summaryrefslogtreecommitdiff
path: root/llama.cpp
AgeCommit message (Collapse)Author
2024-05-14Add left recursion check: quit early instead of going into an infinite loop ↵Haggai Nuchi
(#7083) * Add left recursion check: quit early instead of going into an infinite loop * Remove custom enum, rename left recursion check and move to "grammar internal" section, add handling for edge case where a leftmost nonterminal may be empty * Remove unnecessary declaration
2024-05-13llama : less KV padding when FA is off (#7257)Georgi Gerganov
ggml-ci
2024-05-13llama : rename jina tokenizers to v2 (#7249)Joan Fontanals
* refactor: rename jina tokenizers to v2 * refactor: keep refactoring non-breaking
2024-05-11llama : lookup word in vocab before doing BPE merges (#7193)Haoxiang Fei
* fix: llama-3 ignore_merges * test: add test for llama-3 bpe ignore_merges * fix: set ignore_merges only for llama-3 * fix: test-tokenizer-1-bpe --ingore-merges detection * fix: copy to fix fallthrough * fix: change ignore_merges to bool * fix: add ignore merges tests to cmake * llama : alternative merge ignore logic --------- Co-authored-by: Haoxiang Fei <feihaoxiang@idea.edu.cn> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-05-11llama : add Jina Embeddings architecture (#6826)Joan Fontanals
* feat: first things to do * feat: create tensors for Jina architecture * fix: use other tensors * feat: embedding gets results * fix: fix usage of ALIBI * fix: clean prints * fix: do some cleanup unused vars * fix: revert changes to Makefile and CMakeLists * fix: revert some changes * fix: fix small detail * fix: fix convert formatting * fix: fix linting and editor * feat: set proper vocab settings * fix: JinaBertForMaskedLM registration * feat: support q_normalization and k_normalization in Jina arch * feat: handle gpt2 tokenizer with Jina architecture * feat: example comments in embedding * feat: rename Jina Bert to Jina Bert V2 * fix: add some changes as per review * feat: proper KQ_pos for Jina embeddings * feat: add capacity to load models ES and DE for Spanish * llama : fix pre-tokenizers * ggml : full ALiBi support * ggml : update ggml_soft_max_ext() CUDA, SYCL * ggml : ggml_flash_attn_ext() support ALiBi (CPU) * ggml : ggml_flash_attn_ext() support ALiBi (Metal) * ggml : fix warning * ggml : ggml_flash_attn_ext() support ALiBi (CUDA) ggml-ci * minor : clean-up * embedding : add warning about missing SEP --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-05-11ggml : full ALiBi support (#7192)Georgi Gerganov
* ggml : full ALiBi support * ggml : update ggml_soft_max_ext() CUDA, SYCL * ggml : ggml_flash_attn_ext() support ALiBi (CPU) * ggml : ggml_flash_attn_ext() support ALiBi (Metal) * ggml : fix warning * ggml : ggml_flash_attn_ext() support ALiBi (CUDA) ggml-ci * ggml : fix assert message * vulkan : add dev notes * ggml : require mask when using ALiBi ggml-ci * convert : fix convert for refact models
2024-05-10llama : use n_vocab to differentiate between mistral 7B and llama3 8B (#7200)slaren
2024-05-09llama3 custom regex split (#6965)jaime-m-p
* merged the changes from deepseeker models to main branch * Moved regex patterns to unicode.cpp and updated unicode.h * Moved header files * Resolved issues * added and refactored unicode_regex_split and related functions * Updated/merged the deepseek coder pr * Refactored code * Adding unicode regex mappings * Adding unicode regex function * Added needed functionality, testing remains * Fixed issues * Fixed issue with gpt2 regex custom preprocessor * unicode : fix? unicode_wstring_to_utf8 * lint : fix whitespaces * tests : add tokenizer tests for numbers * unicode : remove redundant headers * tests : remove and rename tokenizer test scripts * tests : add sample usage * gguf-py : reader prints warnings on duplicate keys * llama : towards llama3 tokenization support (wip) * unicode : shot in the dark to fix tests on Windows * unicode : first try custom implementations * convert : add "tokenizer.ggml.pre" GGUF KV (wip) * llama : use new pre-tokenizer type * convert : fix pre-tokenizer type writing * lint : fix * make : add test-tokenizer-0-llama-v3 * wip * models : add llama v3 vocab file * llama : adapt punctuation regex + add llama 3 regex * minor * unicode : set bomb * unicode : set bomb * unicode : always use std::wregex * unicode : support \p{N}, \p{L} and \p{P} natively * unicode : try fix windows * unicode : category support via std::regex * unicode : clean-up * unicode : simplify * llama3 custom regex split * convert : add convert-hf-to-gguf-update.py ggml-ci * lint : update * convert : add falcon ggml-ci * unicode : normalize signatures * lint : fix * lint : fix * convert : remove unused functions * convert : add comments * convert : exercise contractions ggml-ci * Using char32_t for codepoints * lint : fix * already exists unicode_tolower() * Typing * Restore BOM * cmake : refactor test targets * tests : refactor vocab tests ggml-ci * tests : add more vocabs and tests ggml-ci * unicode : cleanup * scripts : ignore new update script in check-requirements.sh * Fix merge * models : add phi-3, mpt, gpt-2, starcoder * tests : disable obsolete ggml-ci * tests : use faster bpe test ggml-ci * llama : more prominent warning for old BPE models * tests : disable test-tokenizer-1-bpe due to slowness ggml-ci * Move unused variable value * GPT2 custom regex split * Add alternative regex for custom aplit llama3 Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Style * Add bruteforce random tests for token encoding * wip: fixing unicode codepoint ranges * Fix merge * Unicode tables: separator, lowercase, uppercase and whitespace * llama3 custom regex split: fix \s * Restore BOM * Style * wip: generate NDF table * Ignore special tokens for testing * Clean gen-unicode-data.py * Refactor random tokenizer test * lint : fix * tests : add fail test for llama-bpe --------- Co-authored-by: Jaggzh <jaggz.h@gmail.com> Co-authored-by: Kazim Abrar Mahi <kazimabrarmahi135@gmail.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> Co-authored-by: jaime-m-p <>
2024-05-09CUDA: generalize FP16 fattn vec kernel (#7061)Johannes Gäßler
* CUDA: generalize FP16 fattn vec kernel * disable unsupported head sizes for AMD in test * try AMD fix * fix batch size 2-8 * partially revert changes
2024-05-09llama : update llama_timings.n_p_eval setting (#7160)Daniel Bevenius
This commit changes the value assigned to llama_timings.n_p_eval when ctx->n_p_eval is 0 to be 1 instead of 1 which is the current value. The motivation for this change is that if session caching is enabled, for example using the `--prompt-cache main-session.txt` command line argument for the main example, and if the same prompt is used then on subsequent runs, the prompt tokens will not actually be passed to llama_decode, and n_p_eval will not be updated by llama_synchoronize. But the value of n_p_eval will be set 1 by llama_get_timings because ctx->n_p_eval will be 0. This could be interpreted as 1 token was evaluated for the prompt which could be misleading for applications using this value. Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>
2024-05-08llama : add BPE pre-tokenization for Qwen2 (#7114)Ren Xuancheng
* Add BPE pre-tokenization for Qwen2. * minor : fixes --------- Co-authored-by: Ren Xuancheng <17811943+jklj077@users.noreply.github.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-05-08convert : add BPE pre-tokenization for DBRX (#7132)DAN™
* Add BPE pre-tokenization for DBRX. * Add vocab GGUFs. * Remove test. * Remove GGUFs.
2024-05-08ggml : introduce bfloat16 support (#6412)Justine Tunney
* Introduce bfloat16 support Many models on Hugging Face (e.g. Mistral, TinyLLaMA) use bfloat16 as their canonical floating point format. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───┐ 0b0000000000000000 brain16 This encoding has the same number of exponent bits as float32. That makes conversion relatively straightforward, even in the absence of hardware support. For example, converting brain16 to binary32 means simply shifting 16 bits to the left. ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌──┴───┐┌─┴───────────────────┐ 0b00000000000000000000000000000000 IEEE binary32 The issue is that converting bf16 to fp16 can result in information loss. Only 13% of bf16 numbers can be precisely represented in fp16 which in practice ends up being 99.71% of Mistral 7b v0.2's weights however there is currently no way other than fp32 to get the others ┌sign │ │ ┌exponent │ │ │ │ ┌mantissa │ │ │ │┌─┴─┐┌─┴──────┐ 0b0000000000000000 IEEE binary16 This change fixes that, by adding a bf16 data type to GGML. Support for CPU inference has been implemented along with optimizations for the AVX2, AVX512, and AVX512BF16 ISAs. Perplexity on Mistral 7b 0.2 improves somewhere around -0.0024 to -0.0046 compared to using fp16 * Remove GGML code that's not needed * Minimize the GGML API surface area for BF16 * Remove bf16 luts * Make the GGML header look nicer * Fix documentation * Apply ggerganov's fixes for test-backend-ops * Add BF16 code for new ggml_validate_row_data() function
2024-05-07Fix OLMo HF to GGUF conversion (#6910)nopperl
2024-05-05command-r : add BPE pre-tokenization (#7063)DAN™
* Add BPE pre-tokenization for Command-R/R+. * Bump transformers convert requirement. * command-r : add individual digits regex --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-05-04tests : add test-tokenizer-0.sh + fix some tokenizers (#7036)Georgi Gerganov
* tests : add test-tokenizer-0.sh * unicode : add all unicode number ranges * starcoder : fix pre-tokenizer * tests : add test that fails with DeepSeek tokenizers * falcon : fix regex * unicode : regenerate unicode tables * refact : add tokenizer model * lint : fix * tests : disable failing tests ggml-ci * refact : add tests files ggml-ci * convert : print -> logging ggml-ci * lint : fix * unicode : digit -> number * phi-3 : update
2024-05-02chore: fix typo in llama.cpp (#7032)alwqx
Co-authored-by: Jared Van Bortel <jared@nomic.ai>
2024-04-30ggml : add Flash Attention (#5021)Georgi Gerganov
* ggml : add ggml_flash_attn_ext API * ggml : fix GQA support in ggml_flash_attn_ext * ggml : online attention (CPU) * metal : initial implementation * metal : f16 precision * metal : reduce branches * metal : specialize for head size * wip : 8 rows per simd group * wip : 4 rows per simd group * wip : template for rows per warp * metal : parallelize across KV size * metal : parallel reduce across heads * metal : efficient flash_attn_f16 implementation * metal : avoid redundant loads of the attention * metal : scale and mask in matrix form * metal : fix comment * llama : avoid ggml_cast, use F32 query * metal : add parallel reduce version (disabled) * metal : move output into local memory + optimize - the result from each simdgroup now stays in the registers - significantly reduced SRAM usage - more efficient skipping of -INF blocks - avoid simdgroup barrier in hot loop - add comments * metal : add tests, fix scaling, support C > 32 * metal : improve precision * ggml : fix f16 mad * metal : minor * metal : support Q > 8 * tests : add ATTN tests * metal : disable buffer allocation logs * tests : more * metal : faster inner loop for C == 32 * metal : fix array initialization * tests : ifdef * ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext * ggml : fix ggml_soft_max mask requirement * cuda : fix soft_max to use correct mask size * cuda : add flash_attn kernel (wip) * metal : optimize softmax for C > 32 * metal : optimize softmax * tests : minor fix * cuda : avoid zeroing fragments * tests : update dims * cuda : fix __hisinf() result check * cuda : avoid warp_reduce for smax * cuda : use int instead of int64_t Noticeably improves performance (thanks to Johannes) * cuda : make loops use the same loop values Thanks Johannes again for the tip * cuda : unroll some of the loops * cuda : avoid __hisinf branches * cuda : use half2 in softmax * cuda : switch to 1 warp for bs > 16 * cuda : speed-up reduce part of the kernel * cuda : unroll Q*K^T loop * cuda : fix -INF block check * cuda : simplify softmax * cuda : fix matrix names * cuda : minor * llama : adapt to F16 KQ_pos * llama : adapt new models to F16 KQ_mask * ggml : fix F16 store (ARM NEON) * llama : fix type of KQ_mask and KQ_pos * ggml : fix CPU soft_max * tests : add hs=256 * cuda : fix build * metal : improve perf via smaller int registers * cuda : adapt soft_max to F16 mask and pos * CUDA: faster FlashAttention, kernel for bs == 1 * 16 cols for Phi-2 * no vec for hs, no hs==256 ncols==32 for Volta * adjust kernel selection logic * 4 warps, 256 stride for all D * no ncols == 64 * Multiple parallel blocks for batch size 1 * fix compile warnings * fix excessive KQ_b loads * fix cmake build * fix KV cache padding, NaN from INFINITY (#6438) * llama : flash_attn cparam + fix defrag * server: support flash_attn param * server: bench: enable flash_attn param * CUDA: refactor host code, dyn. par. blocks * fix flash_attn_vec_f16 race condition * flush softmax exp below threshold to 0 * store temp KQ in registers * Calculate KQ as FP32 if KQV has GGML_PREC_F32 * Add __hgt2_mask implementation for CUDA 11 * fix KQ FP32 precision fpr parallel_blocks > 1 * llama-bench : add -fa,--flash-attn arg * metal : add BS=1 kernel for flash attention (#6508) * metal : add BS=1 kernel for flash attention (wip) * metal : support more than 1 warps * metal : opts * metal : opt * metal : switch to parallel reduce * metal : reduce registers * metal : simplify * metal : initial FA vec kernel * metal : use F32 attention accumulators * batched-bench : add fattn arg * llama : simplify llama_build_kv_store ggml-ci * llama : adapt build_olmo to changes * ggml : fix arm fp16 store on windows * metal : clean-up * metal : clean-up kernel code * metal : minor * tests : remove benchmarks ggml-ci * ggml : fix avx512 const correctness ggml-ci * ggml : fix soft_max with bias on CPU ggml-ci * common : print --flash-attn in help * ggml : fix num dimensions in ggml_flash_attn_ext * llama : force disable flash attention for incompatible models * ggml : ggml_soft_max support F16/F32 mask/pos ggml-ci * cuda : uint -> uint32_t * cuda : "constexpr dim3" -> "const dim3" ggml-ci * cuda : try to fix __hgt2_mask ggml-ci * ggml : add TODO's for F16/F32 mask/pos support in other backends * llama : replace bool need_kq_pos with use_alibi * llama : prep ALiBi support for BERT models ggml-ci * llama : fix n_batch requirements ggml-ci * cont * server : add help for --flash-attn arg * llama : disable FA for AMD * tests : remove TMP_ATTN_BENCH ggml-ci * llama : support save/load state with FA enabled ggml-ci * ci : add CUDA save-load-state tests ggml-ci * llama : llama_kv_cache_clear zeroes data + fix save-load seq ggml-ci * llama : fix copy-paste errors, add TODO * llama : disallow incompatible states * llama : update llama_state_get_size after v_trans field * metal : remove tmp log * llama : add static reminder for llama_state_get_size * metal : fix max nsg ggml-ci * ci : fix arg order ggml-ci --------- Co-authored-by: Johannes Gäßler <johannesg@5d6.de> Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-29llama : fix BPE pre-tokenization (#6920)Georgi Gerganov
* merged the changes from deepseeker models to main branch * Moved regex patterns to unicode.cpp and updated unicode.h * Moved header files * Resolved issues * added and refactored unicode_regex_split and related functions * Updated/merged the deepseek coder pr * Refactored code * Adding unicode regex mappings * Adding unicode regex function * Added needed functionality, testing remains * Fixed issues * Fixed issue with gpt2 regex custom preprocessor * unicode : fix? unicode_wstring_to_utf8 * lint : fix whitespaces * tests : add tokenizer tests for numbers * unicode : remove redundant headers * tests : remove and rename tokenizer test scripts * tests : add sample usage * gguf-py : reader prints warnings on duplicate keys * llama : towards llama3 tokenization support (wip) * unicode : shot in the dark to fix tests on Windows * unicode : first try custom implementations * convert : add "tokenizer.ggml.pre" GGUF KV (wip) * llama : use new pre-tokenizer type * convert : fix pre-tokenizer type writing * lint : fix * make : add test-tokenizer-0-llama-v3 * wip * models : add llama v3 vocab file * llama : adapt punctuation regex + add llama 3 regex * minor * unicode : set bomb * unicode : set bomb * unicode : always use std::wregex * unicode : support \p{N}, \p{L} and \p{P} natively * unicode : try fix windows * unicode : category support via std::regex * unicode : clean-up * unicode : simplify * convert : add convert-hf-to-gguf-update.py ggml-ci * lint : update * convert : add falcon ggml-ci * unicode : normalize signatures * lint : fix * lint : fix * convert : remove unused functions * convert : add comments * convert : exercise contractions ggml-ci * lint : fix * cmake : refactor test targets * tests : refactor vocab tests ggml-ci * tests : add more vocabs and tests ggml-ci * unicode : cleanup * scripts : ignore new update script in check-requirements.sh * models : add phi-3, mpt, gpt-2, starcoder * tests : disable obsolete ggml-ci * tests : use faster bpe test ggml-ci * llama : more prominent warning for old BPE models * tests : disable test-tokenizer-1-bpe due to slowness ggml-ci --------- Co-authored-by: Jaggzh <jaggz.h@gmail.com> Co-authored-by: Kazim Abrar Mahi <kazimabrarmahi135@gmail.com>
2024-04-29llama : fix typo LAMMAFILE -> LLAMAFILE (#6974)Johannes Gäßler
2024-04-28gguf : enforce that tensor names are unique (#6905)Xuan Son Nguyen
* not allow adding duplicated tensor name * no duplicated tensor while reading gguf * typo * throw exception inside llama_model_loader Co-authored-by: slaren <slarengh@gmail.com> --------- Co-authored-by: slaren <slarengh@gmail.com>
2024-04-26Reset schedule earlier to allow overlap with ggml graph computation on ↵agray3
device (#6933) * Reset schedule earlier to allow overlap with graph computation on device
2024-04-26quantize: add imatrix and dataset metadata in GGUF (#6658)Pierrick Hymbert
* imatrix: save the dataset file used in the output file * llama: support kv overrides type string string * common: factorize KV Overrides parsing between common and server * quantize: add imatrix n entries and dataset KV metadata quantize: factorize KV Overrides parsing between common #6656 * llama: remove kv override str_value initialization as it does not compile on some toolchain * quantize: add imatrix m_last_call as `quantize.imatrix.chunks_count` * quantize: add imatrix filename in KV * llama: add llama_model_kv_override_free * common: add llama_model_kv_override_free common: free kv override if used after model loading * llama: finally move the string KV override value to the stack * llama : minor * no need to add a NUL to the std::vector, std::string can be initialized from a pair of iterators. Co-authored-by: slaren <slarengh@gmail.com> * kv override: ensure string termination --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> Co-authored-by: slaren <slarengh@gmail.com>
2024-04-26add basic tensor data validation function (#6884)slaren
* add basic tensor data validation function * add --check-tensors command line argument tensor validation is disabled by default and can be enabled by adding `--check-tensors` to the command line arguments. quantize always validates tensors.
2024-04-25cmake : restore LLAMA_LLAMAFILE_DEFAULTGeorgi Gerganov
2024-04-25llama : synchronize before get/set session data (#6911)slaren
2024-04-25llama : check that all the tensor data is in the model file (#6885)slaren
* llama : check that all the tensor data is in the model file * also check for unsigned overflow
2024-04-25tests : minor bash stuff (#6902)Georgi Gerganov
* tests : minor bash stuff ggml-ci * llama : fix build ggml-ci * tests : fix CUR_DIR -> ROOT_DIR ggml-ci * tests : fix fname ggml-ci
2024-04-25quantize : add '--keep-split' to quantize model into shards (#6688)jiez
* Implement '--keep-split' to quantize model into several shards * Add test script * Update examples/quantize/quantize.cpp Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Split model correctly even if tensor id is out-of-order * Update llama_model_quantize_params * Fix preci failures --------- Co-authored-by: z5269887 <z5269887@unsw.edu.au> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-04-24llama : add llama_get_pooling_type function (#6862)Douglas Hanley
* add llama_get_pooling_type function * fix argument name, move with ctx funcs
2024-04-24Server: fix seed for multiple slots (#6835)Johannes Gäßler
* Server: add tests for consistent results * sampling: separate rng per sampling context
2024-04-24llama : add phi 3 chat template (#6857)Tristan Druyen
* Add phi 3 chat template & tests * test : fix chat template result --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-04-24llama : add phi3 support (#6852)liuwei-git
* add explicit phi3 support * add explicit phi3 support * remove unused code * convert : add BOS token * llama : match EOT token <|end|> * llama : minor / style * llama : tabs -> spaces * convert : fix lint checks --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-04-22llama : fix typo in <|im_end|> token text (#6745)Georgi Gerganov
2024-04-21llama : add option to render special/control tokens (#6807)Georgi Gerganov
* make : fix common dep on llama.h * llama : add option to render special tokens * readme : add API change notice ggml-ci * swift : fix build
2024-04-21llama : add llama-3 chat template (#6751)Wouter
* Added llama-3 chat template * Update llama.cpp Co-authored-by: Samuel Tallet <36248671+SamuelTallet@users.noreply.github.com> * Update llama.cpp Co-authored-by: Samuel Tallet <36248671+SamuelTallet@users.noreply.github.com> * Update tests/test-chat-template.cpp Co-authored-by: Samuel Tallet <36248671+SamuelTallet@users.noreply.github.com> * Added EOS stop sequence according to https://github.com/ggerganov/llama.cpp/pull/6751#issuecomment-2065602862 * Removed adding of BOS token before first message * Removed bos token from expected output from llama-3 * Update tests/test-chat-template.cpp Co-authored-by: Rene Leonhardt <65483435+reneleonhardt@users.noreply.github.com> * Update tests/test-chat-template.cpp Co-authored-by: Rene Leonhardt <65483435+reneleonhardt@users.noreply.github.com> * Added <|end_of_text|> as another stop token * Reverted last change of adding the end_of_text stop word for llama 3 --------- Co-authored-by: Wouter Tichelaar <tichelaarw@spar.net> Co-authored-by: Samuel Tallet <36248671+SamuelTallet@users.noreply.github.com> Co-authored-by: Rene Leonhardt <65483435+reneleonhardt@users.noreply.github.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-04-21llama : support Llama 3 HF conversion (#6745)Pedro Cuenca
* Support Llama 3 conversion The tokenizer is BPE. * style * Accept suggestion Co-authored-by: Sourab Mangrulkar <13534540+pacman100@users.noreply.github.com> * llama : add llama_token_is_eog() ggml-ci * llama : auto-detect more EOT tokens when missing in KV data * convert : replacing EOS token is a hack * llama : fix codegemma EOT token + add TODOs * llama : fix model type string for 8B model --------- Co-authored-by: Sourab Mangrulkar <13534540+pacman100@users.noreply.github.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-04-19Implement the OLMo architecture (#6741)nopperl
* implement olmo architecture * remove unused variable * remove unused moe branch * remove check for weight * remove superfluous moe, bias and rope tensors * clarified comment * fix clamp_kqv setting * remove obsolete parameter name filter
2024-04-18ggml : group all experts in a single ggml_mul_mat_id (#6505)slaren
* ggml : group all experts in a single ggml_mul_mat_id cuda : improve mmid row copy * cuda : fix bin bcast with non-cont src0 * test-backend-ops : only run all mul mat tests for base types * llama : disable moe offloading with SYCL --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-04-18Qwen2 : assume tied weights if lm_head/output weights is missing (#6738)Ren Xuancheng
2024-04-18llama : fix compatibility with old 2 expert models (#6735)slaren
2024-04-16llama : make general.name optional (#6709)Georgi Gerganov
2024-04-16llama : add StableLM2 12B (#6635)Ashish
* StableLM2 12B support for huggingface -> GGUF * StableLM12 tensormapping and constants * StableLM-2-12b model support * fix * Added 12B support * Removed autoformatting; resolved bug where model_arch was not selecting StableLM2 * Formatting * Do QK norm stacking in model conversion step * Converge StableLM and StableLM2 code to simplify graph construction * Fix accidental removal * Removed warnings * Revert formatter * Move QK norm stack to private function so it's easier to read * refactor stablelm graph builder to support 1.6, 3b and 12b more efficiently * Proper check for None type for new_name to avoid crash; formatting; revert change to base class `write_tensors()` * Format * Formatting * format Co-authored-by: compilade <git@compilade.net> * Fix incorrect check for K norm * space after commas; Keep indentation multiple of 4 spaces * Flake8 format * Removed unnecessary conditional branches * Removed unused comment * Fixed incorrect tensor passing * Format --------- Co-authored-by: compilade <git@compilade.net>
2024-04-16llama : add qwen2moe (#6074)Shijie
* support qwen2moe * fix-review * metal : support unary ops for nelements % 4 != 0 * metal : require contiguousness for float4 unary kernels * metal : require contiguousness for float4 unary kernels (cont) * fix-review * names : for brevity "SHARED_EXP" -> "SHEXP" * llama : reuse build_moe_ffn() * llama : add model type name --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-04-16gguf : add special tokens metadata for FIM/Infill (#6689)Daniel Bevenius
This commit adds special token metadata for Fill-In-the-Middle (FIM)/Infill to the GGUF model. The motivation for this is that currently there is support for CodeLlama but other models exist now like CodeGemma, but the different models use different token ids for the special tokens and this commit allows for supporting multiple models. Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>
2024-04-15llama : fix restoring the number of outputs from state files (#6687)compilade
2024-04-14llama : add missing kv clear in llama_beam_search (#6664)David Renshaw
2024-04-14Add Command R chat template (#6650)Chao Jiang
* Add chat template for command-r model series * Fix indentation * Add chat template test for command-r models and update the implementation to trim whitespaces * Remove debug print
2024-04-13model: support arch `DbrxForCausalLM` (#6515)Pierrick Hymbert
* model: dbrx convert to gguf #6344 * llama: support dbrx #6344 * doc: dbrx: add the model as supported * scripts: get-wikitext-2 add unzip * llama: increase maximum experts allowed * llama: factorize moe graph implementation between grok, mixtral and dbrx --------- Co-authored-by: Megha Agarwal <16129366+megha95@users.noreply.github.com>
2024-04-12llama : add gguf_remove_key + remove split meta during quantize (#6591)jiez
* Remove split metadata when quantize model shards * Find metadata key by enum * Correct loop range for gguf_remove_key and code format * Free kv memory --------- Co-authored-by: z5269887 <z5269887@unsw.edu.au>