summaryrefslogtreecommitdiff
path: root/llama.cpp
AgeCommit message (Collapse)Author
2024-01-13convert : update phi-2 to latest HF repo (#4903)Georgi Gerganov
* convert : update phi-2 to latest HF repo ggml-ci * py : try to fix flake stuff
2024-01-12llama : ggml-backend integration (#4766)slaren
* llama : ggml-backend integration * ggml-backend : add names to buffers * fix unmap after loading * batched-bench : add tensor_split param * llama : check for null tensor_split * ggml-backend : increase GGML_MAX_BACKENDS * improve graph splitting, partial fix for --no-kv-offload * cuda : add ggml-backend split buffer support * cuda : do not create buffer types for devices that don't exist (fixes usage without CUDA devices available) * ggml : fix null backend dereference (#4807) * ggml : fix null backend dereference * ggml : also check ggml_backend_is_cpu * test-backend-ops : check buffer allocation failures * llama : add cparam (split_mode) and command line argument (--split-mode, -sm) to configure the split mode (none, layer or row) * ggml : fix mul_mat_id work size * llama : rewrite session kv load/set without graphs * minor * llama : only initialize used backends, free backends on context free * llama : abort ctx if cuda backend init fails * llama : rewrite lora with ggml-backend and compute on CPU ggml-ci * llama : only map to a backend buffer the region of the file mapping containing the tensors used in the buffer * opencl : add ggml-backend buffer type * cuda : only use batched_cublas with batched mat muls (fixes fp16 tg perf) * llama : on Metal, by default offload the full model ggml-ci * metal : page align the data ptr (#4854) * Apply suggestions from code review Co-authored-by: Johannes Gäßler <johannesg@5d6.de> * cuda : fix split buffer free * address review comments * llama-bench : add split-mode parameter * fix whitespace * opencl : fix double initialization * server : add --split-mode parameter * use async copy and compute to improve multi-gpu performance ggml-ci * use async memcpys to copy the graph outputs to the CPU * fix opencl * use a host buffer for the cpu compute buffer for faster copies to the gpu --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2024-01-12llama : remove redundant assert for StableLM (#4901)Georgi Gerganov
2024-01-12llama : fix typo "imp_embd" -> "inp_embd"Georgi Gerganov
2024-01-12llama : fix llm_build_k_shift to use correct n_rot (#4889)Georgi Gerganov
* llama : fix llm_build_k_shift to use correct n_rot ggml-ci * llama : always use hparams.n_rot for ggml_rope_custom ggml-ci * convert : fix persimmon conversion to write correct n_rot
2024-01-11llama : restore intended k-quants mixes for MoE models (#4872)Kawrakow
* Restore intended k-quants quantization mixes for MoE models * Update Q2_K_S values in the quantize tool Still using LLaMA-v1 PPL values in the quant description today does not make much sense. But let's leave this update for another PR. --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-01-11ggml : SOTA 2-bit quants (add IQ2_XS) (#4856)Kawrakow
* iq2_xs: basics * iq2_xs: this should have been in the basics * iq2_xs: CUDA and scalar CPU works * iq2_xs: WIP Metal * iq2_xs: Metal now works * iq2_xs: working, but dog slow, ARM_NEON dot product * iq2_xs: better ARM_NEON dot product We are now at 19.5 t/s for TG-128 and 61 t/s for PP-512 when running on the CPU. * iq2_xs: AVX2 dot product - 19.5 t/s * iq2_xs: faster AVX2 dit product 21.4 t/s for TG-128, 59.2 t/s for PP-512. The latter is 2x compared to the previous version. * iq2_xs: had forgotten to delete iq2-data.h * Add llama enum for IQ2_XS --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-01-11main : print total token count and tokens consumed so far (#4874)pudepiedj
* Token count changes * Add show token count * Updating before PR * Two requested changes * Move param def posn
2024-01-10llama : add additional suffixes for model params (#4834)Brian
* llm_load_print_meta: Add additional suffixs for model params * Update llama.cpp model param log remove unneeded comments and convert from > to >=
2024-01-10llama : recognize 1B phi models (#4847)Austin
This update categorizes models with 24 layers as MODEL_1B, ensuring compatibility with different Phi model variants without impacting existing Phi-2 model functionality.
2024-01-08SOTA 2-bit quants (#4773)Kawrakow
* iq2_xxs: basics * iq2_xxs: scalar and AVX2 dot products Needed to change Q8_K to have quants in the -127...127 range, else the IQ2_XXS AVX implementation becomes very awkward. The alternative would have been to use Q8_0 instead. Perhaps I'll change later, for now this is what we have. * iq2_xxs: ARM_NEON dot product Somehow strangely slow (112 ms/token). * iq2_xxs: WIP Metal Dequantize works, something is still wrong with the dot product. * iq2_xxs: Metal dot product now works We have PP-512 = 475 t/s TG-128 = 47.3 t/s Not the greatest performance, but not complete garbage either. * iq2_xxs: slighty faster dot product TG-128 is now 48.4 t/s * iq2_xxs: slighty faster dot product TG-128 is now 50.9 t/s * iq2_xxs: even faster Metal dot product TG-128 is now 54.1 t/s. Strangely enough, putting the signs lookup table into shared memory has a bigger impact than the grid values being in shared memory. * iq2_xxs: dequantize CUDA kernel - fix conflict with master * iq2_xxs: quantized CUDA dot product (MMVQ) We get TG-128 = 153.1 t/s * iq2_xxs: slightly faster CUDA dot product TG-128 is now at 155.1 t/s. * iq2_xxs: add to llama ftype enum * iq2_xxs: fix MoE on Metal * Fix missing MMQ ops when on hipBLAS I had put the ggml_supports_mmq call at the wrong place. * Fix bug in qequantize_row_iq2_xxs The 0.25f factor was missing. Great detective work by @ggerganov! * Fixing tests * PR suggestion --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-01-08examples : add passkey test (#3856)Georgi Gerganov
* examples : add passkey test * passkey : better prints * passkey : select pass key pos from CLI * passkey : simplify n_past logic * make : add passkey target * passkey : add "self-extend"-like context extension (#4810) * llama : "self-extend"-like context extension * passkey : add comment * passkey : add readme
2024-01-07llama : remove unused vars (#4796)Georgi Gerganov
2024-01-07llama : remove redundant GQA check (#4796)Georgi Gerganov
2024-01-07llama : print tensor meta for debuggingGeorgi Gerganov
2024-01-02llama : llama_model_desc print number of expertsGeorgi Gerganov
2024-01-02llama : replace all API facing `int`'s with `int32_t` (#4577)Marcus Dunn
* replaced all API facing `int`'s with `int32_t` * formatting and missed `int` in `llama_token_to_piece`
2024-01-02llama : differentiate the KV dims in the attention (#4657)postmasters
* Add n_key_dim and n_value_dim Some models use values that are not derived from `n_embd`. Also remove `n_embd_head` and `n_embd_gqa` because it is not clear which "head" is referred to (key or value). Fix issue #4648. * Fix `llm_build_kqv` to use `n_value_gqa` * Rebase * Rename variables * Fix llm_build_kqv to be more generic wrt n_embd_head_k * Update default values for n_embd_head_k and n_embd_head_v Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Fix llm_load_tensors: the asserts were not backcompat --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-12-30ggml : add ggml_cpu_has_avx_vnni() (#4589)automaticcat
* feat: add avx_vnni based on intel documents * ggml: add avx vnni based on intel document * llama: add avx vnni information display * docs: add more details about using oneMKL and oneAPI for intel processors * docs: add more details about using oneMKL and oneAPI for intel processors * docs: add more details about using oneMKL and oneAPI for intel processors * docs: add more details about using oneMKL and oneAPI for intel processors * docs: add more details about using oneMKL and oneAPI for intel processors * Update ggml.c Fix indentation upgate Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-12-28gpt2 : Add gpt2 architecture integration (#4555)manikbhandari
2023-12-27llama : add AWQ for llama, llama2, mpt, and mistral models (#4593)Nam D. Tran
* update: awq support llama-7b model * update: change order * update: benchmark results for llama2-7b * update: mistral 7b v1 benchmark * update: support 4 models * fix: Readme * update: ready for PR * update: readme * fix: readme * update: change order import * black * format code * update: work for bot mpt and awqmpt * update: readme * Rename to llm_build_ffn_mpt_awq * Formatted other files * Fixed params count * fix: remove code * update: more detail for mpt * fix: readme * fix: readme * update: change folder architecture * fix: common.cpp * fix: readme * fix: remove ggml_repeat * update: cicd * update: cicd * uppdate: remove use_awq arg * update: readme * llama : adapt plamo to new ffn ggml-ci --------- Co-authored-by: Trần Đức Nam <v.namtd12@vinai.io> Co-authored-by: Le Hoang Anh <v.anhlh33@vinai.io> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-12-26cuda : fix vmm pool with multi GPU (#4620)slaren
* cuda : fix vmm pool with multi GPU * hip * use recommended granularity instead of minimum * better error checking * fix mixtral * use cudaMemcpy3DPeerAsync * use cuda_pool_alloc in ggml_cuda_op_mul_mat * consolidate error checking in ggml_cuda_set_device * remove unnecessary inlines ggml-ci * style fixes * only use vmm for the main device * fix scratch buffer size, re-enable vmm pool for all devices * remove unnecessary check id != g_main_device
2023-12-24llama : add PLaMo model (#3557)Shintarou Okada
* add plamo mock * add tensor loading * plamo convert * update norm * able to compile * fix norm_rms_eps hparam * runnable * use inp_pos * seems ok * update kqv code * remove develop code * update README * shuffle attn_q.weight and attn_output.weight for broadcasting * remove plamo_llm_build_kqv and use llm_build_kqv * fix style * update * llama : remove obsolete KQ_scale * plamo : fix tensor names for correct GPU offload --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-12-24cuda : improve cuda pool efficiency using virtual memory (#4606)slaren
* cuda : improve cuda pool efficiency using virtual memory * fix mixtral * fix cmake build * check for vmm support, disable for hip ggml-ci * fix hip build * clarify granularity * move all caps to g_device_caps * refactor error checking * add cuda_pool_alloc, refactor most pool allocations ggml-ci * fix hip build * CUBLAS_TF32_TENSOR_OP_MATH is not a macro * more hip crap * llama : fix msvc warnings * ggml : fix msvc warnings * minor * minor * cuda : fallback to CPU on host buffer alloc fail * Update ggml-cuda.cu Co-authored-by: Johannes Gäßler <johannesg@5d6.de> * Update ggml-cuda.cu Co-authored-by: Johannes Gäßler <johannesg@5d6.de> * ensure allocations are always aligned * act_size -> actual_size --------- Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2023-12-23fallback to CPU buffer if host buffer alloc fails (#4610)slaren
2023-12-22llama : fix platforms without mmap (#4578)slaren
* llama : fix platforms without mmap * win32 : limit prefetch size to the file size * fix win32 error clobber, unnecessary std::string in std::runtime_error
2023-12-22llama : add ability to cancel model loading (#4462)crasm
* llama : Add ability to cancel model load Updated llama_progress_callback so that if it returns false, the model loading is aborted. * llama : Add test for model load cancellation * Fix bool return in llama_model_load, remove std::ignore use * Update llama.cpp Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> * Fail test if model file is missing * Revert "Fail test if model file is missing" This reverts commit 32ebd525bf7e5a87ee8a3dbaab3d92ce79fbf23d. * Add test-model-load-cancel to Makefile * Revert "Revert "Fail test if model file is missing"" This reverts commit 2796953257ee5383fa7c8fe8fa8fc888c048fb0b. * Simplify .gitignore for tests, clang-tidy fixes * Label all ctest tests * ci : ctest uses -L main * Attempt at writing ctest_with_model * ci : get ci/run.sh working with test-model-load-cancel * ci : restrict .github/workflows/build.yml ctest to -L main * update requirements.txt * Disable test-model-load-cancel in make * Remove venv before creation * Restructure requirements.txt Top-level now imports the specific additional requirements for each python file. Using `pip install -r requirements.txt` will fail if versions become mismatched in the per-file requirements. * Make per-python-script requirements work alone This doesn't break the main requirements.txt. * Add comment * Add convert-persimmon-to-gguf.py to new requirements.txt scheme * Add check-requirements.sh script and GitHub workflow * Remove shellcheck installation step from workflow * Add nocleanup special arg * Fix merge see: https://github.com/ggerganov/llama.cpp/pull/4462#discussion_r1434593573 * reset to upstream/master * Redo changes for cancelling model load --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>
2023-12-21ggml : change ggml_scale to take a float instead of tensor (#4573)Georgi Gerganov
* ggml : change ggml_scale to take a float instead of tensor * ggml : fix CPU implementation * tests : fix test-grad0 ggml-ci
2023-12-21llama : initial ggml-backend integration (#4520)slaren
* llama : initial ggml-backend integration * add ggml-metal * cuda backend can be used though ggml-backend with LLAMA_GGML_BACKEND_CUDA_TEST access all tensor data with ggml_backend_tensor_get/set * add ggml_backend_buffer_clear zero-init KV cache buffer * add ggml_backend_buffer_is_hos, used to avoid copies if possible when accesing tensor data * disable gpu backends with ngl 0 * more accurate mlock * unmap offloaded part of the model * use posix_fadvise64(.., POSIX_FADV_SEQUENTIAL) to improve performance with mmap * update quantize and lora * update session copy/set to use ggml-backend ggml-ci * use posix_fadvise instead of posix_fadvise64 * ggml_backend_alloc_ctx_tensors_from_buft : remove old print * llama_mmap::align_offset : use pointers instead of references for out parameters * restore progress_callback behavior * move final progress_callback call to load_all_data * cuda : fix fprintf format string (minor) * do not offload scales * llama_mmap : avoid unmapping the same fragments again in the destructor * remove unnecessary unmap * metal : add default log function that prints to stderr, cleanup code ggml-ci --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-12-21llama : allow getting n_batch from llama_context in c api (#4540)Marcus Dunn
* allowed getting n_batch from llama_context in c api * changed to use `uint32_t` instead of `int` * changed to use `uint32_t` instead of `int` in `llama_n_ctx` * Update llama.h --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-12-21llama : disable per-tensor info prints on model load (#4562)Johannes Gäßler
2023-12-18llama : add phi-2 + fix NeoX rope + ggml_mul_mat_set_prec (#4490)Ebey Abraham
* phi2 implementation * fix breaking change * phi-2 : various fixes * phi-2 : use layer norm eps * py : whitespaces * llama : fix meta KV override bug * convert : phi don't add BOS token * convert : revert "added_tokens_decoder" change * phi-2 : scale Q instead of KQ for better precision * ggml : fix NeoX rope to rotate just first n_dims * cuda : less diff in the rope_neox kernel * ggml : add ggml_mul_mat_set_prec ggml-ci * Update ggml-cuda.cu Co-authored-by: slaren <slarengh@gmail.com> * Update ggml-cuda.cu Co-authored-by: slaren <slarengh@gmail.com> * cuda : ggml_cuda_op_mul_mat_cublas support F32 precision * cuda : remove oboslete comment --------- Co-authored-by: Ebey Abraham <ebeyabraham@microsoft.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> Co-authored-by: slaren <slarengh@gmail.com>
2023-12-18llama : fix try_override for bool_value which always return true (#4519)hankcs
2023-12-17decode : fix logits_valid for legacy API (#4516)Jared Van Bortel
2023-12-17llama.swiftui : add bench functionality (#4483)Georgi Gerganov
* llama.swiftui : add bench button * llama.swiftui : initial bench functionality * force to use n_gpu_layers on simulator * add download buttons & expose llamaState.loadModel * update project.pbxproj * comment #Preview & fix editorconfig check * gitignore : xcode stuff * llama.swiftui : UX improvements * llama.swiftui : avoid data copy via "downloadTask" * llama.swiftui : remove model from project * llama : remove "mostly" from model infos * llama.swiftui : improve bench --------- Co-authored-by: jhen <developer@jhen.me>
2023-12-16lora : add support for non-llama models (#3333)slaren
* lora : add support for non-llama models ggml-ci * avoid leaking ggml_context on failure cleanup ggml-ci * lora : allow 1d tensors * lora : include embd and output layers in size calculation * fix style
2023-12-15llama : sanity checks for access to logits (#4274)Jared Van Bortel
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-12-14ggml : remove n_dims from ggml_tensor (#4469)slaren
ggml-ci
2023-12-14ggml : add ggml_row_size() (fixes llama out of space) (#4461)LostRuins
* Fixes "Not enough space in the context's memory pool" encountered on certain models, which seems to be caused by some imprecision related to the automatic casting of floating point values * do not cast to size_t, instead just use doubles * ggml : add ggml_row_size(), deprecate ggml_type_sizef() * ggml : fix row size compute to avoid overflows * tests : fix sizey -> sizez --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-12-13llama : add Mixtral support (#4406)slaren
* convert : support Mixtral as LLAMA arch * convert : fix n_ff typo * llama : model loading * ggml : sync latest ggml_mul_mat_id * llama : update graph to support MoE * llama : fix cur -> cur_expert * llama : first working version * llama : fix expert weighting in the FFN * ggml : ggml_get_rows support 2D indexing [n_tokens, n_experts] (cpu only) * ggml : add n_as argument to ggml_mul_mat_id * ggml : fix ggml_get_rows to take into account ne02 / ne11 * metal : add more general support for ggml_get_rows + tests * llama : add basic support for offloading moe with CUDA * metal : add/mul/div use general kernel when src1 not cont * metal : reduce the kernel launches for ggml_mul_mat_id * ggml : get_rows : support non-contiguos tensors with gaps, generalize up to 3D * ggml : update get_rows f16 and q * cuda : support non-contiguous src1 in get_rows * llama : offload missing ffn_moe_silu * metal : fix ggml_get_rows to work with non-cont src1 * metal : add indirect mat-vec kernels for all quantization types * llama : do not quantize expert gating tensors * llama : add n_expert and n_expert_used to hparams + change quants * test-backend-ops : add moe test * cuda : fix get_rows when ncols is odd * convert : determine n_ctx correctly * metal : fix ggml_mul_mat_id for F32 * test-backend-ops : make experts more evenly probable (test_moe) * test-backend-ops : cleanup, add moe test for batches * test-backend-ops : add cpy from f32 -> all types test * test-backend-ops : fix dequantize block offset * llama : fix hard-coded number of experts * test-backend-ops : simplify and disable slow tests to avoid CI timeout * test-backend-ops : disable MOE test with thread sanitizer * cuda : fix mul_mat_id with multi gpu * convert : use 1e6 rope_freq_base for mixtral * convert : fix style * convert : support safetensors format * gguf-py : bump version * metal : add cpy f16 -> f32 kernel * metal : fix binary ops for ne10 % 4 != 0 * test-backend-ops : add one more sum_rows test * ggml : do not use BLAS with ggml_mul_mat_id * convert-hf : support for mixtral-instruct (#4428) * convert : typo fix, add additional hyperparameters, use LLaMA arch for Mixtral-instruct * convert : use sentencepiece tokenizer for Mixtral-instruct * convert : make flake8 happy * metal : fix soft_max kernels ref: https://github.com/ggerganov/ggml/pull/621/commits/1914017863d2f9ab8ecc0281cc2a56d683668b92 * metal : limit kernels to not use more than the allowed threads --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> Co-authored-by: Radek Pilar <github@mrkva.eu>
2023-12-12english : use `typos` to fix comments and logs (#4354)Richard Kiss
2023-12-09grammar : revert the replacement of llama_token_to_piece with id_to_token ↵Xiang (Kevin) Li
(#4396)
2023-12-07llama : per-layer KV cache + quantum K cache (#4309)Georgi Gerganov
* per-layer KV * remove unnecessary copies * less code duplication, offload k and v separately * llama : offload KV cache per-layer * llama : offload K shift tensors * llama : offload for rest of the model arches * llama : enable offload debug temporarily * llama : keep the KV related layers on the device * llama : remove mirrors, perform Device -> Host when partial offload * common : add command-line arg to disable KV cache offloading * llama : update session save/load * llama : support quantum K cache (#4312) * llama : support quantum K cache (wip) * metal : add F32 -> Q8_0 copy kernel * cuda : add F32 -> Q8_0 copy kernel ggml-ci * cuda : use mmv kernel for quantum cache ops * llama : pass KV cache type through API * llama : fix build ggml-ci * metal : add F32 -> Q4_0 copy kernel * metal : add F32 -> Q4_1 copy kernel * cuda : wip * cuda : add F32 -> Q4_0 and F32 -> Q4_1 copy kernels * llama-bench : support type_k/type_v * metal : use mm kernel only for quantum KV cache * cuda : add comment * llama : remove memory_f16 and kv_f16 flags --------- Co-authored-by: slaren <slarengh@gmail.com> * readme : add API change notice --------- Co-authored-by: slaren <slarengh@gmail.com>
2023-12-05grammar : pre-computed pieces + reserve mem + less string copies (#4330)Marcus Dunn
* reserve space for codepoints * improvement for the appended 0 * used precomputed token text for grammar sample * reserve canidates_decoded * reserve canidates_grammar * remove candidates_decoded * Revert "remove candidates_decoded" This reverts commit 3773328080e6a139ee83198329a13cf4ff61d707. * changed decode_utf8 to take src by ref
2023-12-05llama : allow overriding GGUF metadata when loading model (#4092)Kerfuffle
* feat: Allow overriding GGUF metadata when loading model * Fix the one time GCC is stricter than clang about something * Step1 * Refactor... basically everything! * Nuke obsolete GetArrayLen struct * simplify std::string specialization * Various cleanups Add informational output when overrides are applied Warn user when an override with the wrong type is specified * Fix broken logic for parsing bool KV overrides Fix issue where overrides didn't apply when key missing in GGUF metadata Resolve merge changes * llama : rearrange model params * Update new GET_KEY call Add note that metadata KV overrides aren't reflected in initial metadata KV info dump --------- Co-authored-by: cebtenzzre <cebtenzzre@gmail.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-12-03llama : pad KV cache size (#4280)Georgi Gerganov
* llama : pad KV cache size to 32 * metal : try to improve batched decoding
2023-12-01llama : avoid using "optional" keyword (#4283)Georgi Gerganov
2023-12-01llama : support optional tensors (#4283)Georgi Gerganov
2023-12-01llama : support attention bias on LLaMA architecture (#4283)CausalLM
* Support attention_bias on LLaMA architecture QKVO bias, should fix InternLM (https://github.com/ggerganov/llama.cpp/issues/3133) and works for LLaMAfied Qwen models (https://github.com/ggerganov/llama.cpp/pull/3743#issuecomment-1825923608). * check existence of qkvo bias while loading llama models Tested on LLaMA2, CUDA and CPU. * Update llama.cpp
2023-12-01llama : add Qwen support (#4281)Shijie
* enable qwen to llama.cpp * llama : do not GPU split bias tensors --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>