Age | Commit message (Collapse) | Author |
|
* Fix IQK_FA_ALL_QUANTS on AVX2
* Make it also work, not just compile
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
* FA: provide work buffer for K repacking
* Add header to avoid comp0iler warnings
* WIP
* WIP
* WIP
* WIP
* Slightly better
* WIP (Zen4)
* WIP
* Try to improve for unusual number of heads/number of threads
* Use mul_mat_qX_0_q8_2_Tx for q6_0 in FA
* Use mul_mat_qX_0_q8_2_Tx for q4_0 in FA
* Use Sum4q4 for q4_0
* WIP
* WIP
* Much better FA TG with q8_0 KV cache
Just repack it even for TG. But do the repacking for k_step rows,
not the whole K tensor.
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
* Add support for Cohere2
* Fixe IQ4_NL on AVX2
* Command-A needs fp32 precision for K*Q
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
* Attempt fix
* Attempt fix 2
* Attempt fix 3
* Attempt fix 4
* Attempt fix 5
* Attempt fix 6
* Attempt fix 7
* Attempt fix 8
* Attempt fix 9
* Attempt fix 10
* Attempt fix 11
* Attempt fix 12
* Attempt fix 13
|
|
* Slightly better CPU TG performance for GQA
* Better CPU FA implementation for TG when GQA
* Minor
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
* Allow q8_0 KV cache for head size 256
* We need also these
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
* Much faster and it looks like better iq1_m quantiation
* Cleanup
* Minor
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
* Metal: WIP to update Metal FA implementation
Dk=192, Dv=128 works, but not Dk = 576, Dv = 512
* Metal FA: go to float
* WIP
* Metal FA: MLA options now all work
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
* Fix GCC compilation errors on ARM
* One more
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
* MoE improvements on Metal
This version beats mainline, there are things I don't understand:
* Mianline has effectively gone to GEMV for MUL_MAT_ID. We can do the
same, but we are 30% slower. Why?
* Using actual GEMM, we beat mainline with ubtach size of 128. But then
performance degrades. Why?
* Some cleanup
* Much better
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
* iq3_k: slightly better quantization
Not much of a difference for most models, but this change
avoids what it looks like a catastrophic failure for DeepSeek-Lite
(PPL is now 7.041 vs 7.314 on main).
* Small improvement for type-1 quants
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
* Better make_qx_quants
Tested with q4_0 and q3_K (pure, imatrix), and the improvement is
quite significant.
* Sae for iq4_nl, iq4_xs
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
* WIP - not working
* q8_0 without bells and wistles works
* It works for q8_0
* Use bf16 instead of f16,int16
* q4_0_r8
* q5_0_r4
* q6_0_r4
* Also q4_1 and q5_1
* q8_0_r8 on avx2
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
* Make fused MoE reproducible
As a bonus, peak performance at pp2048 with u_batch = 2048 is
~8% better.
* Slightly better
* Also do it for non-fused mul_mat_id
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
* Improve DeepSeek batched processing speed
* Revert the commented out section in iqk_mul_mat.cpp
It does have some benefit at long contexts.
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
* Fix it for nth > rk2
* Handle rk2%nth_k != 0
* Cleanup
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
* Repack a model with the quantize tool
* WIP
* Fixed various issues
As we don't have a way to tell if a repacked quant has been modified,
I had to remove the modification at the expense of a slight decrease
in performance. This affects q8_0_r8, q8_KV_r8, q8_k_r8 on Zen4, and
q4_0_r8 on ARM.
* Create wk_b and wv_b as Q8_0_R8 if the wkv_b type is interleaved
* Fix GCC 13.3 compilation error
* Another one
* Add missing include
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
I broke it with PR #265. I was testing with a model where
the wk_b and wk_v tensors were present, so didn't need to be computed,
so didn't notice that the change I made to ggml_compute_forward_dup_q
breaks that computation.
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
as it is not supported.
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
* FlashMLA-2: eliminate intermediate f32 tensors
This works on the CPU. PP performance is ~13% better for 16k tokens
and compute buffer is quite a bit smaller.
* FlashMLA-2: enable fast path only on the CPU for now
I did implement the necessary ops on CUDA, but something is
still wrong there, so for now we only use it when running
CPU-only.
* FlashMLA-2: slightly smaller computer buffer size
* Prepare wk_b when loading DeepSeek models (if wk_b is missing)
* Add some comments
* Fix case where wkv_b is quantized with k- or i-quants.
* Fix CUDA
There is an issue with quantized GEMV on CUDA when the left operand
(the matrix) is not contiguous. So, for now, we also create wv_b
during model loading and use that instead of the 3D view of wkv_b.
* FlashMLA-2: avoid conversions to f32 also on CUDA
* Be able to compute for more than 65535 tokens
On CUDA just a quick hack that allows us to cancatenate tensors
with more than 65535 rows along zroth dimension as needed by
FlashMLA-2. Also needed some care in the perplexity tool to
avoid int overflows when evaluating the computed logits.
* Reduce memory usage for FlashMLA-2
Oh, also fix int overflow in the CUDA concat implementation.
It is funny how the llama.cpp 64-bit police has gone (almost) everywhere
and replaced 32-bit ints with 64-bit ints, needed or not,
but hasn't done it where it is actually needed.
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
* FlashMLA-2: eliminate intermediate f32 tensors
This works on the CPU. PP performance is ~13% better for 16k tokens
and compute buffer is quite a bit smaller.
* FlashMLA-2: enable fast path only on the CPU for now
I did implement the necessary ops on CUDA, but something is
still wrong there, so for now we only use it when running
CPU-only.
* FlashMLA-2: slightly smaller computer buffer size
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
* FlashMLA(CUDA): WIP to allow q8_0 quantized cache
* WIP
* FlashMLA(CUDA) - allow q8_0 for KV cache
This works, and PP is not bad, but TG is still quite a bit slower.
* FlashMLA(CUDA) - allow q8_0 for KV cache
This is better. ~9% slower than f16 cache for short contexts,
nearly on par at 16k tokens.
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
* This gives us ~20% TG speedup for DeepSeek on CUDA
* Slightly better
* Also do it for plain (not fused) mul_mat_id
* Guard against numerical precision issues for MLA on CUDA
* imatrix: wv_b <-> wkv_b
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
* This gives us ~20% TG speedup for DeepSeek on CUDA
* Slightly better
* Also do it for plain (not fused) mul_mat_id
* Guard against numerical precision issues for MLA on CUDA
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
* FlashMLA-2: faster prompt processing
The current MLA implementation computes
wv_b * (k_cache * softmax(k_cache * (wk_b*q)))
This leads to 3.4X more multiply-adds (madds)
compared to standard attention. Due to the resulting
tensor shapes, TG is still faster than standard attention
because the k_cache*(wk_b*q) and k_cache*(softmax(k_cache * (wk_b*q)))
multiplications become GEMMs, so the additional madds are
more than compensated for due to the much higher performance
of GEMMs compared to GEMVs. But for PP, where we are dealing
with GEMMs in both cases, the additional madds needed for MLA
lead to lower performance, with the performance gap increasing
with context length.
So, then, when we are dealing with PP, we can rearrange the
above to (wv_b * k_cache) * softmax( (wk_b^T*k_cache) * q),
thus transforming it into the standard attention mechanism.
We do need two additional matrix multiplications (which in practice
is done as a single wkv_b * k_cache GEMM) with the *entire*
K cache. But this is still cheaper than MLA, as we end up with
1.8X the madds required by standard attention. Oh, these figures
are for the DeepSeek-V3/R1/Lite attention architecture.
This leads to a significant PP performance increase compared
to standard MLA with FA.
There are many upsides to this:
* If we only apply the above trick when we are processing more than
X tokens (with suitable chosen X), TG performance stays the same
as MLA with FA
* We still need to store just the K-cache, so 576 entries per layer
for DeepSeek-V3/R1/Lite
* We get significantly better PP performance
* We can use MLA+FA on CUDA. It works already with this commit
for PP, something is not yet quite right for TG.
The downside is that it only works with fp16 cache (for now).
This is so because we need to convert the cache to fp32,
else we cannot do the wkv_b * k_cache matrix multiplication
(which in ggml requires the second operand to be fp32).
But converting (copying) to fp32 only works for f16, bf16 and
f32 tensors, so no luck with quantized cache. Another reason
that we need to convert to fp32 is that the cache contains the
RoPE'd portion, which we need to concatenate to the result of
the wkv_b * k_cache matrix multiplication. Also this op
works only when the tensors being concatenated are both fp32.
So much about ggml being a general purpose ML library.
* FlashMLA-2: on the CPU it now works for quantized cache
except for q8_KV (q8_KV has row meta data, and there is still
some confusion with row sizes because of that).
* FlashMLA-2: on the CPU it now works also with q8_KV
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
* This is a better FA for TG
It should benefit MLA and GQA. Tested to work with
DeepSeek-Lite MLA, not yet for GQA.
For tg64@pp8192 it is ~13% faster than MLA without FA,
and 57% faster that the main branch FA.
* WIP
* Cleanup
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
* WIP CUDA FA with Dk != Dv
* WIP
* CUDA FA WIP - It actually works!
No TG yet, but for PP I can run FA with fp16 cache and it gets
the same answer.
* CUDA FA WIP - it now works for Q8_0 + Q8_0 for KV cache
* CUDA FA WIP - TG, not working yet.
* CUDA FA with Dk != Dv: it works now for DeepSeek
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
* FlashMLA - it finally works (on the CPU)
* FlashMLA: allow for f16 and bf16 cache in addition to q8_0
* It works with ggml FA, not with iqk FA
* WIP
* FlashMLA: it now works with iqk
I had forgotten to divide the Q stride by sizeof(float) and
that's why, very cobfusingly, it was working for TG but not for PP.
* WIP
* FlashMLA: that should be it for now
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
* A better way to measure the cost of ggml_barrier
* Smart expert selection
* Add ser option to llama-bench
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
* This reduces compute buffer size for MLA
* This should accomplish it for standard attention
* Much better
* Better concat for contiguous tensors
If all the op does is to concatenate the second tensor
to the first, why would we want to have a loop?
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
The `-mla` command line option turns into an int from a bool.
mla = 0: use standard attention
mla = 1: use MLA with transposed cache
mla > 1: use MLA without transposed cache
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|