summaryrefslogtreecommitdiff
path: root/ggml/src/iqk/iqk_quantize.cpp
AgeCommit message (Collapse)Author
2024-12-09Q4_K_R4 (#129)Kawrakow
* Something is still wrong * Simply don't see what is wrong * q4_k_r4: finally works on Zen4 I had forgotten to prevent token_embd.weight being quantized with q4_k_r4! * q4_k_r4: AVX2 We get PP-512(LLaMA-3.1-8B) = 267 t/s on a Ryzen-5975WX. This is ~30% better than Q4_K_S. * q4_k_r4: NEON We get PP-512(LLaMA-3.1-8B) = 110 t/s. Not quite as good as q4_0_r4, but still a massive improvement compared to he 69 t/s for q4_K. * q4_k_r4: slightly better AVX2 PP-512 goes from 267 t/s to 282 t/s on Ryzen-5975WX * Minor * Minor --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-12-08Faster IQ4_XS_R4 on Zen4 (#128)Kawrakow
* Faster iq4_xs_r4 on Zen4 The trick is to simply prepare the Q8 block sums for blocks of 32 as floats. This brings PP-512 up to 254.6 t/s from 224 t/s. * Fix broken matrix x vector product on Zen4 --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-12-08Rename iq4_nl_x4 to iq4_nl_r4 (#126)Kawrakow
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-12-06iq2_bn_r4: fastest Bitnet CPU implementation on the planet (#124)Kawrakow
* Adding iq2_bn_r4 This Zen4-only implementation achieves PP-512 = 826 t/s (!!!) for Bitnet-1.58b-3B, up from 620 t/s for iq2_bn. * Make sure rows per thread are a multiple of the number of interleaved rows With this I can run iq2_bn_r4 with 32 threads and this increases PP-512 to 872 t/s. * iq2_bn_r4: 1st shot at NEON PP-512 is already faster than iq2_bn (284 t/s vs 246 t/s for Bitnet-1.58b-3B). TG-128 is ~5% slower. * iq2_bn_r4: NEON PP-512 is now 296 t/s. TG-128 is ~20% faster than iq2_bn for 1 thread, but saturates to about the same 93 t/s at 8 threads. * iq2_bn_r4: Experimenting on NEON The matrix x vvector multiplication is erratic. iq2_bn_r4 is faster at 1, 2, and 4 threads, but saturates to a lower t/s at 8 threads compared to iq2_bn. iq2_bn actually manages 99 t/s at 8 threads and not 93 as I wrore in the last commit. iq2_bn_r4 performance has huge fluctuations at 4 and 8 threads. * Some cleanup * iq2_bn_r4: AVX2 As expected, PP is slightly slower as we just don;t have enough vector registers (690 vs 710 t/s). TG is slightly faster (18.2 vs 16.7 t/s at 1 thread). * iq2_bn_r4: use AVX2 implementation on Zen4 for matrix x vector It is faster - we get 29.6 t/s at 1 thread vs 25.9 t/s for iq2_bn. * iq2_bn_r4: simdify q8_K16 quantization (AVX2) PP-512 becomes 834 t/s and TG-128 now saturates to the same performance as iq2_bn for 4 threads. * iq2_bn_r4: simdify q8_K16 quantization (NEON) PP-512 is now 304.7 t/s, and TG-128 @ 8 threads very slightly outperforms iq2_bn (100.7 t/s vs 99.6 t/s) * iq2_bn_r4: fix AVX2 after breaking it two commits ago * iq2_bn_r4: better AVX2 As we don't have enough vector registers on AVX2, it is better to do two passes per row needing only half of the accumulator registers that way. With this, we now beat iq2_bn PP also on AVX2 by a small margin. --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-12-04IQ4_XS_R4 (#123)Kawrakow
* Adding iq4_xs_r4 This is a 1st working version on Zen4. We get PP-512(LLaMA-3.1-8B) = 226 t/s, so 16% slower than iq4_nl_x4. * iq4_xs_r4: WIP * iq4_xs_r4: Use AVX2 version for matrix x vector on Zen4 * iq4_xs_r4: NEON We get PP-512(LLaMA-3.1-8B) = 115.6 t/s on M2-Max, up from 68.2 t/s for iq4_xs! * DRY --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-12-03Q6_0_R4 (#122)Kawrakow
* Adding q6_0_r4 We get PP-512(LLaMA-3.1-8B) = 257 t/s on a Ryzen-7950X. * q6_0_r4: NEON We get PP-512(LLaMA-3.1-8B) = 95 t/s on M2-Max. In terms of ops, q6_0_r4 is identical to q5_0_r4 except for loading the high bits being vld1q_u8_x2 instead of vld1q_u8. It is strange that this can make a 5% difference in performance, especially considering that this is amortized (re-used) over 8 columns in the right matrix. Or am I running out of vector registers? * Fix AVX2 --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-12-03Q5_0_R4 (#121)Kawrakow
* Adding q5_0_r4 We get PP-512(LLaMA-3.1-8B) = 256.7 t/s on a Ryzen-7950X. We even get TG-128 improvement to 11.7 t/s from 11.1 t/s. * q5_0_r4: NEON We get PP-512(LLaMA-3.1-8B) = 99.6 t/s on M2-Max, up from 71.0 t/s for Q5_0. The difference to mainline llama.cpp is no longer funny: they get 26.5 t/s for Q5_0. For TG, we are nor able to fully saturate memory bandwidth and arrive at 22.1 t/s @ 8 threads. Mainline llama.cpp gets 20.6 t/s for Q5_0. --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-12-03Q8_0_R4 (#120)Kawrakow
* Adding q8_0_r4 We get PP-512(LLaMA-3.1-8B) = 268 t/s on a Ryzen-7950X compared to 175.6 t/s for Q8_0. * q8_0_r4: NEON We get PP-512(LLaMA-3.1-8B) = 112.6 t/s on M2-Max. * q8_0_r4: Zen4 matrix-vector specialization --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-12-02Q4_0_R4 (#119)Kawrakow
* Adding iq4_0_r4 - q4_0 repacked We get PP-512(LLaMA-3.1-8B) = 278 t/s on a Ryzen-7950X CPU, so ~5-6% faster than iq4_nl_x4. * q4_0_r4: NEON Here we get 115.8 t/s, so also ~5% better than iq4_nl_x4. --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-12-02IQ4_NL_X4 (#118)Kawrakow
* Adding iq4_nl_x4 Looks very promising - I get PP-512(LLaMA-3.1-8B) = 230 t/s on the Ryzen-7950X! This is faster than any other quant and ~40% faster than iq4_nl. * iq4_nl_x4: getting amazing This Zen4 variant gets us to PP-512(LLaMA-3.1-8B) = 263 t/s! * iq4_nl_x4: AVX2 Here we gain only 25% compared to iq4_nl * iq4_nl_x4: NEON On M2-Max we get PP-512(LLaMA-3.1-8B) = 109.7 t/s, up from 82.4 t/s for iq4_nl. * iq4_nl_x4: minor NEON improvement and cleanup This gets us to 110.3 t/s. In comparison, IQ4_NL_4_4 in mainline llama.cpp achieves 92.3 t/s. * iq4_nl_x4: NEON specialization for matrix x vector --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-10-25Bitnet changes (#106)Kawrakow
* Adapting iq2_bn to work without separate scale tensors Why? It is becoming burdensome to maintain the special Bitnet conversion in convert_hf_to_gguf.py, so I thnk it is better to make iq1_bn and iq2_bn just work with the mainline conversion script (which does not generate scales). * Adapting iq1_bn to work without separate scale tensors * Adapting iq2_bn: CUDA dequantize * Adapting iq2_bn: CUDA works * Adapting iq1_bn: CUDA works * Adapting iq1_bn, iq2_bn: NEON * Adapting iq1_bn, iq2_bn: Metal Dequantize works, but there is still something wrong with the dot products. * WIP Absoolutely don't see what is wrong with the iq1_bn and iq2_bn vector dot product kernels. * Remove iq1_tn and iq2_tn - Part 1 Now that iq1_bn and iq2_bn have per row scales, there is no reason to also have iq1_tn and iq2_tn. * Remove iq1_tn and iq2_tn - Part 2 * Bitnet: use the standard llm_build_kv to build self attention My main motivation was to enable FA. But FA does not work anyway because head size is 100 for the Botnet ternary models (and I had forgotten this little detail). * Revert "Avoid rebuild of GGML graph for each token (#98)" This reverts commit f2d315b46f7aacc7df4b86bd8acba387b30e11ca. As far as I can tell, the commit breaks Metal TG. --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-10-16Adding IQ4_KSS: 4.0 bpw quants (#89)Kawrakow
* iq4_kss: WIP * iq4_kss: CUDA dequantize works So we can run perplexity. Sadly, the result does not look good on the bpw vs quantization error plot. * iq4_kss: slightly better quantization * iq4_kss: another small quantization improvement * iq4_kss: CUDA works TG-128 performance is very decent with 131 t/s for LLaMA-3.1-8B. In comparison, we have 123 t/s for q4_0 and 128 t/s for iq4_ks. I.e., the reduced model size more than offsets the additional bit fiddling required for iq4_kss. * iq4_kss: new bit arrangement - CUDA and Zen4 work Did not lose performance on CUDA. Zen4 is decent, but not great: PP-512(LLaMA-3.1-8B) = 163 t/s. TG-128 is of course better than other 4-bit quants due to smaller model size. We get 14.5 t/s @ 8 threads. * iq4_kss: ARM_NEON. Predictably very slow * iq4_kss: Metal PP is not too bad - just 10% slower than q4_0. But TG is 30% slower, i.e., predictably bad. * iq4_kss: somewhat faster Metal dot product 45.75 t/s -> 48.75 t/s. Still 22% slower than q4_0 * iq4_kss: AVX2 Bad, but better than I expected. PP-512(LLaMA-3.1-8B) = 167 t/s on the Ryzen-5950X. I.e., with 32 AVX2 threads we get the performance of 16 Zen4 threads. * iq4_kss: very slightly faster Metal dot product 48.7 t/s -> 49.3 t/s --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-10-14Minor iq3_k tweakIwan Kawrakow
2024-10-13IQ2_KS: 2.1875 bpw non-linear quantization (#85)Kawrakow
* Experimenting * iq2k: Try make_qx_quants for the scale Slightly better for LLaMA-3.1, Gemma-2, slightly worse for Qwen2.5 * iq2k with make_qx_quants: adjust scale * iq2ks: basics * iq2_ks: CUDA works * iq2_ks: WIP * iq2_ks: WIP * iq2_ks: Zen4 * iq2_ks: AVX2 * iq2_ks: scalar dot product * iq2_ks: ARM_NEON * iq2_ks: Metal * iq2_ks: faster Metal LLaMA-3.1-8B: PP-512 = 475.22 ± 0.37 t/s TG-128 = 45.32 ± 0.03 t/s --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-10-09New SOTA quantization: 4.25 bpw IQ4_KS (#83)Kawrakow
* iq4_k_xxs: basics * WIP + adding iq3_kl quantization mix * iq4_xxs: this looks very viable compared to iq4_xs At the same 4.25 bpw PPL is always better, for some models significantly better. I'll rename to iq4_ks and keep it. * iq4_xxs: CUDA dot product We get TG-128 = 126 t/s for LLaMA-3.1-8B, compared to 123 t/s for q4_0. * iq4_xxs: scalar CPU dot product Also fix the breakage I caused with the dedicated work buffer quantization portion when the multiplication is not done via iqk_mul_mat. * iq4_xxs: Zen4 I noticed that iq4_xs is wrong on Zen4 (and possibly AVX2). Again the same mistake of packing int32_t back to int16_t, which overflows occasionally (just occasionally, that's why the result doesn't look completely wrong, so I didn't notice). * Fix iq4_xs (Zen4) * iq4_xxs: AVX2 * iq4_xxs: ARM_NEON * iq4_xxs: Metal * iq4_xxs: slightly faster TG on Metal * iq4_xxs: rename to iq4_ks After all, tt is a smaller variant of iq4_k. * iq3_kl: use iq4_ks instead of iq4_k/iq4_xs --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-10-04Move scale fudge factors to quantization (#81)Kawrakow
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-09-27Adding ability to have meta data per tensor row (#61)Kawrakow
* POC: per row scale This is a POC how to work around opinionated ggml to have scales per row rather than per block. Only implemened for Zen4 and only for iq2_tn. * POC per row scale: iq2_tn on NEON * POC per row scale: iq2_tn on Metal * Per row scale Metal templates * iq1_tn: shrink to 1.625 bpw (NEON and Metal) * POC per row scale: CUDA * POC per row scale: add CUDA TODOs There are two places in ggml-cuda.cu left where it is assumed that type_size * n_per_row / block_size is the way to compute and handle row sizes. This does not affect simple usage, but will lead to issues when tensors are split between GPUs. * Per row scales - CUDA The only place left where there are unnecessary assumptions being made is in the Flash Attention code. As we are not using any quants that use per row scales for quantized KV cache, it should be OK for now. * Update IQ1_TN and IQ2_TN bpw shown to user --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-09-17Fix compiler warnings (#58)Kawrakow
* Fix C++ compilation warnings caused by ggml-common.h * Disable c99-extensions warning I get tons of those on macOS due to the arm_neon.h header. * Disable c99-extensions warning only for APPLE * Fix warnings in iqk_quantize.cpp Also add GGML_ABORT when implementation is missing. --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-09-09Adding IQ1_TN - 1.6875 bpw for TriLM ternary models (#44)Kawrakow
* Adding iq1_tn - 1.6875 bpw for TriLM ternary models * iq1_tn: NEON * iq1_tn: faster NEON * iq2_bn: improve performance on NEON We now get TG-128 = 100 t/s for Bitnet-3B-1.58b! * iq1_tn: improve AVX2 PP-512 goes to 533 t/s up from 455. TG-128 @ 2 threads goes to 16.6 t/s up from 14.2. However, we seem to have a bottleneck somewhere as TG saturates at 8 threads. * iq1_tn: improve Zen4 PP-512 goes to 485 t/s up from 352. With FA we get 545 t/s up from 380. TG-128 @ 1 thread goes to 12.4 t/s up from 10.4. However, we seem to have a bottleneck somewhere as TG saturates at 8 threads. * iq2_bn: improve on Zen4 We now get PP-512 = 614 t/s up from 542 t/s * iq2_bn: improve AVX2 implementation We now get PP-512 = 753 t/s up from 680 t/s. * Remove unnecessary barrier in ggml_compute_forward_mul_mat --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-08-31Fix build when iqk_mul_mat is disabled (#31)Kawrakow
Ref #29 Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-08-19AVX2 quantization for Q8_K (#22)Kawrakow
It has been there for a while, but forgot to add here. Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-08-09Fix MakefileIwan Kawrakow
I always use cmake, so had forgotten to pay attention to the Makefile.
2024-08-09Fix Zen4 implementation of iq3_k, iq4_k, iq5_kIwan Kawrakow
See comments in f3a823ce729a7db33e7d4375eae7291bbe6196db
2024-08-09iq6_k: CUDA dequantizeIwan Kawrakow
We get a slightly better PPL for LLaMA-3.1-8B compared to q6_K (0.14% vs 0.26% quantization error).
2024-08-09iq6_k: WIP (quantize/dequantize)Iwan Kawrakow
2024-08-09iq6_k: WIP (nothing works)Iwan Kawrakow
2024-08-07Adding IQ2_TN for use with ternary models (#13)Kawrakow
* iq2_tn: TriLM specific 2.0625 bpw quantization Quantize/dequantize/scale dot product. I get 46 t/s for the TriLM-3.9B with any SIMD! Finally a compiler doing a decent job auto-vectorizing the scalar implementation. * iq2_tn: AVX512 Just reusing the k-quants template gets us to PP-512 = 376 t/s, TG-128 = 47.6 t/s for TriLM-3.9B. * iq2_tn: AVX512 With this tweak we get to PP-512 = 431 t/s. * iq2_tn: AVX512 With this tweak we get TG-128 = 19.58 / 35.18 t/s for 1 / 2 threads. At 4 threads we saturate at 48.41 t/s, and then performance slowly degrades with increasing number of threads. * iq2_tn: AVX2 PP512 = 440 t/s on the Ryzen-5975WX. We should be able to do better. * iq2_tn: initial NEON version * iq2_tn: NEON For TriLM-3.9B running on the M2-Max we get PP-512 = 193.5 t/s, TG-128 = 75.5 t/s. This is in line with what we have for iq2_bn ant 3.3B Bitnet. * iq2_tn: Metal For TriLM-3.9B on a 30-core M2-Max we get PP-512 = 890 t/s, TG-128 = 98.5 t/s. * iq2_tn: CUDA For TriLM-3.9B running on RTX-4080 we get PP-512 = 9936 t/s, TG-128 = 299.2 t/s. * iq2_tn: AVX2 PP improvement We now get PP-512 = 490.73 t/s for TriLM-3.9B on the Ryzen-5975WX. We have PP-512 = 636.61 t/s for Bintnet-3B quantized with iq2_bn. Bintnet-3B is actually 3.4B, TriLM-3.9B is 3.99B, so we would expect 3.43/3.99 * 636 = 546 t/s, so it seems we still have something that is not quite optimal in iq2_tn. * iq2_tn: small NEON improvement For TriLM-3.9B we now get PP-512 = 206.6 t/s and TG-128 = 76.4 t/s. --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-08-05iq3_k, iq5_k: faster quantizationIwan Kawrakow
Just use the same trick as iq4_k
2024-08-03iq4_k: speedup quantization by a factor of ~2Iwan Kawrakow
2024-08-01iq3_k: BasicsIwan Kawrakow
Quantize/dequantize, CUDA dequantize. PPL of LLaMA-3.1-8B is better than iq3_s and iq3_m.
2024-08-01iq5_k: BasicsIwan Kawrakow
Quantize/dequantize, CUDA dequantize
2024-08-01iq2_k: BasicsIwan Kawrakow
Quantize/dequantize, CUDA deqantize, AVX512 iqk_mul_mat.
2024-07-28IQ4_K: SOTA 4-bit quantization (#6)Kawrakow
* iq4_k: basics * quantize/dequantize works * CUDA dequantize works and one can run PPL calcs. I get PPL = 6.5258 for LlaMA-3.1-8B, which is 1.77% above fp16. In comparison, q4_K_S (same size) is 2.88% above fp16. * TG on CUDA does not work. Johannes has changed the way i-quant dot products are done, so need to sort out what he had in mind * iqk_mul_mat is not implemented. * iq4_k: TG now works on CUDA * iq4_k: AVX512 implementation For LLaMA-3.1-8B we get PP-512 = 182.6 t/s, TG-128 = 13.6 t/s, so almost the same as q4_K_S. * iq4_k: AVX2 implementation For LLaMA-3.1-8B we get PP-512 = 203.1 t/s, TG-128 = 12.9 t/s on the Ryzen-5975X. * iq4_k: NEON implementation For LLaMA-3.1-8B we get PP-512 = 60.7 t/s, TG-128 = 25.0 t/s on the M2-Max. TG is on par with q4_K_S, PP is ~10% slower. * iq4_k: Metal implementation For LLaMA-3.1-8B we get PP-512 = 445 t/s, TG-128 = 46.3 t/s on a 30-core M2-Max GPU. This is to be compared with (currently) PP-512 = 460 t/s, TG-128 = 51 t/s for q4_K_S. * iq4_k: scalar dot product --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-07-27Merge mainline llama.cpp (#3)Kawrakow
* Merging mainline - WIP * Merging mainline - WIP AVX2 and CUDA appear to work. CUDA performance seems slightly (~1-2%) lower as it is so often the case with llama.cpp/ggml after some "improvements" have been made. * Merging mainline - fix Metal * Remove check --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>