summaryrefslogtreecommitdiff
path: root/examples
AgeCommit message (Collapse)Author
2023-09-27readme : add some recent perplexity and bpw measurements to READMES, link ↵BarfingLemurs
for k-quants (#3340) * Update README.md * Update README.md * Update README.md with k-quants bpw measurements
2023-09-23llama-bench : add README (#3317)slaren
* llama-bench : add README * minor edit
2023-09-21embedding : update README.md (#3224)yuiseki
2023-09-20llama : allow gguf RoPE keys to be overridden with defaults (#3240)Cebtenzzre
2023-09-20benchmark-matmult : do not use integer abs() on a float (#3277)Cebtenzzre
2023-09-20examples : fix benchmark-matmult (#1554)Georgi Gerganov
The precision for Q4_0 has degraded since #1508
2023-09-18make : restore build-info.h dependency for several targets (#3205)Cebtenzzre
2023-09-16Fixing the last deviations from sentencepiece indicated by test-tokenizer-1 ↵goerch
(#3170) * Fix für #2721 * Reenable tokenizer test for LLaMa * Add `console.cpp` dependency * Fix dependency to `common` * Fixing wrong fix. * Make console usage platform specific Work on compiler warnings. * Adapting makefile * Remove trailing whitespace * Adapting the other parts of the makefile * Fix typo. * Fixing the last deviations from sentencepiece indicated by test-tokenizer-1 * Simplify logic * Add missing change... * Fix ugly compiler warning * llama_tokenize should accept strings containing NUL now * Adding huichen's test case
2023-09-15examples : add compiler version and target to build info (#2998)Cebtenzzre
2023-09-15check C++ code with -Wmissing-declarations (#3184)Cebtenzzre
2023-09-15sync : ggml (Metal F32 support + reduce ggml-alloc size) (#3192)Georgi Gerganov
* sync : ggml (Metal F32 support + reduce ggml-alloc size) ggml-ci * llama-bench : fix ggml_cpu_has_metal() duplicate function ggml-ci
2023-09-15llama : remove mtest (#3177)Roland
* Remove mtest * remove from common/common.h and examples/main/main.cpp
2023-09-14cmake : add relocatable Llama package (#2960)bandoti
* Keep static libs and headers with install * Add logic to generate Config package * Use proper build info * Add llama as import library * Prefix target with package name * Add example project using CMake package * Update README * Update README * Remove trailing whitespace
2023-09-14speculative : add heuristic algorithm (#3006)Leng Yue
* Add heuristic algo for speculative * Constrain minimum n_draft to 2 * speculative : improve heuristic impl * speculative : be more rewarding upon guessing max drafted tokens * speculative : fix typos --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-09-13speculative: add --n-gpu-layers-draft option (#3063)FK
2023-09-08examples : make n_ctx warning work again (#3066)Cebtenzzre
This was broken by commit e36ecdcc ("build : on Mac OS enable Metal by default (#2901)").
2023-09-08build : do not use _GNU_SOURCE gratuitously (#2035)Przemysław Pawełczyk
* Do not use _GNU_SOURCE gratuitously. What is needed to build llama.cpp and examples is availability of stuff defined in The Open Group Base Specifications Issue 6 (https://pubs.opengroup.org/onlinepubs/009695399/) known also as Single Unix Specification v3 (SUSv3) or POSIX.1-2001 + XSI extensions, plus some stuff from BSD that is not specified in POSIX.1. Well, that was true until NUMA support was added recently, so enable GNU libc extensions for Linux builds to cover that. Not having feature test macros in source code gives greater flexibility to those wanting to reuse it in 3rd party app, as they can build it with FTMs set by Makefile here or other FTMs depending on their needs. It builds without issues in Alpine (musl libc), Ubuntu (glibc), MSYS2. * make : enable Darwin extensions for macOS to expose RLIMIT_MEMLOCK * make : enable BSD extensions for DragonFlyBSD to expose RLIMIT_MEMLOCK * make : use BSD-specific FTMs to enable alloca on BSDs * make : fix OpenBSD build by exposing newer POSIX definitions * cmake : follow recent FTM improvements from Makefile
2023-09-07fix some warnings from gcc and clang-tidy (#3038)Cebtenzzre
Co-authored-by: xaedes <xaedes@gmail.com>
2023-09-07llama-bench : use two tokens in the warmup run for prompt evals (#3059)slaren
2023-09-05examples : replace fprintf to stdout with printf (#3017)Cebtenzzre
2023-09-05speculative : add grammar support (#2991)Georgi Gerganov
* speculative : add grammar support * grammars : add json_arr.gbnf * grammar : add comments to new grammar file * grammar : remove one nested level * common : warm-up with 2 tokens - seems to work better * speculative : print draft token pieces * speculative : reuse grammar parser + better logs and comments * speculative : avoid grammar_mem * make : fix speculative build
2023-09-04build : on Mac OS enable Metal by default (#2901)Georgi Gerganov
* build : on Mac OS enable Metal by default * make : try to fix build on Linux * make : move targets back to the top * make : fix target clean * llama : enable GPU inference by default with Metal * llama : fix vocab_only logic when GPU is enabled * common : better `n_gpu_layers` assignment * readme : update Metal instructions * make : fix merge conflict remnants * gitignore : metal
2023-09-04llama-bench : make cpp file non-executable (#2999)Cebtenzzre
2023-09-04server : add a subtle loading animation to the edit box (#2466)Aarni Koskela
* editorconfig: add override for the server HTML (which already is 2-space indented) * server: add a subtle loading animation to the edit box
2023-09-03speculative : PoC for speeding-up inference via speculative sampling (#2926)Georgi Gerganov
* speculative : initial example * speculative : print encoding speed * speculative : add --draft CLI arg
2023-09-03perplexity : fix ETA by warming up the model with an empty runGeorgi Gerganov
2023-09-03examples : fix gpt-neox (#2943)momonga
Co-authored-by: mmnga <mmnga1mmnga@gmail.com>
2023-09-02server : avoid aniprompt in probabilities of final response (#2849)Jhen-Jie Hong
2023-09-01readme : quick start command fix (#2908)ZHAOKAI WANG
* quick start command fix * quick start win command fix
2023-09-01Allow quantize to only copy tensors, some other improvements (#2931)Kerfuffle
* Allow quantize tool to only copy tensors to allow repackaging models. * Slightly better logic when requantizing. * Change help message to go to `stdout`.
2023-09-01llama2c : rename functionGeorgi Gerganov
2023-09-01minor : add const qualifiers (#2853)m3ndax
* made the methods const # Conflicts: # examples/convert-llama2c-to-ggml/convert-llama2c-to-ggml.cpp * made method const * Update convert-llama2c-to-ggml.cpp removed write_raw and write_u32 * llama2c : remove misleading const --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-09-01build : fix most gcc and clang warnings (#2861)Cebtenzzre
* fix most gcc and clang warnings * baby-llama : remove commented opt_params_adam * fix some MinGW warnings * fix more MinGW warnings
2023-09-01llama2c : fix segfault and alloc-dealloc-mismatch (#2913)Cebtenzzre
* llama2c : fix segfault if vocab is not found * llama2c : fix mismatch between new[] and delete * llama2c : fix basename on Windows * llama2c : use a destructor to prevent memory leaks
2023-08-31scripts: Use local gguf package when running from repo (#2927)Kerfuffle
* scripts: Use local gguf when running from repo
2023-08-30examples : fix underscore in beam-search + .gitignore (close #2900)Georgi Gerganov
2023-08-30llm.vim : stop generation at multiple linebreaks, bind to <F2> (#2879)chaihahaha
2023-08-30main : log file (#2748)staviq
* initial, base LOG macro * add *.log to .gitignore * added basic log file handler * reverted log auto endline to better mimic printf * remove atomics and add dynamic log target * log_enable/disable, LOG_TEE, basic usage doc * update .gitignore * mv include to common, params, help msg * log tostring helpers, token vectors pretty prints * main: replaced fprintf/LOG_TEE, some trace logging * LOG_DISABLE_LOGS compile flag, wrapped f in macros * fix LOG_TEELN and configchecker * stub LOG_DUMP_CMDLINE for WIN32 for now * fix msvc * cleanup main.cpp:273 * fix stray whitespace after master sync * log : fix compile warnings - do not use C++20 stuff - use PRIu64 to print uint64_t - avoid string copies by using const ref - fix ", ##__VA_ARGS__" warnings - compare strings with == and != * log : do not append to existing log + disable file line func by default * log : try to fix Windows build * main : wip logs * main : add trace log * review: macro f lowercase, str append to sstream * review: simplify ifs and str comparisons * fix MSVC, formatting, FMT/VAL placeholders * review: if/else cleanup * review: if/else cleanup (2) * replace _ prefix with _impl suffix --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-08-29Tell users attmepting to run perplexity with too few tokens to use more (#2882)Kawrakow
Closes #2858 Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2023-08-28train : mem usage and other improvements (#2439)xaedes
* fix track_max_mem in forward_batch_wo_cache_flash_attn_train * remove unnecessary Adam(W) optimizer tensors. reduces optimizer memory overhead from 7*modelsize to 2*modelsize. additionally allows to optimize models with more than 2^31 parameters by replacing int with int64_t. bumps training checkpoint file version, but old checkpoints can still be read. new version with less tensors is saved. * add gradient clipping to AdamW * Fix reset of unused g->nodes and g->grads to NULL * implement gradient checkpointing for training reduces memory overhead from O(n_layer) to O(sqrt(n_layer)) as explained in readme of https://github.com/cybertronai/gradient-checkpointing * remove unused compute buffer 3 * add and use function ggml_build_backward_expand to avoid stack overflows with large maximum number of nodes GGML_API void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep); * change AdamW decay parameter to work like the torch AdamW decay parameter It is now relative to Adam learning rate `alpha*sched`. Before that it was relative to `sched` only. `alpha` being the maximum learning rate and `sched` being a scaling parameter in [0..1] * change default AdamW weight decay parameter used in training to 0.1 as used in nanoGPT * change default AdamW weight decay parameter defined in ggml to 0.0, making Adam default instead of AdamW btw: the default weight decay parameter for torch.optim.AdamW is 0.01 * bug fixes for cross entropy loss ggml_cross_entropy_loss: sums where not correctly added in workload of each thread ggml_cross_entropy_loss_back: simplify backward process, reducing numerical issues guard usage of exp f16 lookup in cross entropy by #define GGML_CROSS_ENTROPY_EXP_FP16 cross entropy loss is only used once during training, but it is quite sensitive to numerical errors introduced by exp-f16-lookup. so exp-f16-lookup for cross entropy loss is disabled by default, trading better gradients for very slightly worse runtime performance. * fix test-grad0 for cross_entropy_loss the second argument to cross_entropy_loss must sum up to 1 for each row * fix test-grad0 for soft_max dont use only sum as aggregation, because sum of softmax is always 1 -> finite differences should not work instead use sum(log(soft_max()*(1-eps)+eps)); use eps to avoid log(0) * improve finite differences of test-grad0 by using double instead of float * change cross_entropy_loss to output average over all rows this helps keeping the loss and gradients in a sane range * improve gradient checkpointing sqrt(n_layers) is only the best checkpoint step when mem size of checkpoints and mem size of layers are equal. since layers require more memory than the single-tensor-checkpoint we use, the optimal values are compute different: ``` given: n, u, v objective: minimize(a*u+b*v) where a*b=n, a>0, b>0 b=n/a minimize(a*u+v*n/a) diff(a*u+v*n/a, a) = u - (v*n/a)/a diff(a*u+v*n/a, a) == 0 u - (v*n/a)/a == 0 u == v*n/(a*a) u*a*a = v*n a*a = v*n/u a = sqrt(n*v/u) ``` this change results in more checkpoints, requiring less layers to store between checkpoints, overall improving memory usage. * disable gradient checkpointing debug output * llama : fix rope usage in train-text-from-scratch after ChatGLM change * add more training parameters: --enable-restart N Only for Adam optimizer. Enable restarts of cos-decay --disable-restart N Only for Adam optimizer. Disable restarts of cos-decay --opt-past N Number of optimization iterations to track for delta convergence test. Disabled when zero. --opt-delta N Maximum delta for delta convergence test. Disabled when <= zero. --opt-max-no-improvement N Maximum number of optimization iterations with no improvement. Disabled when <= zero. --adam-epsf N AdamW epsilon for convergence test. Disabled when <= zero. --adam-min-alpha N Adam minimum learning rate alpha, usually 0.1 * alpha * replace memcpy with reshape operation so that the graph is not cut at the input this makes it possible to store other values into the input tensor and then simply recompute the graph without rebuilding it * remove unused function argument from get_example_targets_batch * measure and print total training time * add optimization callback to ggml_opt_resume_g this callback is called before each iteration with custom data and pointer to learning schedule parameter (only used in Adam(W)). can be used for dynamic learning schedule and setting input data for batches before each iteration * use optimization callback in training allows dynamic learning schedule and different batch data for each iteration without relying on low n_iter and high n_examples parameters reduces runtime by avoiding restart of optimization function and improves training convergence by providing a different batch for each iteration * add minimum number of tensor dimensions to apply weight decay (default 2) this allows to not apply weight decay to bias parameters * rename training parameter cos-decay-alpha to cos-decay-min and clarify that adam-min-alpha also applies to warmup * fix increase of model.train_samples and model.train_tokens now that each optimizer iteration gets its own batch we need to multiply by number of opt iterations * change sampling parameters for prediction after training to defaults of common.h and clarify what is context for prediction and what are generated tokens * tighten abs error bounds for cross_entropy_loss in test-grad0 * add conditional compilation of using F16 exp in flash attention uncomment `// #define GGML_FLASH_ATTN_EXP_FP16` to enable usage of f16 exp in flash attention * tighten abs error bounds for flash_attn in test-grad0 * tighten abs error bounds for sqrt in test-grad0 * remove out-commented vectorized code of opt_adam the vectorized code might be bit faster for low number of parameters, but it had a big memory usage overhead * ggml : update ggml_rms_norm_back with configurable eps * llama training : fix ggml_rms_norm_back calls to pass configurable eps * remove trailing whitespace * add train function using automatic gradient checkpointing backward pass and allocator * in train function replace add_inplace by regular add because using add_inplace seems to result in different gradients * don't use allocate hash_map on context because the context has no_alloc=True when using memory allocator resulting in NULL data pointers * correctly clone reshape and permute operations by also cloning tensor->nb values * fix variable name and add missing type cast * terminate recursive tensor cloning when reaching tensor without src tensors * correctly clone view tensors by setting data pointers without this the checkpointing would only work when being used together with memory allocator * fix variable names * swap arguments to commutative ops to be the same as in `forward_batch_wo_cache_flash_attn` * add input tensors as checkpoints so that recursive tensor cloning of gradient checkpointing terminates on input tensors * fix variable name and add missing boolean negation * make sure some tensors are not reallocated by inserting new temporary nodes depending on them: output and parameter gradient tensors need to be available at the end of the graph execution parameter gradient tensors also need to be available before the graph execution because they are set to zero before each optimizer iteration checkpoint tensors are allocated all together to reduce memory allocator fragmentation afterwards, in addition to the temporary nodes, we also need to reset the temporary leafs * fix ASSERT to work with zero layers * add training options whether to use allocator and/or unified training function * integrate unified training function which may use memory allocator the unified training function also supports arguments whether to use flash attention and/or gradient checkpointing * format name of cloned tensors with " (clone)" suffix * set names for tensors in unified train function for easier debugging * allocate graph on context using ggml_new_graph * remove handwritten training functions * remove unused training parameters "use_scratch" and "use_unified" * remove trailing whitespace * remove unused train params: mem_compute1_gb & mem_compute2_gb mem_compute_gb is used for compute when automatic memory allocator is not enabled, otherwise it can be very small to only hold the tensor definitions mem_compute0_gb is used for automatic memory allocator (as long as measurement of max required size is not implemented) * remove unused forward_batch function * add debug asserts in ggml_allocr_alloc to some common pitfalls when using this function directly * only use ggml_allocr_alloc when tensor has NULL data and is no view * fix test when to create temporary backward graph temporary backward graph is only necessary when using checkpointing * fix memory "leak" in optimizers each iteration a new cplan with new memory for work data was allocated. now cplan creation only happens at the start of optimization, with each iteration reusing the cplan and its work data. * reverse order of for loop in ggml_build_backward_expand to save memory when using gradient checkpointing and allocator with this loop order gradient checkpointing with allocator on 16 layer model saves 13% memory; 2 layer memory it saves 2% memory. the computation results are the same * add missing lctx argument to get_example_targets_batch * implement llama model file saving using gguf checkpoint loading and saving disabled, to be replaced by loading and saving via gguf * implement loading/saving of checkpointing files using GGUF * bug fixes * add checkpoint file version for future compatibility * update readme with gguf filenames * save & load opt->just_initialized value * add first draft for checkpoint conversion script * add gguf arch and ftype * save opt parameter counter as uint64 * add gguf key and tensor names for optimizer and training * add layer_norm_rms_eps to checkpoint convert script * use same GGUF_GET_KEY macro as in llama.cpp * use norm_rms_eps, and rope parameters and command line options to set them * fix memory corruption bug in gguf ctx->kv and ctx->infos was reallocated using not-aligned realloc, but freed with aligned free. to fix this a GGML_ALIGNED_REALLOC was added, but there is no posix_memalign_realloc function. so on non-windows and non-mingw32 platforms we fall back to aligned malloc, followed by copying and freeing the old data. * add gguf example cmake file * bug fixes in tokenize_file * bug fixes in load_llama_model_gguf * bug fix: init model when no checkpoint was loaded * bug fix in read_tensor_by_name * bug fix in load_opt_context_gguf * avoid printing lots of spaced on the unusual case that loss gets nan * set name of tensors with empty name from what was read from gguf * remove trailing whitespace * print data checksums before saving and after loading to verify correctness * bug fixes for convert-train-checkpoint-to-gguf * temporarily add code to write old checkpoint files used to verify that old checkpoint files are correctly converted to gguf * bug fixes for convert-train-checkpoint-to-gguf.py loading checkpoints with opt_version=0 * remove code used to verify correctness of checkpoint file conversion * remove trailing whitespace * remove prediction related code use main for prediction, it is better optimized * update train-text-from-scratch README.md * fix non-windows GGML_ALIGNED_REALLOC * add missing blank line at end of file * remove GGML_ALIGNED_REALLOC and use normal malloc/realloc/free for gguf ctx->kv & ctx->infos * train : fix compile warnings --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-08-28llama-bench : set locale to utf8 (#2832)slaren
2023-08-28YAML result logging + preset script (#2657)Johannes Gäßler
2023-08-28quantize : make output filename optional again (#2823)Cebtenzzre
* quantize : make output filename optional again * quantize : fix path parsing on Windows suggested by @slaren
2023-08-27examples : update llama2.c converter to read vocab and write models in GGUF ↵Olivier Chafik
format (#2751) * llama2.c: direct gguf output (WIP) * Simplify vector building logic * llama2.c gguf conversion: fix token types in converter * llama2.c: support copying vocab from a llama gguf model file * llama2.c: update default path for vocab model + readme * llama2.c: use defines for gguf keys * llama2.c: escape whitespaces w/ U+2581 in vocab converter the llama.cpp way * llama2.c converter: cleanups + take n_ff from config
2023-08-27llama : speedup tokenization (#2831)Kawrakow
* Speedup tokenization On current master it takes ~3.2 seconds to tokenize Wikitext. With this change it becomes ~525 ms. * Fixit: it was missing the piece after the last found occurence --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2023-08-27gguf : add 64-bit support (GGUF v2) (#2821)Georgi Gerganov
* gguf : bump version to 2 * gguf : add support for 64-bit (no backwards comp yet) * gguf : v1 backwards comp * gguf.py : bump GGUF version * gguf.py : uint64_t on all lengths, sizes and counts, enums still uint32_t * gguf.py : string lengths uint32_t * gguf : update all counts to 64-bit * gguf.py : string len uint64_t and n_dims uint32_t * gguf : fix typo * llama.cpp : print gguf version --------- Co-authored-by: klosax <131523366+klosax@users.noreply.github.com>
2023-08-27llama : more tokenizer fixes (#2810)Georgi Gerganov
* tests : write a Python tokenizer test (wip) * llama : prefix input text for tokenization with whitespace * llama : distinguish pieces from decoded text + fix detokenization * common : add comments * examples : no longer manually add leading space when tokenizing * tests : use Python to generate tokenizer tests for C++ * tests : add option to tokenize text files ggml-ci * tests : add test-tokenizer-1.py * llama.cpp : fix LF token * hellaswag : move the concat space for clarity * tests : add falcon tests (py + cpp, currently do not pass Unicode) ggml-ci * common : temporary separate llama_detokenize calls for SPM and BPE --------- Co-authored-by: klosax <131523366+klosax@users.noreply.github.com>
2023-08-27server : add `/detokenize` endpoint (#2802)Bruce MacDonald
* Add a /detokenize endpoint to the example server * remove trailing white-space
2023-08-26main : fix bug (penalize_nl=false doesn't work) + suppress warning on mingw ↵Dr. Tom Murphy VII Ph.D
(#1528) * Fix bug in main.cpp where penalize_nl=false has no effect. It modifies the underlying logits array, but at this point we are already working on the candidates copy. * Suppress redefinition warning for NOMINMAX on mingw. In my installation, this macro is already defined by /usr/lib/gcc/x86_64-w64-mingw32/11/include/c++/x86_64-w64-mingw32/bits/os_defines.h:45. * main : fix indentation * main : pass ctx to llama_token_nl() --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-08-26Fix HellaSwag (#2805)Kawrakow
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>