Age | Commit message (Collapse) | Author |
|
gguf-split : improve --split and --merge logic (#9619)
* make sure params --split and --merge are not specified at same time
* update gguf-split params parse logic
* Update examples/gguf-split/gguf-split.cpp
Co-authored-by: Xuan Son Nguyen <thichthat@gmail.com>
Co-authored-by: slaren <slarengh@gmail.com>
---------
gguf-split : add basic checks (#9499)
* gguf-split : do not overwrite existing files when merging
* gguf-split : error when too many arguments are passed
Authored-by: slaren <slarengh@gmail.com>
|
|
* iq5_ks_r4: basics
* iq5_ks_r4: Zen4 works
* iq5_ks_r4: AVX2 works
* iq5_ks_r4: NEON
* Fix iq5_ks on NEON
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
* iq5_ks: basics
* iq5_ks: quantize
* iq5_ks: CUDA dequantize works
* iq5_ks: dot product works on CUDA
* iq5_ks: MMQ works
* iq5_ks: Zen4
* iq5_ks: AVX2
But is is not quite right, just like iq4_k, iq5_k, iq6_k, iq4_ks.
All these need fixing on AVX2.
* iq5_ks: NEON
* iq5_ks: Metal dequantize
* iq5_ks: Metal dot product
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
* imatrix: collect layer influence statistics
* imatrix: collect layer influence statiscs also for the last layer
For the last layer we need to use the input for the output.weight
tensor. Last layer(s) tend(s) to be important, so it is useful to also
have its influence metric.
* imatrix: separate metric for attention and ffn importance
* Use stripped tensor name, not src0->name
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
* llama-bench: enable having different number of threads for tg and pp
* Add -tgb to usage
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
* Update sweep bench (depracating .jsonl support)
* Fix README.md
|
|
* Adding ability to use THP on Linux
* Use the actual page size4 used for mmap also in munmap
* Add -thp to llama-bench
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
* Repack a model with the quantize tool
* WIP
* Fixed various issues
As we don't have a way to tell if a repacked quant has been modified,
I had to remove the modification at the expense of a slight decrease
in performance. This affects q8_0_r8, q8_KV_r8, q8_k_r8 on Zen4, and
q4_0_r8 on ARM.
* Create wk_b and wv_b as Q8_0_R8 if the wkv_b type is interleaved
* Fix GCC 13.3 compilation error
* Another one
* Add missing include
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
* FlashMLA-2: eliminate intermediate f32 tensors
This works on the CPU. PP performance is ~13% better for 16k tokens
and compute buffer is quite a bit smaller.
* FlashMLA-2: enable fast path only on the CPU for now
I did implement the necessary ops on CUDA, but something is
still wrong there, so for now we only use it when running
CPU-only.
* FlashMLA-2: slightly smaller computer buffer size
* Prepare wk_b when loading DeepSeek models (if wk_b is missing)
* Add some comments
* Fix case where wkv_b is quantized with k- or i-quants.
* Fix CUDA
There is an issue with quantized GEMV on CUDA when the left operand
(the matrix) is not contiguous. So, for now, we also create wv_b
during model loading and use that instead of the 3D view of wkv_b.
* FlashMLA-2: avoid conversions to f32 also on CUDA
* Be able to compute for more than 65535 tokens
On CUDA just a quick hack that allows us to cancatenate tensors
with more than 65535 rows along zroth dimension as needed by
FlashMLA-2. Also needed some care in the perplexity tool to
avoid int overflows when evaluating the computed logits.
* Reduce memory usage for FlashMLA-2
Oh, also fix int overflow in the CUDA concat implementation.
It is funny how the llama.cpp 64-bit police has gone (almost) everywhere
and replaced 32-bit ints with 64-bit ints, needed or not,
but hasn't done it where it is actually needed.
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
* This gives us ~20% TG speedup for DeepSeek on CUDA
* Slightly better
* Also do it for plain (not fused) mul_mat_id
* Guard against numerical precision issues for MLA on CUDA
* imatrix: wv_b <-> wkv_b
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
* Custom quantization rules with regular expressions
* Add the --custom-q option to the help
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
* A better way to measure the cost of ggml_barrier
* Smart expert selection
* Add ser option to llama-bench
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
* This reduces compute buffer size for MLA
* This should accomplish it for standard attention
* Much better
* Better concat for contiguous tensors
If all the op does is to concatenate the second tensor
to the first, why would we want to have a loop?
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
The `-mla` command line option turns into an int from a bool.
mla = 0: use standard attention
mla = 1: use MLA with transposed cache
mla > 1: use MLA without transposed cache
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
* Give the user the option to override where model weights are stored
* Fix ggml_nbytes() problem and cleanup
For a tensor with zero elements ggml_nbytes() was returning
uint64_t::max, and this was causing graph allocation failure.
* Add timing info to CUDA graph evaluation
* Add more timing info
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
* Fusing MoE up * unary(gate)
* Fusing MoE up * unary(gate): CUDA
We get ~13% speedup for PP-512 and ~2% for TG-128
for DeepSeek-Lite
* On CUDA also fuse MoE down * (up * unary(gate))
in case the MUL_MAT_ID op for the down experts is the next
op in the graph.
* Command line option to enable fused MoE up*unary(gate)
* Add fmoe option to llama-bench
* Adding forgotten gelu, relu, silu on ARM
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
* examples : add new sweep-bench benchmark
* Change documentation to reference ik_llama.cpp
* Made it compile with ik_llama
* Fix JSONL output
---------
Co-authored-by: Stanisław Szymczyk <sszymczy@gmail.com>
|
|
* Adding q8_KV - Basics + AVX2 gemm/gemv
* q8_KV: Better AVX2 gemm
* q8_KV: Better Zen4 gemm
We get 225.7 t/s for L3-8B. In comparison q8_0 without
run-tinme-repacking is at 169 t/s.
* q8_KV: AVX2 gemm/gemv
We get 254 t/s for L3-8B vs 194 t/s for q8_0 without rtr.
* q8_KV: be able to use it for K cache
This required quite a few fixes in ggml and llama.cpp:
* ggml: do not calculate row size as n/block_size*type_size. I had
removed most of it when implementing the quants with per row scale,
bit it was stull lurking in ggml_copy. Not sure if these were the last
remnants of ggmil-style row sizes, or if there are still places left
* llama.cpp: get rid of the the 1d K cache assumption. Create and manage
the K-cache as a 2D tensor so we can have per row meta data as needed
by q8_KV.
Using q8_KV for K-cache results in non-negligible performance gains.
More details to follow, but for DeepSeek-Lite with MLA, we get
18% speedup for PP-8192 compared to q8_0 K-cache.
* q8_KV: be able to use it for K cache in FA
* q8_KV: repack it for K*Q in FA
* q8_KV: slightly faster gemv on Zen4
* q8_KV: slightly faster gemv on Zen4
* q8_KV: ARM_NEON
We get PP-512 = 167 t/s for L3-8B without interleaving!
We do the interleaving on the fly, so I wonder if this
could be done for other quants as well.
* q8_KV: use it in FA on NEON
* q8_KV_r8 - repacked q8_KV
On Zen4 it is slower than q8_k_r8 (292 vs 370 t/s)
This makes no sense whatsoever as the q8_KV_r8 GEMM is
basically the q8_k_r8 GEMM with the unnecessary block stuff
removed (so, one would think that it would be faster).
* q8_KV_r8: don't use nrc_y = 16 on Zen4
This is faster - 350 t/s. Why?
Much better than the 290 t/s we had before, but still slower
than the 370 t/s for q8_k_r8.
* q8_KV: nrc_y = 16 also doesn't pay off in FA
* Minor
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
* Load all MoE experts during warmup
Co-authored-by: Stanisław Szymczyk <sszymczy@gmail.com>
* Unify warmup to one token
---------
Co-authored-by: Stanisław Szymczyk <sszymczy@gmail.com>
|
|
* Deepseek MLA Optimizations
Co-authored-by: Stanisław Szymczyk <sszymczy@gmail.com>
* Make MLA optional
* Remove some unnecessary copies in the MLA attention
* Deepseek MLA Optimizations V2 (#195)
* Avoid allocating MHA KV cache when MLA is turned on
* Added missing gguf-py file
* Added final optimizations
Co-authored-by: Stanisław Szymczyk <sszymczy@gmail.com>
* Make sure we do have wk_b and wv_b before enabling MLA
---------
Co-authored-by: Stanisław Szymczyk <sszymczy@gmail.com>
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
* Use type_k and type_v to set the types of the MLA caches
They were hard-coded at f16.
On my Ryzen-7950X with native bf16 support I get a fairly
significant PP performance boost with bf16 KV-cache:
PP-4096 = 320 t/s up from 292 t/s with fp16 KV-cache.
* Better gemm strategy when nth > nhead
It gives a ~10% PP performance boost for DeepSeek-Lite with 32 threads
(with or without MLA).
Before this commit, when nth > nhead heads were processed
sequentially with all nth threads participating in each
matrix multiplication. Now we ind the gcd of nhead and
nth and split threads into nth/gcd groups, each group
processing nhead/gcd heads.
---------
Co-authored-by: Saood Karim <saood05@gmail.com>
Co-authored-by: Stanisław Szymczyk <sszymczy@gmail.com>
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
* Rename q4_0_r4 to q4_0_r8 to reflect actual row interleaving
* Rename q8_0_r4 to q8_0_r8 to reflect actual row interleaving
* Rename iq4_xs_r4 to iq4_xs_r8 to reflect actual row interleaving
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
* iq1_m_r4: basics (quantize/dequantize)
* iq1_m_r4: Zen4 gemm
* iq1_m_r4: neon gemm
* iq1_m_r4: switch to q8_0_x4 also on AVX2/Zen4
With the deltas being per group of 8, we cannot make use
of the q8 sums stored in q8_1, so we get a tiny gain by
using q8_0_x4.
* iq1_m_r4: rename mul_mat_iq1_m_r4_q8_1 to mul_mat_iq1_m_r4_q8_0
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
* iq1_s_r4: basics - quantize/dequantize
* iq1_s_r4: gemm/gemv works on AVX2/Zen4
* Don't forget to make sure we have a multiple of 4 rows per thread
* iq1_s_r4: this is better
* iq1_s_r4: fix Zen4 after AVX2 changes
* iq1_s_r4: NEON gemm/gemv
* iq1_s_r4: more bits for shared experts
With this mix we arrive at PPL(512) = 9.4140
for Deepseek-Lite using 1.766 bpw for the repeating layers.
On the Ryzen-7950X we get PP-512 = 494 t/s and
TG-128 = 52 t/s @ 16 threads.
* Forgotten counter increment
* iq1_s_r4: slightly faster AVX2/Zen4 gemm/gemv
* Compiler warnings
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
* Slightly faster AVX2 implementation for q4_k_r4
* Even better AVX2 implementation for q4_k_r4
We now arrive at PP-512 = 328 t/s for LLaMA-3.1-8B on a
Ryzen-5975WX CPU, up from 291 t/s when I last measured
on 3c5f8722.
With FA and Q8_0 K-cache we get to 339.5 t/s.
* Fix llama-bench labels that I broke with #181
* Faster AVX2 implementation for q5_k_q4
We arrive at 302 t/s for LLaMA-3.1-8B on a Ryzen-5975WX CPU,
up from 273 t/s.
* Use AVX2 implementation of q4_k_r4 and q5_k_r4 also on Zen4
After the changes I made to AVX2, it ends up being slightly faster
compared to what I had for Zen4.
* Minor tweak
* Cleanup
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
* Adding gp option to llama-bench
Similar to pg, but it only looks at TG speed with a given
prompt length.
* Make q8_0_r4 work with tensor row sizes that are not a multiple of 128
They still need to be divisible by 32.
* Make q8_0_r4 work with tensor row sizes that are not a multiple of 128
.. on NEON
* Make q8_0_r4 work with tensor row sizes that are not a multiple of 128
.., on AVX2
* Make q4_0_r4 work with tensor row sizes that are not a multiple of 128
.., on AVX2
* Make q4_0_r4 work with tensor row sizes that are not a multiple of 128
... on NEON
* Make q4_0_r4 work with tensor row sizes that are not a multiple of 128
... on Zen4.
Also fix q8_0 K-cache for head sizes that are not multiple of 128.
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
* Fix bug in iqk_mul_mat
I recently added the possibility to have a matrix multiplication
kernel that processes 16 columns in the right matrix per iteration.
This introduced a bug that shows up when batch size is greater
than 16, is not a multiple of 16, and the remainder is not a multiple
of the maximum columns being processed by the regular kernels
(and so, never showed up in my testing using TG-128 and PP-512).
This commit fixes the issue.
* Make sure rows per thread is a multiple of 4 also for MoE when using _r4 quants
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
* iq3_s_r4: WIP
* iq3_s_r4: Zen4
* iq3_s_r4: slightly better Zen4
* iq3_s_r4: AVX2
* iq3_s_r4: NEON
* iq3_s_r4: rearrange quants
* iq3_s_r4: rearranged quants - AVX2
* iq3_s_r4: rearranged quants - NEON
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
* iq2_s_r4: Zen4
* Minor
* iq2_s_r4: NEON
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
* iq2_xs_r4: Zen4
* iq2_xs_r4: AVX2
* iq2_xs_r4: slightly better matrix x vector on AVX2
* iq2_xs_r4: NEON - not much better than iq2_xs
* iq2_xs_r4: slightly better NEON
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
* iq2_xxs_r4: Zen4
Disapointing gain: 134.7 t/s -> 151.1 t/s for PP-512
TG-128 is better: 3.45 -> 4.61 t/s @ 1 thread
* Minor
* iq2_xxs_r4: NEON
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
* iq3_xxs_r4: 1st shot on Zen4
PP-512: 107 t/s -> 137 t/s
TG-128(1 thread): 2.64 t/s -> 3.44 t/s
* iq4_xxs_r4: WIP
* iq4_xxs_r4: 1st shot at AVX2
Note: there is a bug in the AVX2 implementation for nrc_y = 1
for IQ quants with blocks of 32. I have fixed it for now by
using the nrc_y > 1 implementation (which works) also for nrc_y = 1.
* iq3_xxs_r4: NEON
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
* iq4_ks_r4: Zen4
* iq4_ks_r4: AVX2
* iq4_ks_r4: WIP
* iq4_ks_r4: slightly better Zen4
* iq4_ks_r4: slightly better Zen4
* iq4_ks_r4: NEON
* Minor
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
* iq5_k_r4: Zen4
Much slower than the others.
* iq5_k_r5: WIP
* Minor
* iq5_k_r4: fix AVX2 nrc_y = 1 case
* iq5_k_r4: better Zen4
But TG is still slower than iq5_k
* iq5_k_r4: slightly better AVX2
* iq5_k_r4: NEON
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
iq4_k_r4 (#148)
* Slightly better matrix x vector on Zen4/AVX2 for iq2_k_r4, iq3_k_r4, iq4_k_r4
More importantly: simplify.
* Minor
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
* Be able to repack tensors at run time
* Repack: also add bf16 as repackable type
* Repack: make sure number of rows is a multiple of the packing
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
* iq2_k_r4: Zen4
* iq2_k_r4: NEON
* iq2_k_r4: better matrix x vector multiplication on NEON
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
* iq3_k_r4 WIP
* iq3_k_r4: Zen4
* iq3_k_r4: AVX2
* iq3_k_r4: NEON
* iq3_k_r4: faster matrix x vector multiplication on NEON
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
* Not working bf16_r4
* Adding bf16_r8
Small performance gain compared to bf16 - 258 t/s vs 234 t/s.
I guess, this is still sub-obtimal.
* bf16_rx: Very slightly faster by interleaving 16 rows
258 t/s -> 263 t/s
* Rename bf16_r4 to bf16_r16
We are interleaving 16 rows now.
* Cleanup unused stuff
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
* q8_k_r8: fastest matrix multiplication known to human kind
We get PP-512(LLaMA-3.1-8B) = 370 t/s on a Ryzen-7950X!
* q8_k_r8: AVX2
I was worried that we don't have enough vector registrers on
AVX2, but it looks like it handles it just fine. We get
PP-512(LLaMA-3.1-8B) = 354 t/s on a Ryzen-5975WX.
Slightly slower than the Zen4 version with double the threads,
but still a huge upgrade compared to Q8_0_R4.
* q8_k_r4: NEON
We get PP-512(LLaMA-3.1-8B) = 159.2 t/s.
Compare this to the 128 t/s we have fr Q8_0_R4.
* q8_k_r4: go to signed ints
Why?
* On AVX2 _mm256_maddubs_epi16() may overflow, so we need to
stay within the signed int range and use _mm256_sign_epi8.
Not yet tested on the AVX2 comp, vut expect major slowdown.
* It is almost 10% faster on ARM_NEON. Somehow the veorrq_u8()
needed tto convert from unsigned to signed seems to be extremely
slow on the M2-Max
* We only lose ~0.5% in oerformance on Zen4 (there the exclusive
or that we now use to convert fro signed to unsigned seems to be
much faster than on M2-Max)
* Shutup useless compiler warnings
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
* iq4_k_r4: WIP
* iq4_k_r4: Zen4 and hopefully AVX2
On Zen4 we get PP-512(LLaMA-3.1-8B) = 232.6 t/s, up from 182.2 t/s
for iq4_k. Applying the extra shift costs a ~6 performance penalty.
* iq4_k_r4: AVX2
PP-512 = 227.60 t/s. The shifts are really costly.
* iq4_k_r4: NEON
We get PP-512(LLaMA-3.1-8B) = 108 t/s, up from 58.2 t/s for iq4_k.
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
* q2_k_r4: Zen4
PP-512(LLaMA-3.1-8B) = 256 t/s
* q3_k_r4: AVX2
* q2_k_r4: AVX2
We get PP-512(LLaMA-3.1-8B) = 287 t/s.
Also cherry-picked the q3_k_r4 AVX2 adaptation that I somehow
forgot to push upstream.
* q2_k_r4: NEON
We get PP-512(LLaMA-3.1-8B) = 106.2 t/s.
TG-128 is 36.02 t/s, which is ~10% higher than q2_K_S.
* Make sure rows per thread are a multiple of 4
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
* q3_k_r4: Zen4 works, but not as good as it should be
238 t/s, so sloghtly slower than q6_k_r4.
* q3_k_r4: NEON
We get PP-512(LLaMA-3.1-8B) = 106.9 t/s.
This is 1.93X faster than q3_K_S!
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
* q5_k_r4: WIP
* q5_k_r4: Zen4 and AVX2
We get PP-512(LLaMA-3.1-8B) = 248.3 t/s on Zen4.
Q5_K_S has PP-512 = 190 t/s.
* q5_k_r4: NEON
We get PP-512(LLaMA-3.1-8B) = 96.1 t/s.
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|