0 to CPU flash attention
Disappointing result: for LlaMA-3.2-1B, q6_0 K- and V-cache
gives about the same PPL as q8_0 K-cache and q4_0 V-cache,
while needing the exact same RAM.
I.e., what was the point?
* q6_0: slightly better kv-cache result
Better than q8_0+q4_0, but not as good as q8_0+iq4_nl
* q6_0: works on ARM_NEON
* q6_0: dequantize works on Metal, but not vector dot product
* q6_0: it now works on Metal
Outperforms q5_0 by a significant margin. E.g.
| model | size | params | backend | ngl | threads | test | t/s |
| ------------------------------ | ---------: | ---------: | ---------- | --: | ------: | ------------: | ---------------: |
| llama 8B Q6_0 | 6.08 GiB | 8.03 B | Metal | 100 | 4 | tg128 | 44.02 ± 0.08 |
| llama 8B Q5_0 | 5.21 GiB | 8.03 B | Metal | 100 | 4 | tg128 | 40.13 ± 0.12 |
| llama 8B Q6_0 | 6.08 GiB | 8.03 B | Metal | 100 | 4 | pp512 | 500.55 ± 0.32 |
| llama 8B Q5_0 | 5.21 GiB | 8.03 B | Metal | 100 | 4 | pp512 | 448.02 ± 0.27 |
* q6_0: can now be used for kv-cache on Metal
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
* POC: per row scale
This is a POC how to work around opinionated ggml to
have scales per row rather than per block.
Only implemened for Zen4 and only for iq2_tn.
* POC per row scale: iq2_tn on NEON
* POC per row scale: iq2_tn on Metal
* Per row scale Metal templates
* iq1_tn: shrink to 1.625 bpw (NEON and Metal)
* POC per row scale: CUDA
* POC per row scale: add CUDA TODOs
There are two places in ggml-cuda.cu left where it is assumed
that type_size * n_per_row / block_size is the way to compute
and handle row sizes. This does not affect simple usage,
but will lead to issues when tensors are split between GPUs.
* Per row scales - CUDA
The only place left where there are unnecessary assumptions being made
is in the Flash Attention code. As we are not using any quants that
use per row scales for quantized KV cache, it should be OK for now.
* Update IQ1_TN and IQ2_TN bpw shown to user
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
* Adding iq1_tn - 1.6875 bpw for TriLM ternary models
* iq1_tn: NEON
* iq1_tn: faster NEON
* iq2_bn: improve performance on NEON
We now get TG-128 = 100 t/s for Bitnet-3B-1.58b!
* iq1_tn: improve AVX2
PP-512 goes to 533 t/s up from 455.
TG-128 @ 2 threads goes to 16.6 t/s up from 14.2.
However, we seem to have a bottleneck somewhere as
TG saturates at 8 threads.
* iq1_tn: improve Zen4
PP-512 goes to 485 t/s up from 352. With FA we get 545 t/s up from 380.
TG-128 @ 1 thread goes to 12.4 t/s up from 10.4.
However, we seem to have a bottleneck somewhere as
TG saturates at 8 threads.
* iq2_bn: improve on Zen4
We now get PP-512 = 614 t/s up from 542 t/s
* iq2_bn: improve AVX2 implementation
We now get PP-512 = 753 t/s up from 680 t/s.
* Remove unnecessary barrier in ggml_compute_forward_mul_mat
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
* Merge mainline
* Fix after merge
* Remove CI check
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
|
|
* iq2_tn: TriLM specific 2.0625 bpw quantization
Quantize/dequantize/scale dot product.
I get 46 t/s for the TriLM-3.9B with any SIMD!
Finally a compiler doing a decent job auto-vectorizing the
scalar implementation.
* iq2_tn: AVX512
Just reusing the k-quants template gets us to PP-512 = 376 t/s,
TG-128 = 47.6 t/s for TriLM-3.9B.
* iq2_tn: AVX512
With this tweak we get to PP-512 = 431 t/s.
* iq2_tn: AVX512
With this tweak we get TG-128 = 19.58 / 35.18 t/s for 1 / 2 threads.
At 4 threads we saturate at 48.41 t/s, and then performance slowly
degrades with increasing number of threads.
* iq2_tn: AVX2
PP512 = 440 t/s on the Ryzen-5975WX.
We should be able to do better.
* iq2_tn: initial NEON version
* iq2_tn: NEON
For TriLM-3.9B running on the M2-Max we get PP-512 = 193.5 t/s,
TG-128 = 75.5 t/s. This is in line with what we have for
iq2_bn ant 3.3B Bitnet.
* iq2_tn: Metal
For TriLM-3.9B on a 30-core M2-Max we get PP-512 = 890 t/s,
TG-128 = 98.5 t/s.
* iq2_tn: CUDA
For TriLM-3.9B running on RTX-4080 we get PP-512 = 9936 t/s,
TG-128 = 299.2 t/s.
* iq2_tn: AVX2 PP improvement
We now get PP-512 = 490.73 t/s for TriLM-3.9B on the Ryzen-5975WX.
We have PP-512 = 636.61 t/s for Bintnet-3B quantized with iq2_bn.
Bintnet-3B is actually 3.4B, TriLM-3.9B is 3.99B, so we would
expect 3.43/3.99 * 636 = 546 t/s, so it seems we still have something
that is not quite optimal in iq2_tn.
* iq2_tn: small NEON improvement
For TriLM-3.9B we now get PP-512 = 206.6 t/s and TG-128 = 76.4 t/s.
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
|
|
Quantize/dequantize, CUDA dequantize.
PPL of LLaMA-3.1-8B is better than iq3_s and iq3_m.
|