summaryrefslogtreecommitdiff
path: root/ggml/include
AgeCommit message (Collapse)Author
2024-12-02Q4_0_R4 (#119)Kawrakow
* Adding iq4_0_r4 - q4_0 repacked We get PP-512(LLaMA-3.1-8B) = 278 t/s on a Ryzen-7950X CPU, so ~5-6% faster than iq4_nl_x4. * q4_0_r4: NEON Here we get 115.8 t/s, so also ~5% better than iq4_nl_x4. --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-12-02IQ4_NL_X4 (#118)Kawrakow
* Adding iq4_nl_x4 Looks very promising - I get PP-512(LLaMA-3.1-8B) = 230 t/s on the Ryzen-7950X! This is faster than any other quant and ~40% faster than iq4_nl. * iq4_nl_x4: getting amazing This Zen4 variant gets us to PP-512(LLaMA-3.1-8B) = 263 t/s! * iq4_nl_x4: AVX2 Here we gain only 25% compared to iq4_nl * iq4_nl_x4: NEON On M2-Max we get PP-512(LLaMA-3.1-8B) = 109.7 t/s, up from 82.4 t/s for iq4_nl. * iq4_nl_x4: minor NEON improvement and cleanup This gets us to 110.3 t/s. In comparison, IQ4_NL_4_4 in mainline llama.cpp achieves 92.3 t/s. * iq4_nl_x4: NEON specialization for matrix x vector --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-10-31Faster MoE inference (#112)Kawrakow
* multi_sdd: WIP * multi_sdd: CPU works * multi_add: CUDA * multi_add: simplify * multi_add: Metal * Metal: speed up mul_mat_id For the Granite-1B MoE model PP-512 goes from 156 t/s to 890 t/s, so nearly a 6X speedup! --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-10-25Remove forgotten IQ1_TN, IQ2_TN enum valuesIwan Kawrakow
2024-10-25Bitnet changes (#106)Kawrakow
* Adapting iq2_bn to work without separate scale tensors Why? It is becoming burdensome to maintain the special Bitnet conversion in convert_hf_to_gguf.py, so I thnk it is better to make iq1_bn and iq2_bn just work with the mainline conversion script (which does not generate scales). * Adapting iq1_bn to work without separate scale tensors * Adapting iq2_bn: CUDA dequantize * Adapting iq2_bn: CUDA works * Adapting iq1_bn: CUDA works * Adapting iq1_bn, iq2_bn: NEON * Adapting iq1_bn, iq2_bn: Metal Dequantize works, but there is still something wrong with the dot products. * WIP Absoolutely don't see what is wrong with the iq1_bn and iq2_bn vector dot product kernels. * Remove iq1_tn and iq2_tn - Part 1 Now that iq1_bn and iq2_bn have per row scales, there is no reason to also have iq1_tn and iq2_tn. * Remove iq1_tn and iq2_tn - Part 2 * Bitnet: use the standard llm_build_kv to build self attention My main motivation was to enable FA. But FA does not work anyway because head size is 100 for the Botnet ternary models (and I had forgotten this little detail). * Revert "Avoid rebuild of GGML graph for each token (#98)" This reverts commit f2d315b46f7aacc7df4b86bd8acba387b30e11ca. As far as I can tell, the commit breaks Metal TG. --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-10-20Avoid rebuild of GGML graph for each token (#98)agray3
Introduces caching of GGML graph to avoid unnecessary full rebuild between each token. KV cache parameters, which change with each token, are updated directly in cached GGML graph. Can be disabled with GGML_DISABLE_GRAPH_CACHING environment variable.
2024-10-16Adding IQ4_KSS: 4.0 bpw quants (#89)Kawrakow
* iq4_kss: WIP * iq4_kss: CUDA dequantize works So we can run perplexity. Sadly, the result does not look good on the bpw vs quantization error plot. * iq4_kss: slightly better quantization * iq4_kss: another small quantization improvement * iq4_kss: CUDA works TG-128 performance is very decent with 131 t/s for LLaMA-3.1-8B. In comparison, we have 123 t/s for q4_0 and 128 t/s for iq4_ks. I.e., the reduced model size more than offsets the additional bit fiddling required for iq4_kss. * iq4_kss: new bit arrangement - CUDA and Zen4 work Did not lose performance on CUDA. Zen4 is decent, but not great: PP-512(LLaMA-3.1-8B) = 163 t/s. TG-128 is of course better than other 4-bit quants due to smaller model size. We get 14.5 t/s @ 8 threads. * iq4_kss: ARM_NEON. Predictably very slow * iq4_kss: Metal PP is not too bad - just 10% slower than q4_0. But TG is 30% slower, i.e., predictably bad. * iq4_kss: somewhat faster Metal dot product 45.75 t/s -> 48.75 t/s. Still 22% slower than q4_0 * iq4_kss: AVX2 Bad, but better than I expected. PP-512(LLaMA-3.1-8B) = 167 t/s on the Ryzen-5950X. I.e., with 32 AVX2 threads we get the performance of 16 Zen4 threads. * iq4_kss: very slightly faster Metal dot product 48.7 t/s -> 49.3 t/s --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-10-13IQ2_KS: 2.1875 bpw non-linear quantization (#85)Kawrakow
* Experimenting * iq2k: Try make_qx_quants for the scale Slightly better for LLaMA-3.1, Gemma-2, slightly worse for Qwen2.5 * iq2k with make_qx_quants: adjust scale * iq2ks: basics * iq2_ks: CUDA works * iq2_ks: WIP * iq2_ks: WIP * iq2_ks: Zen4 * iq2_ks: AVX2 * iq2_ks: scalar dot product * iq2_ks: ARM_NEON * iq2_ks: Metal * iq2_ks: faster Metal LLaMA-3.1-8B: PP-512 = 475.22 ± 0.37 t/s TG-128 = 45.32 ± 0.03 t/s --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-10-09New SOTA quantization: 4.25 bpw IQ4_KS (#83)Kawrakow
* iq4_k_xxs: basics * WIP + adding iq3_kl quantization mix * iq4_xxs: this looks very viable compared to iq4_xs At the same 4.25 bpw PPL is always better, for some models significantly better. I'll rename to iq4_ks and keep it. * iq4_xxs: CUDA dot product We get TG-128 = 126 t/s for LLaMA-3.1-8B, compared to 123 t/s for q4_0. * iq4_xxs: scalar CPU dot product Also fix the breakage I caused with the dedicated work buffer quantization portion when the multiplication is not done via iqk_mul_mat. * iq4_xxs: Zen4 I noticed that iq4_xs is wrong on Zen4 (and possibly AVX2). Again the same mistake of packing int32_t back to int16_t, which overflows occasionally (just occasionally, that's why the result doesn't look completely wrong, so I didn't notice). * Fix iq4_xs (Zen4) * iq4_xxs: AVX2 * iq4_xxs: ARM_NEON * iq4_xxs: Metal * iq4_xxs: slightly faster TG on Metal * iq4_xxs: rename to iq4_ks After all, tt is a smaller variant of iq4_k. * iq3_kl: use iq4_ks instead of iq4_k/iq4_xs --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-10-04Do not quantize activations if not necessary (#79)Kawrakow
* Do not quantize activations if not necessary * Do not quantize activations if not necessary also for MoE models --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-10-02Fused unary(x)*y (#70)Kawrakow
* Adding fused y*unary(x) op * Fused y*unary(x) op: CUDA * Fused y*unary(x) op: dedicated CPU implementation for silu and gelu * Fused y*unary(x) op: Metal --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-10-02Adding Q6_0 (#77)Kawrakow
* Adding q6_0 - basics + AVX2/Zen4 working * Adding q6_0: CUDA dequantize works, but not mmvq * Adding q6_0: CUDA mmvq works * Adding q6_0: CUDA cpy, so Q6_0 can be used for KV-cache * Add q6_0 to CPU flash attention Disappointing result: for LlaMA-3.2-1B, q6_0 K- and V-cache gives about the same PPL as q8_0 K-cache and q4_0 V-cache, while needing the exact same RAM. I.e., what was the point? * q6_0: slightly better kv-cache result Better than q8_0+q4_0, but not as good as q8_0+iq4_nl * q6_0: works on ARM_NEON * q6_0: dequantize works on Metal, but not vector dot product * q6_0: it now works on Metal Outperforms q5_0 by a significant margin. E.g. | model | size | params | backend | ngl | threads | test | t/s | | ------------------------------ | ---------: | ---------: | ---------- | --: | ------: | ------------: | ---------------: | | llama 8B Q6_0 | 6.08 GiB | 8.03 B | Metal | 100 | 4 | tg128 | 44.02 ± 0.08 | | llama 8B Q5_0 | 5.21 GiB | 8.03 B | Metal | 100 | 4 | tg128 | 40.13 ± 0.12 | | llama 8B Q6_0 | 6.08 GiB | 8.03 B | Metal | 100 | 4 | pp512 | 500.55 ± 0.32 | | llama 8B Q5_0 | 5.21 GiB | 8.03 B | Metal | 100 | 4 | pp512 | 448.02 ± 0.27 | * q6_0: can now be used for kv-cache on Metal --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-09-28Adding SWIGLU unary op (#65)Kawrakow
* Adding GGML_UNARY_OP_SWIGLU This commit implements the ggml op and CPU compute forward. I see ~3-4% speedup of PP-512 for Phi-3.5-mini. * GGML_UNARY_OP_SWIGLU: CUDA implementation I observe ~12% speedup for PP-512(Phi-3.5-mini). * GGML_UNARY_OP_SWIGLU: Metal implementation We get ~2% speedup for PP-512(Phi-3.5-mini). * GGML_UNARY_OP_SWIGLU: minor improvement on Metal * GGML_UNARY_OP_SWIGLU: cleanup --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-09-27Adding ability to have meta data per tensor row (#61)Kawrakow
* POC: per row scale This is a POC how to work around opinionated ggml to have scales per row rather than per block. Only implemened for Zen4 and only for iq2_tn. * POC per row scale: iq2_tn on NEON * POC per row scale: iq2_tn on Metal * Per row scale Metal templates * iq1_tn: shrink to 1.625 bpw (NEON and Metal) * POC per row scale: CUDA * POC per row scale: add CUDA TODOs There are two places in ggml-cuda.cu left where it is assumed that type_size * n_per_row / block_size is the way to compute and handle row sizes. This does not affect simple usage, but will lead to issues when tensors are split between GPUs. * Per row scales - CUDA The only place left where there are unnecessary assumptions being made is in the Flash Attention code. As we are not using any quants that use per row scales for quantized KV cache, it should be OK for now. * Update IQ1_TN and IQ2_TN bpw shown to user --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-09-09Adding IQ1_TN - 1.6875 bpw for TriLM ternary models (#44)Kawrakow
* Adding iq1_tn - 1.6875 bpw for TriLM ternary models * iq1_tn: NEON * iq1_tn: faster NEON * iq2_bn: improve performance on NEON We now get TG-128 = 100 t/s for Bitnet-3B-1.58b! * iq1_tn: improve AVX2 PP-512 goes to 533 t/s up from 455. TG-128 @ 2 threads goes to 16.6 t/s up from 14.2. However, we seem to have a bottleneck somewhere as TG saturates at 8 threads. * iq1_tn: improve Zen4 PP-512 goes to 485 t/s up from 352. With FA we get 545 t/s up from 380. TG-128 @ 1 thread goes to 12.4 t/s up from 10.4. However, we seem to have a bottleneck somewhere as TG saturates at 8 threads. * iq2_bn: improve on Zen4 We now get PP-512 = 614 t/s up from 542 t/s * iq2_bn: improve AVX2 implementation We now get PP-512 = 753 t/s up from 680 t/s. * Remove unnecessary barrier in ggml_compute_forward_mul_mat --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-09-08Adding fused rms_norm (#42)Kawrakow
* Fused rms_norm: works on the CPU * Fused rms_norm WIP * Fused rms_norm WIP * Fused rms_norm WIP * Fused rms_norm WIP * Fused rms_norm WIP --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-08-27Faster Gemma2 (#27)Kawrakow
* soft_cap_max: initial CPU version of fused softcap + soft_max With this vanilla CPU implementation I'm already getting a ~3% speedup for Gemma-2-9b and a prompt of 8192 tokens. * soft_cap_max: WIP - something is wrong with CUDA * soft_cap_max: looks good on CPU and CUDA * Add softcap to flash attention Just CPU and CUDA for now (but, as we know, flash attention on the CPU is useless in llama.cpp). On CUDA this improves PP performance quite a bit, especially for long contexts. E.g., for PP-16384, I now get 3777 t/s. Without this change, one cannot use FA, and one gets 2300 t/s (after fusing softcap and softmax), or 2000 t/s without the fused softcap+softmax. In comparison, mainline llama.cpp has PP-16384 = 1549 t/s before PR-8542 (where Johannes Gaessler has also added softcap to FA), and PP-16384 = 3097 t/s after this PR. * soft_cap_max: Metal * Flash attention with softcap: Metal --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-08-20Fused soft cap and SIMD-ified GeLU (#9)Kawrakow
* Softcap: WIP Fuses scale + tanh + scale as used for softcaping in some models. Just CPU for now. ~1.4% for PP-512 on Gemma2-9b, no effect on TG. Somewhat surprisingly the improvement does not increase as I go to longer contexts. Gemma2 does softcap on K*Q, which grows quadratically with context length, so I would have thought the benefit from fusing scale, tanh, scale would increase. But no, no luck. * softcap: CUDA * softcap: CUDA ~1% speedup for Gemma2-9b * softcap: Metal and NEON About 1% speedup. * Simdified gelu Gives ~1% speedup for Gemma2-9b prompt processing on AVX512/AVX2. It looks like the gelu operation is memory bound on my CPU's after SIMD-ifying it. By not using the 128 kb gelu lookup table we gain a small advantage. On the M2-Max the lookup table is slightly faster than the SIMD version, so left the lookup table for ARM_NEON. * softcap, tanh: avoid NaNs for large arguments (AVX2, AVX512) Not that I have encountered this in practice, but just to be sure. This does it for AVX512 and AVX2, still need a guard for ARM_NEON. * llama-bench: add ability to turn off warmup runs So we don't need to wait forever on, e.g., benchmarks involving long contexts. * softcap, tanh: avoid NaNs for large arguments (NEON) --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-08-14Skip barriers of noops (#19)Kawrakow
GGML_OP_RESHAPE, GGML_OP_VIEW, GGML_OP_PERMUTE, GGML_OP_TRANSPOSE, along with GGML_OP_NONE, are all noops. I.e., nothinh happens. But ggml still has a barrier after them, which wastes time. The waste is not too bad for large models where computations are long compared to the time taken for thread synchronization. But for small models skipping those unnecessary waits makes a significant difference. E.g., for the 99M TriLMamodel, TG-500 goes up to 1426 t/s from 1240 t/s. Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-08-12Merge mainline - Aug 12 2024 (#17)Kawrakow
* Merge mainline * Fix after merge * Remove CI check --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-08-09iq6_k: WIP (nothing works)Iwan Kawrakow
2024-08-07Adding IQ2_TN for use with ternary models (#13)Kawrakow
* iq2_tn: TriLM specific 2.0625 bpw quantization Quantize/dequantize/scale dot product. I get 46 t/s for the TriLM-3.9B with any SIMD! Finally a compiler doing a decent job auto-vectorizing the scalar implementation. * iq2_tn: AVX512 Just reusing the k-quants template gets us to PP-512 = 376 t/s, TG-128 = 47.6 t/s for TriLM-3.9B. * iq2_tn: AVX512 With this tweak we get to PP-512 = 431 t/s. * iq2_tn: AVX512 With this tweak we get TG-128 = 19.58 / 35.18 t/s for 1 / 2 threads. At 4 threads we saturate at 48.41 t/s, and then performance slowly degrades with increasing number of threads. * iq2_tn: AVX2 PP512 = 440 t/s on the Ryzen-5975WX. We should be able to do better. * iq2_tn: initial NEON version * iq2_tn: NEON For TriLM-3.9B running on the M2-Max we get PP-512 = 193.5 t/s, TG-128 = 75.5 t/s. This is in line with what we have for iq2_bn ant 3.3B Bitnet. * iq2_tn: Metal For TriLM-3.9B on a 30-core M2-Max we get PP-512 = 890 t/s, TG-128 = 98.5 t/s. * iq2_tn: CUDA For TriLM-3.9B running on RTX-4080 we get PP-512 = 9936 t/s, TG-128 = 299.2 t/s. * iq2_tn: AVX2 PP improvement We now get PP-512 = 490.73 t/s for TriLM-3.9B on the Ryzen-5975WX. We have PP-512 = 636.61 t/s for Bintnet-3B quantized with iq2_bn. Bintnet-3B is actually 3.4B, TriLM-3.9B is 3.99B, so we would expect 3.43/3.99 * 636 = 546 t/s, so it seems we still have something that is not quite optimal in iq2_tn. * iq2_tn: small NEON improvement For TriLM-3.9B we now get PP-512 = 206.6 t/s and TG-128 = 76.4 t/s. --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-08-01iq3_k: BasicsIwan Kawrakow
Quantize/dequantize, CUDA dequantize. PPL of LLaMA-3.1-8B is better than iq3_s and iq3_m.
2024-08-01iq5_k: BasicsIwan Kawrakow
Quantize/dequantize, CUDA dequantize
2024-08-01iq2_k: BasicsIwan Kawrakow
Quantize/dequantize, CUDA deqantize, AVX512 iqk_mul_mat.
2024-07-28IQ4_K: SOTA 4-bit quantization (#6)Kawrakow
* iq4_k: basics * quantize/dequantize works * CUDA dequantize works and one can run PPL calcs. I get PPL = 6.5258 for LlaMA-3.1-8B, which is 1.77% above fp16. In comparison, q4_K_S (same size) is 2.88% above fp16. * TG on CUDA does not work. Johannes has changed the way i-quant dot products are done, so need to sort out what he had in mind * iqk_mul_mat is not implemented. * iq4_k: TG now works on CUDA * iq4_k: AVX512 implementation For LLaMA-3.1-8B we get PP-512 = 182.6 t/s, TG-128 = 13.6 t/s, so almost the same as q4_K_S. * iq4_k: AVX2 implementation For LLaMA-3.1-8B we get PP-512 = 203.1 t/s, TG-128 = 12.9 t/s on the Ryzen-5975X. * iq4_k: NEON implementation For LLaMA-3.1-8B we get PP-512 = 60.7 t/s, TG-128 = 25.0 t/s on the M2-Max. TG is on par with q4_K_S, PP is ~10% slower. * iq4_k: Metal implementation For LLaMA-3.1-8B we get PP-512 = 445 t/s, TG-128 = 46.3 t/s on a 30-core M2-Max GPU. This is to be compared with (currently) PP-512 = 460 t/s, TG-128 = 51 t/s for q4_K_S. * iq4_k: scalar dot product --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-07-27Merge mainline llama.cpp (#3)Kawrakow
* Merging mainline - WIP * Merging mainline - WIP AVX2 and CUDA appear to work. CUDA performance seems slightly (~1-2%) lower as it is so often the case with llama.cpp/ggml after some "improvements" have been made. * Merging mainline - fix Metal * Remove check --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>