Age | Commit message (Collapse) | Author |
|
* llama : cache llama_token_to_piece
ggml-ci
* llama : use vectors and avoid has_cache
ggml-ci
* llama : throw on unknown tokenizer types
ggml-ci
* llama : print a log of the total cache size
|
|
* tests : add rope tests
ggml-ci
* ggml : fixes (hopefully)
ggml-ci
* tests : add non-cont tests
ggml-ci
* cuda : add asserts for rope/norm + fix DS2
ggml-ci
* ggml : assert contiguousness
* tests : reduce RoPE tests
ggml-ci
|
|
* Update random test: add_bos_token.
* Update random test: add WPM models for testing.
* Build vocab.special_tokens_cache using vocab token types.
* Fix and improve WPM preprocessing.
- Fix unicode edge case combinations.
- Split by whitspace in the same pass.
* Discard all tokens when no matching found.
|
|
* Add optional MLP bias for Granite models
Add optional MLP bias for ARCH_LLAMA to support Granite models.
Partially addresses ggerganov/llama.cpp/issues/7116
Still needs some more changes to properly support Granite.
* llama: honor add_space_prefix from the model configuration
propagate the add_space_prefix configuration from the HF model
configuration to the gguf file and honor it with the gpt2 tokenizer.
Signed-off-by: Giuseppe Scrivano <gscrivan@redhat.com>
* llama: add support for small granite models
it works only for the small models 3b and 8b.
The convert-hf-to-gguf.py script uses the vocabulary size of the
granite models to detect granite and set the correct configuration.
Signed-off-by: Giuseppe Scrivano <gscrivan@redhat.com>
---------
Signed-off-by: Giuseppe Scrivano <gscrivan@redhat.com>
Co-authored-by: Steffen Roecker <sroecker@redhat.com>
|
|
* common : increase max number of experts to 160
* common : add tensors ATTN_Q_A, ATTN_Q_A_NORM, ATTN_Q_B, ATTN_KV_A_MQA, ATTN_KV_A_NORM, ATTN_KV_B needed by DeepSeek-V2 MLA (multi-head latent attention) architecture
* common : add model header parameters: leading_dense_block_count, expert_feed_forward_length, expert_shared_count, expert_weights_scale, attention.q_lora_rank, attention.kv_lora_rank, rope.scaling.yarn_log_multiplier
* convert-hf : add model conversion support for DeepseekV2ForCausalLM
* llama : add model types for DeepSeek-V2 and DeepSeek-V2-Lite models
* llama : add two new llm_build_moe_ffn() arguments: scale_w (whether to scale weights of selected MoE experts) and w_scale (numerical value of the scaling factor)
* llama : add inference support for LLM_ARCH_DEEPSEEK2
---------
Co-authored-by: Stanisław Szymczyk <sszymczy@gmail.com>
|
|
|
|
|
|
* main : don't print special tokens with --grammar
The CLI interface was recently changed to print special control tokens
like the </s> stop message one. This token shouldn't be printed if the
grammar flag was passed, unless the grammar specifies it, because that
breaks shell-scriptability.
* main: use seperate stream for control characters
* main: use dprintf and add --ctrl-token-no-out and --ctrl-token-fd-out
* main: dprintf isn't part of the IEEE POSIX standard. Just use write().
* main: remove --ctrl-token-fd-out in favor for fcntl() based detection
* common.cpp: accidentally removed --interactive-first
* main: only merge stdout and control token if not in conversation or grammar mode
* main: rejig control token descriptor handling
* main: must check pipe status on very top of program
* main: renamed --no-special from --ctrl-token-no-out and other refactoring
* main: refactor ctrl_token_no_out --> no_special
* llama: rename llama_token_is_control_token() to llama_token_is_control()
* main: remove special token file descriptor feature (#5)
---------
Co-authored-by: Brian <mofosyne@gmail.com>
|
|
* Add SVE support for q4_0_q8_0 q8_0_q8_0
* remove ifdef
|
|
* common : increase max number of experts to 128
* common : add tensor LLM_TENSOR_FFN_NORM_EXPS for normalization before MoE that runs in parallel to attention + ffn
* gguf-py : add architecture-specific block mappings that override selected general block mappings
* convert-hf : add model conversion support for ArcticForCausalLM
* convert-hf : use added_tokens_decoder from tokenizer_config.json to redefine tokens from SentencePiece model (only for ArcticForCausalLM)
* llama : add inference support for LLM_ARCH_ARCTIC
---------
Co-authored-by: Stanisław Szymczyk <sszymczy@gmail.com>
|
|
* Fix phi3 template matching vs zephyr
* Add regression test for new phi3 chat template
* Implement review suggestions
* Fix phi3 jinja test templates & match by <|end|>
* Apply suggestion
Co-authored-by: Xuan Son Nguyen <thichthat@gmail.com>
* Add all phi3 template variants in tests
* Remove unneeded message trimming
Co-authored-by: Xuan Son Nguyen <thichthat@gmail.com>
* Fix tests to not expect trimmed messages
---------
Co-authored-by: Xuan Son Nguyen <thichthat@gmail.com>
|
|
* llama : add getters for n_threads/n_threads_batch
This commit adds two new functions to the llama API. The functions
can be used to get the number of threads used for generating a single
token and the number of threads used for prompt and batch processing
(multiple tokens).
The motivation for this is that we want to be able to get the number of
threads that the a context is using. The main use case is for a
testing/verification that the number of threads is set correctly.
Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>
* squash! llama : add getters for n_threads/n_threads_batch
Rename the getters to llama_n_threads and llama_n_threads_batch.
Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>
---------
Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>
|
|
* ci : start using Pythia models over OpenLlama
ggml-ci
* ci : disable q2_k ppl tests
* ci : use convert-hf-to-gguf.py
* ci : update gg_get_model
* ci : fix convert outfile name
ggml-ci
* llama : gptneox arch use F32 attn prec
ggml-ci
|
|
base models) (#7461)
* convert-hf : add conversion of bloom-style qkv tensor to gpt-style qkv (code borrowed from BloomModel)
* llama : add inference support for LLM_ARCH_GPTNEOX
* llama : add model types for every Pythia variant and GPT-NeoX
Co-authored-by: Stanisław Szymczyk <sszymczy@gmail.com>
|
|
|
|
* ggml : drop support for QK_K=64
ggml-ci
* opencl : restore QK_K=256 define
|
|
* phi3 : duplicate rope factors in each layer
phi3 : set phi-3 model type as 14B
model loader : simplify the process for duplicating model tensors
llama-bench : remove default pg test
* replace bool parameters in llama_model_loader with named flags
|
|
|
|
* add phi3 128k support in convert-hf-to-gguf
* add phi3 128k support in cuda
* address build warnings on llama.cpp
* adjust index value in cuda long rope freq factors
* add long rope support in ggml cpu backend
* make freq factors only depend on ctx size
* remove unused rope scaling type 'su' frin gguf converter
* fix flint warnings on convert-hf-to-gguf.py
* set to the short freq factor when context size is small than trained context size
* add one line of comments
* metal : support rope freq_factors
* ggml : update ggml_rope_ext API to support freq. factors
* backends : add dev messages to support rope freq. factors
* minor : style
* tests : update to use new rope API
* backends : fix pragma semicolons
* minor : cleanup
* llama : move rope factors from KV header to tensors
* llama : remove tmp assert
* cuda : fix compile warning
* convert : read/write n_head_kv
* llama : fix uninitialized tensors
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
|
|
* Update brute force test: add_special
* Update brute force test: default values for add_bos_token and add_eos_token
* Enable rtrim when pre-inserting BOS
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Revert "server : fix test regexes"
|
|
* Update brute force test: special tokens
* Fix added tokens
- Try to read 'added_tokens.json'.
- Try to read 'tokenizer_config.json'.
- Try to read 'tokenizer.json'.
* Fix special tokens rtrim
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* server : fix test regexes
|
|
* llama : remove Persimmon
* requirements : remove
|
|
|
|
for enabling AVX512_BF16 (#7258)
|
|
|
|
* Add StableLM pre-tokenizer
* Fix space
* Fix trailing whitespace
|
|
* logging: output capture in cuda module
* fix compile error
* fix: vsnprintf terminates with 0, string use not correct
* post review
* Update llama.cpp
Co-authored-by: slaren <slarengh@gmail.com>
* Update llama.cpp
Co-authored-by: slaren <slarengh@gmail.com>
---------
Co-authored-by: slaren <slarengh@gmail.com>
|
|
Tie the weights for ARCH_STARCODER to support the larger Granite code models.
Partially addresses ggerganov/issues/7116
There still remains to be a few things to fix.
Currently requires `--override-kv tokenizer.ggml.add_bos_token=bool:false`
|
|
* Replace CODEPOINT_TYPE_* with codepoint_flags
* Update and bugfix brute force random test
* Deterministic brute force random test
* Unicode normalization NFD
* Get rid of BOM
|
|
* llama : use n_embd_head_v instead of n_embd_head_k when reshaping kqv
* llama : use n_embd_v_gqa and n_embd_head_v instead of n_embd_k_gqa and n_embd_head_k when making a view of cached value vectors.
---------
Co-authored-by: Stanisław Szymczyk <sszymczy@gmail.com>
|
|
|
|
|
|
|
|
* ggml : add RPC backend
The RPC backend proxies all operations to a remote server which runs a
regular backend (CPU, CUDA, Metal, etc).
* set TCP_NODELAY
* add CI workflows
* Address review comments
* fix warning
* implement llama_max_devices() for RPC
* Address review comments
* Address review comments
* wrap sockfd into a struct
* implement get_alignment and get_max_size
* add get_device_memory
* fix warning
* win32 support
* add README
* readme : trim trailing whitespace
* Address review comments
* win32 fix
* Address review comments
* fix compile warnings on macos
|
|
|
|
(#7083)
* Add left recursion check: quit early instead of going into an infinite loop
* Remove custom enum, rename left recursion check and move to "grammar internal" section, add handling for edge case where a leftmost nonterminal may be empty
* Remove unnecessary declaration
|
|
ggml-ci
|
|
* refactor: rename jina tokenizers to v2
* refactor: keep refactoring non-breaking
|
|
* fix: llama-3 ignore_merges
* test: add test for llama-3 bpe ignore_merges
* fix: set ignore_merges only for llama-3
* fix: test-tokenizer-1-bpe --ingore-merges detection
* fix: copy to fix fallthrough
* fix: change ignore_merges to bool
* fix: add ignore merges tests to cmake
* llama : alternative merge ignore logic
---------
Co-authored-by: Haoxiang Fei <feihaoxiang@idea.edu.cn>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
|
|
* feat: first things to do
* feat: create tensors for Jina architecture
* fix: use other tensors
* feat: embedding gets results
* fix: fix usage of ALIBI
* fix: clean prints
* fix: do some cleanup unused vars
* fix: revert changes to Makefile and CMakeLists
* fix: revert some changes
* fix: fix small detail
* fix: fix convert formatting
* fix: fix linting and editor
* feat: set proper vocab settings
* fix: JinaBertForMaskedLM registration
* feat: support q_normalization and k_normalization in Jina arch
* feat: handle gpt2 tokenizer with Jina architecture
* feat: example comments in embedding
* feat: rename Jina Bert to Jina Bert V2
* fix: add some changes as per review
* feat: proper KQ_pos for Jina embeddings
* feat: add capacity to load models ES and DE for Spanish
* llama : fix pre-tokenizers
* ggml : full ALiBi support
* ggml : update ggml_soft_max_ext() CUDA, SYCL
* ggml : ggml_flash_attn_ext() support ALiBi (CPU)
* ggml : ggml_flash_attn_ext() support ALiBi (Metal)
* ggml : fix warning
* ggml : ggml_flash_attn_ext() support ALiBi (CUDA)
ggml-ci
* minor : clean-up
* embedding : add warning about missing SEP
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
|
|
* ggml : full ALiBi support
* ggml : update ggml_soft_max_ext() CUDA, SYCL
* ggml : ggml_flash_attn_ext() support ALiBi (CPU)
* ggml : ggml_flash_attn_ext() support ALiBi (Metal)
* ggml : fix warning
* ggml : ggml_flash_attn_ext() support ALiBi (CUDA)
ggml-ci
* ggml : fix assert message
* vulkan : add dev notes
* ggml : require mask when using ALiBi
ggml-ci
* convert : fix convert for refact models
|
|
|
|
* merged the changes from deepseeker models to main branch
* Moved regex patterns to unicode.cpp and updated unicode.h
* Moved header files
* Resolved issues
* added and refactored unicode_regex_split and related functions
* Updated/merged the deepseek coder pr
* Refactored code
* Adding unicode regex mappings
* Adding unicode regex function
* Added needed functionality, testing remains
* Fixed issues
* Fixed issue with gpt2 regex custom preprocessor
* unicode : fix? unicode_wstring_to_utf8
* lint : fix whitespaces
* tests : add tokenizer tests for numbers
* unicode : remove redundant headers
* tests : remove and rename tokenizer test scripts
* tests : add sample usage
* gguf-py : reader prints warnings on duplicate keys
* llama : towards llama3 tokenization support (wip)
* unicode : shot in the dark to fix tests on Windows
* unicode : first try custom implementations
* convert : add "tokenizer.ggml.pre" GGUF KV (wip)
* llama : use new pre-tokenizer type
* convert : fix pre-tokenizer type writing
* lint : fix
* make : add test-tokenizer-0-llama-v3
* wip
* models : add llama v3 vocab file
* llama : adapt punctuation regex + add llama 3 regex
* minor
* unicode : set bomb
* unicode : set bomb
* unicode : always use std::wregex
* unicode : support \p{N}, \p{L} and \p{P} natively
* unicode : try fix windows
* unicode : category support via std::regex
* unicode : clean-up
* unicode : simplify
* llama3 custom regex split
* convert : add convert-hf-to-gguf-update.py
ggml-ci
* lint : update
* convert : add falcon
ggml-ci
* unicode : normalize signatures
* lint : fix
* lint : fix
* convert : remove unused functions
* convert : add comments
* convert : exercise contractions
ggml-ci
* Using char32_t for codepoints
* lint : fix
* already exists unicode_tolower()
* Typing
* Restore BOM
* cmake : refactor test targets
* tests : refactor vocab tests
ggml-ci
* tests : add more vocabs and tests
ggml-ci
* unicode : cleanup
* scripts : ignore new update script in check-requirements.sh
* Fix merge
* models : add phi-3, mpt, gpt-2, starcoder
* tests : disable obsolete
ggml-ci
* tests : use faster bpe test
ggml-ci
* llama : more prominent warning for old BPE models
* tests : disable test-tokenizer-1-bpe due to slowness
ggml-ci
* Move unused variable value
* GPT2 custom regex split
* Add alternative regex for custom aplit llama3
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Style
* Add bruteforce random tests for token encoding
* wip: fixing unicode codepoint ranges
* Fix merge
* Unicode tables: separator, lowercase, uppercase and whitespace
* llama3 custom regex split: fix \s
* Restore BOM
* Style
* wip: generate NDF table
* Ignore special tokens for testing
* Clean gen-unicode-data.py
* Refactor random tokenizer test
* lint : fix
* tests : add fail test for llama-bpe
---------
Co-authored-by: Jaggzh <jaggz.h@gmail.com>
Co-authored-by: Kazim Abrar Mahi <kazimabrarmahi135@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: jaime-m-p <>
|
|
* CUDA: generalize FP16 fattn vec kernel
* disable unsupported head sizes for AMD in test
* try AMD fix
* fix batch size 2-8
* partially revert changes
|
|
This commit changes the value assigned to llama_timings.n_p_eval when
ctx->n_p_eval is 0 to be 1 instead of 1 which is the current value.
The motivation for this change is that if session caching is enabled,
for example using the `--prompt-cache main-session.txt` command line
argument for the main example, and if the same prompt is used then on
subsequent runs, the prompt tokens will not actually be passed to
llama_decode, and n_p_eval will not be updated by llama_synchoronize.
But the value of n_p_eval will be set 1 by llama_get_timings because
ctx->n_p_eval will be 0. This could be interpreted as 1 token was
evaluated for the prompt which could be misleading for applications
using this value.
Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>
|
|
* Add BPE pre-tokenization for Qwen2.
* minor : fixes
---------
Co-authored-by: Ren Xuancheng <17811943+jklj077@users.noreply.github.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
|
|
* Add BPE pre-tokenization for DBRX.
* Add vocab GGUFs.
* Remove test.
* Remove GGUFs.
|
|
* Introduce bfloat16 support
Many models on Hugging Face (e.g. Mistral, TinyLLaMA) use bfloat16 as
their canonical floating point format.
┌sign
│
│ ┌exponent
│ │
│ │ ┌mantissa
│ │ │
│┌──┴───┐┌─┴───┐
0b0000000000000000 brain16
This encoding has the same number of exponent bits as float32. That
makes conversion relatively straightforward, even in the absence of
hardware support. For example, converting brain16 to binary32 means
simply shifting 16 bits to the left.
┌sign
│
│ ┌exponent
│ │
│ │ ┌mantissa
│ │ │
│┌──┴───┐┌─┴───────────────────┐
0b00000000000000000000000000000000 IEEE binary32
The issue is that converting bf16 to fp16 can result in information
loss. Only 13% of bf16 numbers can be precisely represented in fp16
which in practice ends up being 99.71% of Mistral 7b v0.2's weights
however there is currently no way other than fp32 to get the others
┌sign
│
│ ┌exponent
│ │
│ │ ┌mantissa
│ │ │
│┌─┴─┐┌─┴──────┐
0b0000000000000000 IEEE binary16
This change fixes that, by adding a bf16 data type to GGML. Support
for CPU inference has been implemented along with optimizations for
the AVX2, AVX512, and AVX512BF16 ISAs. Perplexity on Mistral 7b 0.2
improves somewhere around -0.0024 to -0.0046 compared to using fp16
* Remove GGML code that's not needed
* Minimize the GGML API surface area for BF16
* Remove bf16 luts
* Make the GGML header look nicer
* Fix documentation
* Apply ggerganov's fixes for test-backend-ops
* Add BF16 code for new ggml_validate_row_data() function
|
|
|
|
* Add BPE pre-tokenization for Command-R/R+.
* Bump transformers convert requirement.
* command-r : add individual digits regex
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
|