summaryrefslogtreecommitdiff
path: root/ggml-backend.c
AgeCommit message (Collapse)Author
2024-06-03llama : offload to RPC in addition to other backends (#7640)Radoslav Gerganov
* llama : offload to RPC in addition to other backends * - fix copy_tensor being called on the src buffer instead of the dst buffer - always initialize views in the view_src buffer - add RPC backend to Makefile build - add endpoint to all RPC object names * add rpc-server to Makefile * Update llama.cpp Co-authored-by: slaren <slarengh@gmail.com> --------- Co-authored-by: slaren <slarengh@gmail.com>
2024-05-15ggml : tag ggml_tensor::backend as deprecated (#7290)slaren
2024-05-11build: fix and ignore msvc warnings (ggml/805)Borislav Stanimirov
2024-04-26Reset schedule earlier to allow overlap with ggml graph computation on ↵agray3
device (#6933) * Reset schedule earlier to allow overlap with graph computation on device
2024-04-22ggml : fix calloc argument ordering. (#6820)Dave Airlie
Latest gcc complains here: /home/airlied/devel/llama.cpp/ggml-alloc.c: In function ‘ggml_gallocr_new_n’: /home/airlied/devel/llama.cpp/ggml-alloc.c:374:59: warning: ‘calloc’ sizes specified with ‘sizeof’ in the earlier argument and not in the later argument [-Wcalloc-transposed-args] 374 | ggml_gallocr_t galloc = (ggml_gallocr_t)calloc(sizeof(struct ggml_gallocr), 1); | ^~~~~~ /home/airlied/devel/llama.cpp/ggml-alloc.c:374:59: note: earlier argument should specify number of elements, later size of each element and a bunch more. calloc is specified to take nmemb first then size, so realign the code. In a couple of places there was a * x, 1 so I fixed those to use calloc properly.
2024-04-21ggml : fix ggml_backend_cpu_supports_op() for CPY (#0)Georgi Gerganov
2024-03-26cuda : rename build flag to LLAMA_CUDA (#6299)slaren
2024-03-18backend : set max split inputs to GGML_MAX_SRC (#6137)slaren
2024-03-18backend : offload large batches to GPU (#6083)slaren
* backend : offload large batches to GPU * fix hip * code cleanup * fix CUDA split buffers * Update ggml-backend-impl.h Co-authored-by: Johannes Gäßler <johannesg@5d6.de> * cuda : fix memset without set_device * imatrix : remove sched affix from weight names * sched : add a new split if the current one has too many inputs reduce max inputs per split more cleanup * update backends ggml-ci --------- Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2024-03-13llama : add pipeline parallelism support (#6017)slaren
* llama : add pipeline parallelism support for batch processing with multiple CUDA GPUs ggml-ci * server : add -ub, --ubatch-size parameter * fix server embedding test * llama : fix Mamba inference for pipeline parallelism Tested to work correctly with both `main` and `parallel` examples. * llama : limit max batch size to n_batch * add LLAMA_SCHED_MAX_COPIES to configure the number of input copies for pipeline parallelism default increase to 4 (from 2) changing this value may improve performance for some systems, but increases memory usage * fix hip build * fix sycl build (disable cpy_tensor_async) * fix hip build * llama : limit n_batch and n_ubatch to n_ctx during context creation * llama : fix norm backend * batched-bench : sync after decode * swiftui : sync after decode * ggml : allow ggml_get_rows to use multiple threads if they are available * check n_ubatch >= n_tokens with non-casual attention * llama : do not limit n_batch to n_ctx with non-casual attn * server : construct batch with size of llama_n_batch * ggml_backend_cpu_graph_compute : fix return value when alloc fails * llama : better n_batch and n_ubatch comment * fix merge * small fix * reduce default n_batch to 2048 --------- Co-authored-by: Francis Couture-Harpin <git@compilade.net> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-03-04ggml : introduce ggml_status (ggml/750)Michael Podvitskiy
* using enum as an exit code instead of macros * update return type from enum to unsigned int * indentation fix * compound update ggml_compute_exit_code -> ggml_status changed ggml_status from a bit-field type to simple codes ggml_status to string cast * ggml_status to string cast * GGML_CALL was removed Co-authored-by: slaren <slarengh@gmail.com> --------- Co-authored-by: slaren <slarengh@gmail.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-02-28Introduce backend GUIDs (ggml/743)UEXTM.com
* Introduce backend GUIDs Initial proposed implementation of backend GUIDs (Discussed in https://github.com/ggerganov/ggml/pull/741) Hardcoded CPU backend GUID (for now) Change ggml_backend_is_cpu logic to use GUID * Remove redundant functions Remove redundant functions `ggml_backend_i::get_name` and `ggml_backend_guid` which are not desired for future expansion * Add spaces to match style Co-authored-by: slaren <slarengh@gmail.com> * Fix brace style to match Co-authored-by: slaren <slarengh@gmail.com> * Add void to () in function signature Co-authored-by: slaren <slarengh@gmail.com> * Add back ggml_backend_guid and make CPU_GUID a local static in ggml_backend_cpu_guid * add guids to all backends ggml-ci --------- Co-authored-by: slaren <slarengh@gmail.com>
2024-02-181.5 bit quantization (#5453)Kawrakow
* iq1_s: WIP basics * iq1_s: CUDA is working * iq1_s: scalar CPU dot product * iq1_s: WIP AVX2 dot product - something is not right * Fix tests * Fix shadow warnings * Fix after merge with latest master * iq1_s: AVX2 finally works * iq1_s: ARM_NEON dot product. Works, but not very fast * iq1_s: better grid * iq1_s: use IQ2_XXS for attn_output At a cost of 0.04 extra bpw this gives a big improvement in PPL. * iq1_s: Metal basics Dequantize works, but not dot product * iq1_s: Metal works, but quite slow As usual, Apple Silicon does not like the code I write. * iq1_s: Tests * iq1_s: slightly faster dot product --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-02-17ggml : add ALiBi support for ggml_soft_max_ext (#5488)Georgi Gerganov
* ggml : avoid recomputing alibi slopes (CPU) * llama : reuse hparams.f_max_alibi_bias in all cases ggml-ci * ggml : support alibi bias in ggml_soft_max_ext (CPU + Metal) ggml-ci * ggml : handle all SRCs (do not break on first null) ggml-ci * tests : do not use slope for large soft_max accumulates too much error ggml-ci * ggml : alternative ALiBi without extra tensor We compute the slopes in the kernel ggml-ci * cuda : add ALiBi support in ggml_soft_max_ext ggml-ci * ggml : deprecate ggml_alibi * ggml : support multi-sequence ALiBi (Metal) ggml-ci * cuda : add multi-seq ALiBi + remote F16 soft_max ggml-ci * ggml : update deprecation message * ggml : fix pos ptr when no ALiBi ggml-ci * cuda : fix performance (pow -> powf) * cuda : precompute ALiBi constants * metal : pre-compute ALiBi slopes ggml-ci * llama : init kq_pos only if needed ggml-ci * test-backend-ops : add null pos test to soft_max test-backend-ops : replace soft_max tests ggml-ci --------- Co-authored-by: slaren <slarengh@gmail.com>
2024-02-17ci : add an option to fail on compile warning (#3952)Ananta Bastola
* feat(ci): add an option to fail on compile warning * Update CMakeLists.txt * minor : fix compile warnings ggml-ci * ggml : fix unreachable code warnings ggml-ci * ci : disable fatal warnings for windows, ios and tvos * ggml : fix strncpy warning * ci : disable fatal warnings for MPI build * ci : add fatal warnings to ggml-ci ggml-ci --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-02-13Early return for zero size calls to get_tensor. (#5482)AT
* Early return for zero size calls to get_tensor. Signed-off-by: Adam Treat <treat.adam@gmail.com> * Update ggml-kompute.cpp Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update ggml-kompute.cpp Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Add an early return to the get/set tensor when the size is null. Signed-off-by: Adam Treat <treat.adam@gmail.com> * Early return after the assertions. Signed-off-by: Adam Treat <treat.adam@gmail.com> * Since we do the early return in the generic backend now no reason to do so here as well. Signed-off-by: Adam Treat <treat.adam@gmail.com> --------- Signed-off-by: Adam Treat <treat.adam@gmail.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-02-12sync : ggml (#5452)Georgi Gerganov
* ggml-alloc : v3 (ggml/727) * ggml-alloc v3 ggml-ci * fix ci ggml-ci * whisper : check for backend buffer allocation failures * whisper : avoid leaks when initialization fails * cleanup ggml-ci * style fixes ggml-ci * sync : ggml * update llama.cpp, clip.cpp, export-lora.cpp * update finetune.cpp, train-text-from-scratch.cpp ggml-ci * ggml-backend : reduce alignment to 32 to match gguf and fix mmap --------- Co-authored-by: slaren <slarengh@gmail.com>
2024-02-10ggml : add abort_callback for cpu backend (ggml/725)Michael Podvitskiy
* a way to use abort_callback with the cpu backend * whisper update
2024-01-29Nomic Vulkan backend (#4456)Jared Van Bortel
Signed-off-by: Jared Van Bortel <jared@nomic.ai> Co-authored-by: niansa <anton-sa@web.de> Co-authored-by: Adam Treat <treat.adam@gmail.com> Co-authored-by: Aaron Miller <apage43@ninjawhale.com> Co-authored-by: ToKiNoBug <tokinobug@163.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> Co-authored-by: slaren <slarengh@gmail.com>
2024-01-28ggml : add Vulkan backend (#2059)0cc4m
* Vulkan loader code * Fix matmul kernel, continue implementation * Continue implementation * Vulkan memory management * Vulkan development * Matmul call * Add aligned malloc and free for VMA * Continue implementation * First matmul success * GEMM Kernel optimization * 1D Blocktiling * 2D Blocktiling * Write coalescing * Continue vulkan implementation and optimization * First FP16 attempt, disabled for now * Code abstraction, FP16 implementation, fix kernel, add FP16 to FP32 kernel * Enable device extensions properly, restore fp16 matmul op * Fix mulmat_f16 * Output FP32 in fp16 matmul shader * Fix f16_to_f32 kernel * dequant_q4_0 kernel * Add VMA library * Avoid requesting dedicated memory, VMA can decide that by itself * Add bounds checking to matmul kernels, improve implementation, fix command buffers not freed properly * add cmake commands * Add 2d write operation, profiling code * Fix 2d write * Fix queue selection for AMD RADV * Fix trailing whitespace in vk_mem_alloc.h * Add WIP warp tile mat mul shaders * Disable glslc optimization * Disable glslc optimization for CMake * Optimize warptile matmul shader, replace blocktile with it * Add split-k optimization for small matrix multiplication Use semaphores for synchronization instead of fences or waitidle Rework async write/read for synchronization * Fix validation errors, improve compatibility with AMD GPUs * Rework command buffer handling * Variable matmul kernel using specialization constants * Fix synchronization on AMD, add barriers for buffer ownership transfer, add debug flag and prints * Reuse semaphores * Handle stage flags during command buffer submission properly * Increase matmul test runs for consistent results * Fix F32 matmul * Add vectorized loading and zeropadding for matrix multiplication * Use pinned memory for f16 preprocessing * Don't force aligned matmul * Don't free before queue done * Replace VMA library with native Vulkan buffer management * Basic offloading support with mul_f32 and dmmv for q4_0 * Run glslc commands in parallel * Unroll loops in dmmv shader * Reduce usage of waitIdle * Reuse pinned allocation for f16 conversion * Handle devices with only a single queue * Fix trailing whitespace in CMakeLists.txt * Allow parallel execution of kernels, parallelize third and fourth dimension calls * Add fallback for devices only supporting one DescriptorSet per DescriptorPool * Move to graph function similar to CUDA implementation * Use F16 kernel for most things, replace q_f32 with mul_mat_q_f16 function * Add F32 dmmv shaders * Batch submissions * Add .spv to gitignore * Split off matrix vector multiplication for separate optimization * Use single command buffer for matrix vector multiplication ops * Reduce overhead of mul_f32 calls by using a single command buffer * Add submission batching to mul_f32 * Fix tests * Add missing barrier * Add further missing barrier * Add further ops * Replace vk::QueueFamilyIgnored with VK_QUEUE_FAMILY_IGNORED to support more Vulkan header versions * Remove unnecessary cblas link * Fix descriptor set pre-allocation assert * Add runtime shader compilation, start transferring shaders to this approach * Transfer remaining shaders to header and compile on runtime * Fix fp32 fallback if device doesn't support fp16, add force disable env var GGML_VULKAN_DISABLE_F16 * Add support for q4_1, q5_0, q5_1 and q8_0 * Remove unnecessary scalar layout extension * Parse graph early to pre-record command buffers * Add q6_k support * Add multi-submit for command buffers * Fix q6_k dequant shader for AMD * Fix q6_k for GPUs without fp16 support * Simplify q6_k fp16 fix * Minor fixes * Fix wg_denom of m-mulmat shaders * Add Python-based Vulkan shader generator * Replace shaderc dependency with precompiled shaders Fix python script to generate shaders * Clean up code * Fix shader generator script Windows compatibility Co-authored-by: Concedo <39025047+LostRuins@users.noreply.github.com> * Close file before deletion * Fix vulkan shader fp32 name * Add q2_k and q3_k support Add validation check to compare shader results to cpu results * Add q4_k support * Add q5_k support * Bake SPIR-V bytecode into the library instead of loading shaders from file * Switch to signal semaphores for flexibility Prepare broadcasting support for mul mat * Finish broadcasting mul mat support for GQA * Clean up unused functions Add repeat op * Add further ops, not yet enabled. Improve semaphore code * Reduce number of used semaphores by utilizing timelines more properly * Remove queue information * Reuse timeline semaphores, allow parallel operation with binary semaphores to work around nvidia driver limitations * Add Vulkan to llama-bench * Remove cblas dependency * Fix matmul k-split bug * Fix q4_k dmmv K_QUANTS_PER_ITERATION 1 shader * Add RMS Norm shader, rework op_f32 shader setup, fix matmul bug * Fix issues with float16 overflows in shaders * Fix issues with older Vulkan headers on Ubuntu 22.04 * Allow multi-op partial offloading by parsing the graph to preallocate enough between-op buffers * Implement further ops, rework op_f32 calls, fix bugs * Finish full offloading support, add last remaining ops, fix bugs, remove redundant code * Upload generated file ggml-vulkan-shaders.hpp, remove redundant shaders * Merge upstream changes, fix conflicts, adapt soft_max op * Fix Python and shader header format * Free model gpu buffers on exit * Use single queue per device to simplify code * Add matmul shader support for running multiple calculations in parallel * Switch from semaphore-synchronized multiple command buffers per op to single command buffer for multiple ops, whole graph if possible * Fix missing event cast * Replace uint64_t(-1) with UINT64_MAX, rename function for clarity * Fix warning about empty C function parameters * Fix compiler warnings * Properly implement Vulkan backend buffer handling * Fix oversized host staging buffers * Simplify barrier synchronization calls * Fix gcc warnings * Implement max_size for backend buffer types to limit the size of a single allocation * Use min of maxMemoryAllocationSize and maxBufferSize for device max allocation size * refactor multi buf * Disable unsupported ops to fix tests * Check for maintenance4 support before using it * Handle devices with only a single queue * Fix single queue logic * propagate buffer usage in multi buffers * Implement rope_neox op * Cleanup header and other files * Simplify gpu_extras by removing events and putting staging memcpys into contexts * Move queue into context Add not-yet-enabled async backend ops * Simplify context use, optimize matmul shader for warp size 64 (AMD GCN), fix split_k matmul shader optimization * Add get_max_size to SYCL backend. Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * llama : fix trailing whitespace --------- Co-authored-by: Henri Vasserman <henv@hot.ee> Co-authored-by: Concedo <39025047+LostRuins@users.noreply.github.com> Co-authored-by: slaren <slarengh@gmail.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-01-28ggml : add unified SYCL backend for Intel GPUs (#2690)Abhilash Majumder
* first update for migration * update init_cublas * add debug functio, commit all help code * step 1 * step 2 * step3 add fp16, slower 31->28 * add GGML_LIST_DEVICE function * step 5 format device and print * step6, enhance error check, remove CUDA macro, enhance device id to fix none-zero id issue * support main device is non-zero * step7 add debug for code path, rm log * step 8, rename all macro & func from cuda by sycl * fix error of select non-zero device, format device list * ren ggml-sycl.hpp -> ggml-sycl.h * clear CMAKE to rm unused lib and options * correct queue: rm dtct:get_queue * add print tensor function to debug * fix error: wrong result in 658746bb26702e50f2c59c0e4ada8e9da6010481 * summary dpct definition in one header file to replace folder:dpct * refactor device log * mv dpct definition from folder dpct to ggml-sycl.h * update readme, refactor build script * fix build with sycl * set nthread=1 when sycl, increase performance * add run script, comment debug code * add ls-sycl-device tool * add ls-sycl-device, rm unused files * rm rear space * dos2unix * Update README_sycl.md * fix return type * remove sycl version from include path * restore rm code to fix hang issue * add syc and link for sycl readme * rm original sycl code before refactor * fix code err * add know issue for pvc hang issue * enable SYCL_F16 support * align pr4766 * check for sycl blas, better performance * cleanup 1 * remove extra endif * add build&run script, clean CMakefile, update guide by review comments * rename macro to intel hardware * editor config format * format fixes * format fixes * editor format fix * Remove unused headers * skip build sycl tool for other code path * replace tab by space * fix blas matmul function * fix mac build * restore hip dependency * fix conflict * ren as review comments * mv internal function to .cpp file * export funciton print_sycl_devices(), mv class dpct definition to source file * update CI/action for sycl code, fix CI error of repeat/dup * fix action ID format issue * rm unused strategy * enable llama_f16 in ci * fix conflict * fix build break on MacOS, due to CI of MacOS depend on external ggml, instead of internal ggml * fix ci cases for unsupported data type * revert unrelated changed in cuda cmake remove useless nommq fix typo of GGML_USE_CLBLAS_SYCL * revert hip cmake changes * fix indent * add prefix in func name * revert no mmq * rm cpu blas duplicate * fix no_new_line * fix src1->type==F16 bug. * pass batch offset for F16 src1 * fix batch error * fix wrong code * revert sycl checking in test-sampling * pass void as arguments of ggml_backend_sycl_print_sycl_devices * remove extra blank line in test-sampling * revert setting n_threads in sycl * implement std::isinf for icpx with fast math. * Update ci/run.sh Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update examples/sycl/run-llama2.sh Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update examples/sycl/run-llama2.sh Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update CMakeLists.txt Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update CMakeLists.txt Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update CMakeLists.txt Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update CMakeLists.txt Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * add copyright and MIT license declare * update the cmd example --------- Co-authored-by: jianyuzh <jianyu.zhang@intel.com> Co-authored-by: luoyu-intel <yu.luo@intel.com> Co-authored-by: Meng, Hengyu <hengyu.meng@intel.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-01-26cuda : fix tensor size calculation for non-split buffer (#5145)slaren
2024-01-20llama : run all KQV ops on the CPU with no KV offload (#5049)slaren
ggml-ci
2024-01-17ggml : add IQ2 to test-backend-ops + refactoring (#4990)Georgi Gerganov
* ggml : add IQ2 to test-backend-ops + refactoring ggml-ci * cuda : update supports_op for IQ2 ggml-ci * ci : enable LLAMA_CUBLAS=1 for CUDA nodes ggml-ci * cuda : fix out-of-bounds-access in `mul_mat_vec_q` ggml-ci * tests : avoid creating RNGs for each Q tensor ggml-ci * tests : avoid creating RNGs for each tensor ggml-ci
2024-01-17backend : add eval callback (#4935)Georgi Gerganov
* backend : add eval callback ggml-ci * backend : group nodes in a single compute when user don't need them * backend : clean-up the implementation ggml-ci * simple : do not perform tensor data copy if not needed * simple : fix * simple : no need for ggml_is_contiguous + fix bool parse * llama : fix callback placement in llama_context_params * backend : avoid double-ask callback calls * simple : restore examples, imatrix will serve as a demo
2024-01-16ggml : introduce GGML_CALL function annotation (#4850)Justine Tunney
This change makes it possible to build ggml-cuda.cu and ggml-metal.m as independent dynamic shared objects, that may be conditionally linked at runtime in a multiplatform binary. It introduces a GGML_CALL annotation that documents which functions have a cyclic call relationship, between the application code and GPU modules. This change does nothing, unless the build defines -DGGML_MULTIPLATFORM which causes back-references and function pointers to conform to MS ABI which is supported by NVCC, ROCm, XCode, GCC and Clang across platforms
2024-01-12backend_sched : fix assignmentsslaren
ggml-ci
2024-01-12llama : ggml-backend integration (#4766)slaren
* llama : ggml-backend integration * ggml-backend : add names to buffers * fix unmap after loading * batched-bench : add tensor_split param * llama : check for null tensor_split * ggml-backend : increase GGML_MAX_BACKENDS * improve graph splitting, partial fix for --no-kv-offload * cuda : add ggml-backend split buffer support * cuda : do not create buffer types for devices that don't exist (fixes usage without CUDA devices available) * ggml : fix null backend dereference (#4807) * ggml : fix null backend dereference * ggml : also check ggml_backend_is_cpu * test-backend-ops : check buffer allocation failures * llama : add cparam (split_mode) and command line argument (--split-mode, -sm) to configure the split mode (none, layer or row) * ggml : fix mul_mat_id work size * llama : rewrite session kv load/set without graphs * minor * llama : only initialize used backends, free backends on context free * llama : abort ctx if cuda backend init fails * llama : rewrite lora with ggml-backend and compute on CPU ggml-ci * llama : only map to a backend buffer the region of the file mapping containing the tensors used in the buffer * opencl : add ggml-backend buffer type * cuda : only use batched_cublas with batched mat muls (fixes fp16 tg perf) * llama : on Metal, by default offload the full model ggml-ci * metal : page align the data ptr (#4854) * Apply suggestions from code review Co-authored-by: Johannes Gäßler <johannesg@5d6.de> * cuda : fix split buffer free * address review comments * llama-bench : add split-mode parameter * fix whitespace * opencl : fix double initialization * server : add --split-mode parameter * use async copy and compute to improve multi-gpu performance ggml-ci * use async memcpys to copy the graph outputs to the CPU * fix opencl * use a host buffer for the cpu compute buffer for faster copies to the gpu --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2024-01-05ggml : add error handling to graph_compute (whisper/1714)Finn Voorhees
2023-12-29ggml : fix some mul mat cases + add tests for src1 F16 (ggml/669)bssrdf
* fixed mul-mat error for old GPUs * style fixes * add mul mat src1 f16 test cases, fix more cases ggml-ci --------- Co-authored-by: bssrdf <bssrdf@gmail.com> Co-authored-by: slaren <slarengh@gmail.com>
2023-12-24cuda : improve cuda pool efficiency using virtual memory (#4606)slaren
* cuda : improve cuda pool efficiency using virtual memory * fix mixtral * fix cmake build * check for vmm support, disable for hip ggml-ci * fix hip build * clarify granularity * move all caps to g_device_caps * refactor error checking * add cuda_pool_alloc, refactor most pool allocations ggml-ci * fix hip build * CUBLAS_TF32_TENSOR_OP_MATH is not a macro * more hip crap * llama : fix msvc warnings * ggml : fix msvc warnings * minor * minor * cuda : fallback to CPU on host buffer alloc fail * Update ggml-cuda.cu Co-authored-by: Johannes Gäßler <johannesg@5d6.de> * Update ggml-cuda.cu Co-authored-by: Johannes Gäßler <johannesg@5d6.de> * ensure allocations are always aligned * act_size -> actual_size --------- Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2023-12-21llama : initial ggml-backend integration (#4520)slaren
* llama : initial ggml-backend integration * add ggml-metal * cuda backend can be used though ggml-backend with LLAMA_GGML_BACKEND_CUDA_TEST access all tensor data with ggml_backend_tensor_get/set * add ggml_backend_buffer_clear zero-init KV cache buffer * add ggml_backend_buffer_is_hos, used to avoid copies if possible when accesing tensor data * disable gpu backends with ngl 0 * more accurate mlock * unmap offloaded part of the model * use posix_fadvise64(.., POSIX_FADV_SEQUENTIAL) to improve performance with mmap * update quantize and lora * update session copy/set to use ggml-backend ggml-ci * use posix_fadvise instead of posix_fadvise64 * ggml_backend_alloc_ctx_tensors_from_buft : remove old print * llama_mmap::align_offset : use pointers instead of references for out parameters * restore progress_callback behavior * move final progress_callback call to load_all_data * cuda : fix fprintf format string (minor) * do not offload scales * llama_mmap : avoid unmapping the same fragments again in the destructor * remove unnecessary unmap * metal : add default log function that prints to stderr, cleanup code ggml-ci --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-12-07sync : ggml (new ops, tests, backend, etc.) (#4359)Georgi Gerganov
* sync : ggml (part 1) * sync : ggml (part 2, CUDA) * sync : ggml (part 3, Metal) * ggml : build fixes ggml-ci * cuda : restore lost changes * cuda : restore lost changes (StableLM rope) * cmake : enable separable compilation for CUDA ggml-ci * ggml-cuda : remove device side dequantize * Revert "cmake : enable separable compilation for CUDA" This reverts commit 09e35d04b1c4ca67f9685690160b35bc885a89ac. * cuda : remove assert for rope * tests : add test-backend-ops * ggml : fix bug in ggml_concat * ggml : restore `ggml_get_n_tasks()` logic in `ggml_graph_plan()` * ci : try to fix macOS * ggml-backend : remove backend self-registration * ci : disable Metal for macOS cmake build ggml-ci * metal : fix "supports family" call * metal : fix assert * metal : print resource path ggml-ci --------- Co-authored-by: slaren <slarengh@gmail.com>
2023-11-13sync : ggml (backend v2) (#3912)Georgi Gerganov
* sync : ggml (backend v2) (wip) * sync : migrate examples and llama.cpp to dynamic graphs (wip) * sync : update tests + fix max op params to 64 ggml-ci * sync : ggml-cuda ggml-ci * llama : fix save/load state context size ggml-ci * sync : try to fix build on tvOS * sync : pass custom graph sizes in training examples * sync : update graph copies to new ggml API * sync : update sync-ggml.sh with new files * scripts : fix header in sync script * train : fix context size calculations * llama : increase inference graph size up to 4096 nodes * train : allocate grads for backward graphs * train : allocate grads for gb_tmp
2023-10-08sync : ggml (ggml-backend) (#3548)Georgi Gerganov
* sync : ggml (ggml-backend) ggml-ci * zig : add ggml-backend to the build