summaryrefslogtreecommitdiff
path: root/k_quants.c
AgeCommit message (Collapse)Author
2023-09-12arm64 support for windows (#3007)Eric Sommerlade
Co-authored-by: Cebtenzzre <cebtenzzre@gmail.com>
2023-09-06k-quants : fix zero-weight guard in Q6_K (ref #3040)Georgi Gerganov
2023-09-05Guard against all weights in a super-block being zero (#3010)Kawrakow
* Guard against all weights in a super-block being zero * Also guard against extremely small weights Closes #2982 --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2023-09-02k-quants : fix build on armv7 (android only) (#2920)Jhen-Jie Hong
* k-quants : fix build on armv7 * ggml : cleanup unused arm32 specific impl * k-quants : avoid some unused vzero / mzero define * ggml-alloc : use 4g for MEASURE_MAX_SIZE in 32-bit arm
2023-09-01build : fix most gcc and clang warnings (#2861)Cebtenzzre
* fix most gcc and clang warnings * baby-llama : remove commented opt_params_adam * fix some MinGW warnings * fix more MinGW warnings
2023-08-28ggml : tiny ggml_vec_dot_q4_K_q8_K AVX2 improvement (#2819)Ronny Brendel
2023-08-22Quantization imrovements for k_quants (#2707)Kawrakow
* Improve LLaMA-2 2-, 3- and 4-bit quantization * Q3_K_S: use Q5_K for 1st 2 layers of attention.wv and feed_forward.w2 * Q4_K_S: use Q6_K for 1st 2 layers of attention.wv and feed_forward.w2 * Q2_K and Q3_K_M: use Q5_K instead of Q4_K for 1st 2 layers of attention.wv and feed_forward.w2 This leads to a slight model sized increase as follows: Q2_K : 2.684G vs 2.670G Q3_K_S: 2.775G vs 2.745G Q3_K_M: 3.071G vs 3.057G Q4_K_S: 3.592G vs 3.563G LLaMA-2 PPL for context 512 changes as follows: Q2_K : 6.6691 vs 6.8201 Q3_K_S: 6.2129 vs 6.2584 Q3_K_M: 6.0387 vs 6.1371 Q4_K_S: 5.9138 vs 6.0041 There are improvements for LLaMA-1 as well, but they are way smaller than the above. * Minor 4-bit quantization improvement For the same model size as previus commit, we get PPL = 5.9069 vs 5.9138. * Some more fine tuning * Adding make_qkx2_quants With it, we get PPL = 5.8828 for L2-7B Q4_K_S. * Another minor improvement * Q2_K improvement Smaller model, lower perplexity. 7B: file size = 2.632G, PPL = 6.3772 vs original 2.670G PPL = 6.8201 12B: file size = 5.056G, PPL = 5.4577 vs original 5.130G PPL = 5.7178 It is mostly Q3_K except for tok_embeddings, attention.wq, attention.wk, which are Q2_K * Iterating * Revert Q5_K back to make_qkx1_quants * Better Q6_K * make_qkx2_quants is better for Q5_K after all * Fix after rebasing on master * Fix for changed tensor names --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2023-07-28ggml : workaround for missing _mm256_setr_m128i in GCC < 8 in k_quants.c (#2405)Lee
2023-07-25k_quants : add AVX support to dot functions with QK_K as 64 (#2339)katsu560
* add AVX to ggml_vec_dot_q2_K_q8_K() * add AVX to ggml_vec_dot_q3_K_q8_K() * add AVX to ggml_vec_dot_q4_K_q8_K() * add AVX to ggml_vec_dot_q5_K_q8_K() * add AVX to ggml_vec_dot_q6_K_q8_K() * refactor AVX code in ggml_vec_dot_q6_K_q8_K()
2023-07-24Fix scalar version of Q5_K when QK_K = 64 (#2362)Kawrakow
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2023-06-26k-quants : fix indentationGeorgi Gerganov
2023-06-26k-quants : add AVX support to dot functions (#1916)katsu560
* k_quants : add AVX support * k_quants : apply review comments
2023-06-26k-quants : support for super-block size of 64 (#2001)Kawrakow
* k_quants: WIP super-blocks with 64 weights * k_quants: WIP super-blocks with 64 weights Q6_K scalar and AVX2 works * k_quants: WIP super-blocks with 64 weights Q4_K scalar and AVX2 works * k_quants: WIP super-blocks with 64 weights Q2_K scalar and AVX2 works. Q2_K is way too slow (it is actually slower than the scalar implementation) * k_quants: WIP super-blocks with 64 weights Q3_K scalar and AVX2 works. * k_quants: WIP super-blocks with 64 weights Q5_K scalar and AVX2 works, and with that all k_quants are done on AVX2 and scalar * k_quants: WIP super-blocks with 64 weights Q6_K working on CUDA. Cannot make it run quite as gast as with super-blocks with 256 weigths: 8% slower on 4080, 20% slower on the 1660 (but there we fit 1 less layer on the GPU because pf the larger model size), so some fraction of these 20% is due to that, * k_quants: WIP super-blocks with 64 weights Q4_K working on CUDA. ~10% slower on GTX-1660, 16% slower on 4080. * k_quants: WIP super-blocks with 64 weights Q2_K working on CUDA. ~3% slower on GTX-1660, 10% slower on 4080. * k_quants: WIP super-blocks with 64 weights Q3_K working on CUDA. * k_quants: WIP super-blocks with 64 weights Q5_K working on CUDA, and with this CUDA is done. * k_quants: WIP super-blocks with 64 weights Q6_K working on ARM_NEON * k_quants: WIP super-blocks with 64 weights Q4_K working on ARM_NEON, but quite a bit slower than 256 weights * k_quants: WIP super-blocks with 64 weights Q2_K working on ARM_NEON, but quite a bit slower than 256 weights * k_quants: WIP super-blocks with 64 weights Q3_K working on ARM_NEON, but quite a bit slower than 256 weights. * k_quants: WIP super-blocks with 64 weights Q5_K working on ARM_NEON, but quite a bit slower than 256 weights. With that, we have full support for ARM_NEON, although performance is not quite there. * k_quants: WIP super-blocks with 64 weights Slightly more efficient Q3_K and Q5_K * k_quants: WIP super-blocks with 64 weights Another small improvement for Q3_K and Q5_K on ARM_NEON * k_quants: WIP super-blocks with 64 weights Yet another speedup for Q5_K on ARM_NEON. We are now within 10% of the QK_K = 256 version. * k_quants: WIP super-blocks with 64 weights * We are able to pass preprocessor macros to the Metal compiler * Q6_K works and is actually slightly more efficient than the QK_K = 256 version (25.2 ms vs 25.8 ms) * k_quants: WIP super-blocks with 64 weights Q4_K works on Metal and is actually slightly faster than QK_K = 256 (21.95 ms vs 24.0 ms). * k_quants: WIP super-blocks with 64 weights Q2_K works on Metal and is very slightly faster than QK_K = 256 (23.8 ms vs 24.2 ms). * k_quants: WIP super-blocks with 64 weights Q3_K works on Metal and is slightly faster than QK_K = 256 (26.6 ms vs 28.3 ms). * k_quants: WIP super-blocks with 64 weights Q5_K works on Metal and is slightly faster than QK_K = 256 (23.7 ms vs 26.3 ms). * k_quants: call them _K, not _k, also on Metal * k_quants: correctly define QK_K in llama.cpp * Fixed bug in q4_K quantization added with the 64-block addition * Simplify via lambda * k_quants: swicth Q3_K to 4-bit scales when QK_K = 64 Otherwise there isn't much benefit from this quantization type. There is some very slight loss in accuracy, but we reduce size by ~7%. E.g., for OpenLLaMA-3B, Q3_K_S perplexity is 8.6131 with 8-bit scales and 8.6352 with 4-bit, while file size decreases from 1.53G to 1.44G. * k_quants: switch Q4_K to 4-bit scales when QK_K = 64 Here the loss in accuracy is greater than for Q3_K, but the Q4_K points still move further to the left on the perplexity vs size curve. * k_quants: forgot to add the Metal changes in last commit * k_quants: change Q5_K to be type 0 when QK_K = 64 Still needs AVX2 implementation * k_quants: AVX2 implementation for new 64-weight Q5_K * k_quants: 10% faster ARM_NEON Q5_K dot product * k_quants: fixed issue caused by merging with master --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2023-06-10k-quants : GCC12 compilation fix (#1792)Artyom Lebedev
2023-06-08Revert "ggml : load data into int8x16x4_t using vld4q_s8 on arm64 (#1738)"Georgi Gerganov
This reverts commit 8432d4d9f716b25133e3ed671d91e21f6f3be867.
2023-06-08ggml : load data into int8x16x4_t using vld4q_s8 on arm64 (#1738)le.chang
2023-06-07k-quants : allow to optionally disable at compile time (#1734)Georgi Gerganov
* k-quants : put behind optional compile flag LLAMA_K_QUANTS * build : enable k-quants by default