summaryrefslogtreecommitdiff
path: root/llama.cpp
AgeCommit message (Collapse)Author
2024-04-16llama : make general.name optional (#6709)Georgi Gerganov
2024-04-16llama : add StableLM2 12B (#6635)Ashish
* StableLM2 12B support for huggingface -> GGUF * StableLM12 tensormapping and constants * StableLM-2-12b model support * fix * Added 12B support * Removed autoformatting; resolved bug where model_arch was not selecting StableLM2 * Formatting * Do QK norm stacking in model conversion step * Converge StableLM and StableLM2 code to simplify graph construction * Fix accidental removal * Removed warnings * Revert formatter * Move QK norm stack to private function so it's easier to read * refactor stablelm graph builder to support 1.6, 3b and 12b more efficiently * Proper check for None type for new_name to avoid crash; formatting; revert change to base class `write_tensors()` * Format * Formatting * format Co-authored-by: compilade <git@compilade.net> * Fix incorrect check for K norm * space after commas; Keep indentation multiple of 4 spaces * Flake8 format * Removed unnecessary conditional branches * Removed unused comment * Fixed incorrect tensor passing * Format --------- Co-authored-by: compilade <git@compilade.net>
2024-04-16llama : add qwen2moe (#6074)Shijie
* support qwen2moe * fix-review * metal : support unary ops for nelements % 4 != 0 * metal : require contiguousness for float4 unary kernels * metal : require contiguousness for float4 unary kernels (cont) * fix-review * names : for brevity "SHARED_EXP" -> "SHEXP" * llama : reuse build_moe_ffn() * llama : add model type name --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-04-16gguf : add special tokens metadata for FIM/Infill (#6689)Daniel Bevenius
This commit adds special token metadata for Fill-In-the-Middle (FIM)/Infill to the GGUF model. The motivation for this is that currently there is support for CodeLlama but other models exist now like CodeGemma, but the different models use different token ids for the special tokens and this commit allows for supporting multiple models. Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>
2024-04-15llama : fix restoring the number of outputs from state files (#6687)compilade
2024-04-14llama : add missing kv clear in llama_beam_search (#6664)David Renshaw
2024-04-14Add Command R chat template (#6650)Chao Jiang
* Add chat template for command-r model series * Fix indentation * Add chat template test for command-r models and update the implementation to trim whitespaces * Remove debug print
2024-04-13model: support arch `DbrxForCausalLM` (#6515)Pierrick Hymbert
* model: dbrx convert to gguf #6344 * llama: support dbrx #6344 * doc: dbrx: add the model as supported * scripts: get-wikitext-2 add unzip * llama: increase maximum experts allowed * llama: factorize moe graph implementation between grok, mixtral and dbrx --------- Co-authored-by: Megha Agarwal <16129366+megha95@users.noreply.github.com>
2024-04-12llama : add gguf_remove_key + remove split meta during quantize (#6591)jiez
* Remove split metadata when quantize model shards * Find metadata key by enum * Correct loop range for gguf_remove_key and code format * Free kv memory --------- Co-authored-by: z5269887 <z5269887@unsw.edu.au>
2024-04-12Correct free memory and total memory. (#6630)MasterYi1024
Co-authored-by: MasterYi <zouxiaoyi@kylinos.cn>
2024-04-11Optimization: eliminate addition of redundant stacks when advancing grammar. ↵Clint Herron
(#6616)
2024-04-11grammars: 1.5x faster inference w/ complex grammars (vector reserves / ↵Olivier Chafik
reuses) (#6609) * grammars: reserve rejects & next candidates * grammars: reuse new_stacks * grammars: fix missing sig change in llama.h * grammars: fix test (api changed) * grammars: update gbnf-validator.cpp * grammars: simpler syntax (no swap)
2024-04-11eval-callback: Example how to use eval callback for debugging (#6576)Pierrick Hymbert
* gguf-debug: Example how to use ggml callback for debugging * gguf-debug: no mutex, verify type, fix stride. * llama: cv eval: move cb eval field in common gpt_params * ggml_debug: use common gpt_params to pass cb eval. Fix get tensor SIGV random. * ggml_debug: ci: add tests * ggml_debug: EOL in CMakeLists.txt * ggml_debug: Remove unused param n_batch, no batching here * ggml_debug: fix trailing spaces * ggml_debug: fix trailing spaces * common: fix cb_eval and user data not initialized * ci: build revert label * ggml_debug: add main test label * doc: add a model: add a link to ggml-debug * ggml-debug: add to make toolchain * ggml-debug: tests add the main label * ggml-debug: ci add test curl label * common: allow the warmup to be disabled in llama_init_from_gpt_params * ci: add curl test * ggml-debug: better tensor type support * gitignore : ggml-debug * ggml-debug: printing also the sum of each tensor * ggml-debug: remove block size * eval-callback: renamed from ggml-debug * eval-callback: fix make toolchain --------- Co-authored-by: slaren <slarengh@gmail.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-04-10llama : add model types for mixtral (#6589)slaren
2024-04-09BERT tokenizer fixes (#6498)Jared Van Bortel
Key changes: * BERT conversion: fix abuse of LlamaHfVocab, do not set BOS or EOS * Nomic Embed conversion: pad vocab instead of slicing embedding tensor * llama_tokenize: handle added special tokens like HF does
2024-04-09llama : add Command R Plus support (#6491)Carolinabanana
* Add Command R Plus GGUF * Add Command R Plus GGUF * Loading works up to LayerNorm2D * Export new tensors in 1D so they are not quantized. * Fix embedding layer based on Noeda's example * Whitespace * Add line * Fix unexpected tokens on MPS. Re-add F16 fix. ((Noeda) * dranger003: Fix block index overflow in CUDA dequantizing. * Reverted blocked multiplication code as it still has issues and could affect other Llama arches * export norms as f32 * fix overflow issues during quant and other cleanup * Type convention Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * dranger003: Fix more int overflow during quant. --------- Co-authored-by: S <seast@Ss-Mac-Studio.local> Co-authored-by: S <s@example.com> Co-authored-by: slaren <slarengh@gmail.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-04-08llama : fix attention layer count sanity check (#6550)Georgi Gerganov
* llama : fix attention layer count sanity check * llama : fix parentheses in attention layer count sanity check There was otherwise a warning when compiling. --------- Co-authored-by: Francis Couture-Harpin <git@compilade.net>
2024-04-08quantize : fix precedence of cli args (#6541)Georgi Gerganov
2024-04-08llama : support negative ith in llama_get_ API (#6519)Rick G
* llama_sampling_sample with default args is more naively usable * Batches populated by either llama_batch_get_one or llama_batch_add work with default args * Previously get_one could use the default argument * Previously add should usually have used the last index where logits[idx] == true * This hopefully encourages the use of llama_batch_add * By giving expected results when using default arguments. * Adds "negative indexing" feature to llama_get_logits_ith and llama_get_embeddings_ith * Believed to work with any currently well behaved program * Default arg now works for both cases (previously would give strange results for add case) * Any non-negative number is unaffected and behaves as previously * Negative arguments were previously invalid. * Implemented as a special case of indexing as suggested by @compilade in https://github.com/ggerganov/llama.cpp/pull/6519 * Fixed mismatch type errors * cited in macOS CI tests * Missed in original updates based on PR feedback in https://github.com/ggerganov/llama.cpp/pull/6519
2024-04-08llama : save and restore kv cache for single seq id (#6341)Jan Boon
* llama : save and restore kv cache for single seq id * remove trailing whitespace * respond error in case there's no space in the kv cache * add kv seq save restore to test case * add --slot-save-path arg to enable save restore and restrict save location * Returning 0 for some cases, instead of asserting. * cleanup error cases * rename sequence state functions * rename state get set functions * add previous function names back in with DEPRECATED notice * update doc * adjust endpoints to preferred style * fix restoring zero cell count * handle seq rm return value * unused param * keep in the size check * fix return types * add server test case for slot save restore * cleanup * add cake * cleanup style * add special * removing a whole sequence never fails * move sequence state file functionality from server to llama to match session api and add version tags * catch exceptions on save as well * error log messages * check types for stricter restore * update server doc * readme : update API changes date * strict filename validation * move include, reject bom as well * also reject empty filename * reject whitespace and trailing dot --------- Co-authored-by: Martin Evans <martindevans@gmail.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-04-05gguf.py : add licence and version to gguf writer (#6504)Brian
2024-04-04examples : add GBNF validator program (#5948)Clint Herron
* Revising GBNF validator program to be much simpler. * Changing from streams to using cstdio * Adding final newline character.
2024-04-03llama : add SEA-LION support (#6448)bryanSwk
* initial commit for sealion support * add sealion support * minor fix * q/k ln and pos_embd only if required * Apply suggestions from code review Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * minor : clear whitespaces --------- Co-authored-by: bryan <bryansiow@aisingapore.org> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-04-03Add OpenChat, Alpaca, Vicuna chat templates (#6397)kaizau
* Add openchat chat template * Add chat template test for openchat * Add chat template for vicuna * Add chat template for orca-vicuna * Add EOS for vicuna templates * Combine vicuna chat templates * Add tests for openchat and vicuna chat templates * Add chat template for alpaca * Add separate template name for vicuna-orca * Remove alpaca, match deepseek with jinja output * Regenerate chat template test with add_generation_prompt * Separate deepseek bos from system message * Match openchat template with jinja output * Remove BOS token from templates, unprefix openchat
2024-04-03ggml : mul_mat_id use the same tensor for all the experts (#6387)slaren
* ggml : update mul_mat_id to use the same tensor for all the experts * update cuda * minor * update metal * update test-backend-ops * fix cuda * Update ggml-metal.m Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * update convert.py * update convert-hf-to-gguf.py * update convert.py for mixtral hf models * Update convert-hf-to-gguf.py Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * cuda : support non-pow-2 number of experts * allow quantize to work for split and merged experts models in the same way * cleanup + disable mmap automatically with split tensors models * update imatrix * test-backend-ops : test qwen argsort * update grok model loading * llama : add merged experts tensors to the grok tensor map * minor * gguf : bump version * fix quantizing of merged experts * convert-hf-to-gguf.py : update grok (untested) * make linter happy * cuda/argsort : use shared memory instead of pool memory * convert : fix grok tensor names * metal : add support for non-pow-2 argsort * llama : more loader cleanup, better error checking * cuda : fix warning * llama : still use mmap for loading old models, but copy the data to a host buffer * add review note * llama : remove ffn tensor counting + add sanity check ggml-ci * convert : fix handling of n_experts == None ggml-ci * imatrix : fix ncall counters * llama : produce error if imatrix size does not match * quantize : terminate on errors + trace logs ggml-ci * metal : pad shared memory to 16 bytes --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-03-29Vulkan k-quant mmq and ggml-backend offload functionality (#6155)0cc4m
* Fix Vulkan no kv offload incoherence * Add k-quant mul mat mat shaders * Rework working buffer allocation, reduces vram use noticeably Clean up cpu assist code, replaced with ggml-backend offload function * Default to all dedicated GPUs * Add fallback for integrated GPUs if no dedicated GPUs are found * Add debug info which device is allocating memory * Fix Intel dequant issue Fix validation issue * Fix Vulkan GGML_OP_GET_ROWS implementation * Clean up merge artifacts * Remove Vulkan warning
2024-03-29[Model] Add support for xverse (#6301)hxer7963
* Support xverse model convert to gguf format. * 1. Convert xverse models to gguf; 2. Add LLM_ARCH_XVERSE inference in llama.cpp; 3. Add xverse item in Supported models in README.md; * * gguf-py: remove redundant logs * llama: remove the init_mapping_prefetch custom parameter * llama.cpp: Include the changes from #6122 to exclude the unused outputs of the last layers. * - Fix format issues - Remove duplicate set kqv_out to llm_build_kv * Update llama.cpp --------- Co-authored-by: willhe <willhe@xverse.cn> Co-authored-by: willhe <hexin@xverse.cn>
2024-03-29llama : remove redundant reshape in build_kv_store (#6369)Daniel Bevenius
* llama: remove redundant reshape in build_kv_store This commit removes the reshape of the V matrix in the build_kv_store. The motivation for this is that V matrix has the shape: ```console (gdb) p *v_cur $46 = {type = GGML_TYPE_F32, backend = GGML_BACKEND_TYPE_CPU, buffer = 0x0, ne = {4096, 512, 1, 1}, nb = {4, 16384, 8388608, 8388608}, op = GGML_OP_MUL_MAT, op_params = { 0 <repeats 16 times>}, flags = 0, grad = 0x0, src = {0xb496b0, 0x7ffef1c40950, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0}, perf_runs = 0, perf_cycles = 0, perf_time_us = 0, view_src = 0x0, view_offs = 0, data = 0x0, name = "Vcur-0", '\000' <repeats 57 times>, extra = 0x0, padding = "\000\000\000\000\000\000\000"} ``` And after reshaping this tensor we get: ```console gdb) p *ggml_reshape_2d(ctx, v_cur, n_embd_v_gqa, n_tokens) $44 = {type = GGML_TYPE_F32, backend = GGML_BACKEND_TYPE_CPU, buffer = 0x0, ne = {4096, 512, 1, 1}, nb = {4, 16384, 8388608, 8388608}, op = GGML_OP_RESHAPE, op_params = { 0 <repeats 16 times>}, flags = 0, grad = 0x0, src = {0x7ffef1c40e00, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0}, perf_runs = 0, perf_cycles = 0, perf_time_us = 0, view_src = 0x7ffef1c40e00, view_offs = 0, data = 0x0, name = "Vcur-0 (reshaped)", '\000' <repeats 46 times>, extra = 0x0, padding = "\000\000\000\000\000\000\000"} ``` I noticed that the `src` and `view_src` fields are different but that the dimensions are the same. From the code comment it seems like the reshape call is not needed and perhaps the above can motivate the removal of the reshape call. Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com> * llama : add assert --------- Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-03-28llama : fix command-r inference when omitting outputs (#6367)compilade
2024-03-26wpm : portable unicode tolower (#6305)Jared Van Bortel
Also use C locale for ispunct/isspace, and split unicode-data.cpp from unicode.cpp.
2024-03-26llama : greatly reduce output buffer memory usage (#6122)compilade
* llama : greatly reduce logits memory usage * llama : more compact state saving and reloading * llama : fix lctx.n_outputs not being set before building graph * perplexity : adapt to the logits API changes * perplexity : fix Winogrande, use correct logits for second choice start The first logits used to evaluate the second choice were not from the end of the common prefix; instead, they were the logits from the end of the first choice. This has been corrected. The previous implementation sometimes had outliers in the scores of choices for some tasks, and the logic to skip choices words in the log-likelihood evaluation probably was an attempt to reduce those, but it was complex and didn't quite seem to be the right thing. This is simpler now, and the outlier scores aren't there anymore. * perplexity : normalize spaces and punctuation in Winogrande sentences * llama : fix embedding conditions * llama : fix llama_get_embeddings_ith when the resulting id is 0 * llama : fix wrong n_outputs in llama_set_inputs A mismatch happened when using a smaller n_ubatch than n_batch and then using llama_batch_get_one(). The decision of what n_outputs should be now almost fully depends on how lctx.n_outputs is set in llama_decode_internal. The conditions are simpler this way. * llama : when saving the state, recalculate n_outputs This ensures the correct number of outputs for the entire previous batch is stored in the session file, even when n_ubatch is smaller than n_batch. * llama : fix not-skipping outputs of non-causal models * llama : fix running a batch with n_outputs == 0 It previously worked because lctx.inp_out_ids was not initialized, so it pointed to some garbage address which was somehow still valid when I ran my tests. * llama : keep same graph topology even when n_outputs == 0 * ggml : saner ggml_can_repeat with empty tensors * ggml : future-proof ggml_is_empty by using GGML_MAX_DIMS - 1 * ggml : do not multi-thread ops returning empty tensors * ggml : make ggml_is_empty public and work with views * llama : use a vector for ctx->output_ids * llama : rework reallocation logic for llama_output_reserve Now comparing the actual size with the new total size of the output buffer to allow more efficient enabling and disabling of the embeddings and/or logits output in the future. * ggml : skip empty tensors in all backends * llama : fix llama_output_reserve nullptr deref when new_size is 0 * perplexity : make Winogrande work as it does on master The problems with the Winogrande implementation will need to be fixed in a separate PR to ease review. * llama : clearer error messages for invalid logits or embeddings ids * llama : assert all models that can have inp_out_ids Since the graph topology is now constant, this presence check can be done even when there are no outputs. * llama : assert logits and embd buffers exist before writing to them * llama : handle errors from llama_output_reserve at call sites * perplexity : make hellaswag and multiple-choice outputs identical to master Due to how the KV cache is updated, the logprobs for tokens in a batch are very slightly affected by the other tokens present in the batch, so to make hellaswag and multiple-choice return exactly the same results as on master, the last token of each sequence needs to be evaluated even though its output is not used at all. This will probably be changed back in the future to make these benchmarks a tiny bit faster. * perplexity : fix division by zero when using less than 100 multiple-choice tasks * llama : allow loading state saved with a different ctx size When loading a session file, the context size is now only required to be at least enough to load the KV cells contained in that session file, instead of requiring to use exactly the same context size as when saving. Doing this enables the use-case of extending or shrinking the context size of a saved session. This breaks existing session files because the meaning of kv_buf_size is slightly changed (previously it was the size of the whole KV cache, now it's only the size of the saved part of it). This allows for finer-grained sanity checks when loading in an effort to keep kv_buf_size useful even when the kv_size is changed. * llama : minor ggml-ci * readme : update recent API changes, and warn about Vulkan --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-03-26IQ1_M: 1.75 bpw quantization (#6302)Kawrakow
* iq1_m: basics * iq1_m: basics-2 * iq1_m: CUDA dequantize works Very 1st shot I get PPL = 9.76 for LLaMA-v2-7B. * iq1_m: separate shifts for each group of 8 in a block We get PPL(LLaMA-v2-7B ) = 9.2810 PPL(LLaMA-v2-13B) = 6.8105 Not bad, but slightly higher than sqrt(PPL(IQ1_S) * PPL(IQ2_XXS)) which is the expected outcome given that IQ1_M is halfway between IQ1_S and IQ2_XXS in terms of bpw. From this, we would expect PPL = 9.14 for LLaMA-v2-7B PPL = 6.63 for LLaMA-v2-13B * iq1_m: go to 3-bit scales There is slight increase in PPL, but the 0.0625 bpw reduction in size is totally worth it. We now have PPL(LLaMA-v2-7B ) = 9.4469 at 1.96 bpw PPL(LLaMA-v2-13B) = 6.8717 at 1.93 bpw PPL(LLaMA-v2-70B) = 4.8568 at 1.85 bpw * iq1_m: scalar dot product * iq1_m: AVX2 dot product * iq1_m: very slightly faster AVX2 dot product * iq1_m: ARM_NEON dot product Works, but very slow (10.5 t/s) * iq1_m: Metal - dequantize works, dot product does not * iq1_m: Metal now works About the same performance as iq1_s. * iq1_m: minor * iq1_m: checking pure iq1_m quantization It is pretty bad: PPL(LLaMA-v2-7B) = 34 if we quantize output.weight with Q4_K. * iiq1_m: slightly faster ARM_NEON dot product 10.5 t/s -> 11.65 t/s * iq1_m: faster ARM_NEON dot product 11.65 t/s -> 14.9 t/s * iq1_m: another minor ARM_NEON dot product improvement 14.9 -> 15.0 t/s * iq1_m: small PPL improvement via super-block scale adjustment After quantizing block scales redo the super-block scale fit. PPL(LLaMA-v2-7B ) = 9.3346 PPL(LLaMA-v2-13B) = 6.8419 PPL(LLaMA-v2-70B) = 4.8294 PPL(Mistral-7B ) = 8.1624 * iq1_m: adapt to CUDA refactoring * iq1_m: remove unused variable We have progressed to warnings being errors. * iq1_m: add to backend-ops tests * iq1_m: fix Windows ARM * iq1_m: use common definition of iq1m_scale_t * cuda: assert -> NO_DEVICE_CODE * iq1_M: PR comments --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-03-26quantize : be able to override metadata by key (#6321)Kawrakow
* quantize: be able to override metadata by key * minor : spacing --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-03-26cuda : rename build flag to LLAMA_CUDA (#6299)slaren
2024-03-24[SYCL] offload op (#6217)Meng, Hengyu
* remove no USM methods * leave the schedule to ggml_backend_sched entirely
2024-03-23use _wfopen instead of fopen on Windows (#6248)Jared Van Bortel
also fix missing #defines before windows.h, and BPE LF token on MSVC
2024-03-23common: llama_load_model_from_url split support (#6192)Pierrick Hymbert
* llama: llama_split_prefix fix strncpy does not include string termination common: llama_load_model_from_url: - fix header name case sensitive - support downloading additional split in parallel - hide password in url * common: EOL EOF * common: remove redundant LLAMA_CURL_MAX_PATH_LENGTH definition * common: change max url max length * common: minor comment * server: support HF URL options * llama: llama_model_loader fix log * common: use a constant for max url length * common: clean up curl if file cannot be loaded in gguf * server: tests: add split tests, and HF options params * common: move llama_download_hide_password_in_url inside llama_download_file as a lambda * server: tests: enable back Release test on PR * spacing Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * spacing Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * spacing Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-03-23llama : add grok-1 support (#6204)Julius Arkenberg
* Add support for Grok model architecture * Revert convert-hf-to-gguf to default options * Fixed f_norm_rms_eps bug * Fix whitespaces * llama : fix grok rope type * llama : minor --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-03-22quantize: options for output and token embedding tensors qtype (#6239)Kawrakow
* quantize: be able to specify the output tensor type * quantize: be able to specify the token embedding tensor type --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-03-22llama_model_loader: support multiple split/shard GGUFs (#6187)Pierrick Hymbert
* split: support in llama_model_loader * avoid copying the entire vector Co-authored-by: slaren <slarengh@gmail.com> * split: move llama_tensor_offset to llama_model_loader * llama_model_loader: PR feedbacks: - use only one gguf_context for metadata only - store all ggml_context in a vector as the files and mappings - store all weights in a vector along with the source tensor - rename ctx_gguf to meta - rename ctx_meta to contexts * avoid copying the entire vector * Simplify this by making these optional, switch some layer creation tensor optional Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Handle optional tensors Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * llama_model_loader: fail if backend cannot allocate buffer * fix mmap buffer management * llama_model_loader: map file to backend buffer if the allocation succeeds only * llama_model_loader: only map tensors included in the context * llama_model_loader: minor, use same variable name for consistency, fix spacing in types cast * llama_model_loader: fail if any of backend buffer cannot be allocated * spacing Co-authored-by: slaren <slarengh@gmail.com> * fix loop over pointer Co-authored-by: slaren <slarengh@gmail.com> * llama_model_loader: if n_tensors declared not equals to loaded tensors in split, throw an exception instead of asserting * llama_model_loader: ensure mappings vector has the expected size * llama_model_loader: use at instead of operator[] if this should never add to the map. * llama_model_loader: immediately add the backend buffer to the model buffers in order to free them if an error occurs in the next allocation. Reserve the expected size. * llama_model_loader: be sure the model mappings has enough capacity before allocating backend buffer * llama_model_loader: fix map -> unordered map * llama_split_prefix: use a clearer version, not pass split path len but dest max len. Co-authored-by: Xuan Son Nguyen <thichthat@gmail.com> * llama : minor ggml-ci * llama : introduce some typedef helpers * docs: add model shard in hot topic * llama_model_loader: put mapping in a unique_ptr from the moment it is allocated Co-authored-by: slaren <slarengh@gmail.com> * fix llama_split_prefix --------- Co-authored-by: slaren <slarengh@gmail.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> Co-authored-by: Xuan Son Nguyen <thichthat@gmail.com>
2024-03-22llama : correction of the attn.v.weight quantization for IQ3_XS (#6209)Nexesenex
IQ3_XS was not mentioned, IQ3_S and IQ3_M were present twice. That PR corrects this in the manner which was probably intended initially.
2024-03-22metal : pad n_ctx by 32 (#6177)Georgi Gerganov
* metal : require ne00 >= 128 for mat-mat kernels ggml-ci * llama : pad n_ctx by 32 ggml-ci
2024-03-18mpt : implement backwards compatiblity with duped output tensor (#6139)Jared Van Bortel
2024-03-18backend : offload large batches to GPU (#6083)slaren
* backend : offload large batches to GPU * fix hip * code cleanup * fix CUDA split buffers * Update ggml-backend-impl.h Co-authored-by: Johannes Gäßler <johannesg@5d6.de> * cuda : fix memset without set_device * imatrix : remove sched affix from weight names * sched : add a new split if the current one has too many inputs reduce max inputs per split more cleanup * update backends ggml-ci --------- Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2024-03-15llama : fix Baichuan2 13B (#6092)slaren
2024-03-15llama : add support for control vectors (#5970)Theia Vogel
* control vector api and implementation * control-vectors : minor code style updates * disable control vector when data == nullptr use -1 for disabled range (also on init) in case we ever support controlling layer 0 (embeddings) --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-03-15llama : add Command-R support (#6033)Andrew Canis
Information about the Command-R 35B model (128k context) can be found at: https://huggingface.co/CohereForAI/c4ai-command-r-v01 Based on the llama2 model with a few changes: 1) New hyper parameter to scale output logits (logit_scale) 2) Uses LayerNorm instead of RMSNorm 3) Transfomer layers have a single shared LayerNorm that feeds into both the self-attention and FFN layers in parallel. There is no post-attention LayerNorm. 4) No support for Rotary Position Embeddings (RoPE) scaling 5) No biases used Find GGUF files here: https://huggingface.co/andrewcanis/c4ai-command-r-v01-GGUF To convert model to GGUF format yourself: 1) Download Command-R Hugging Face safetensors: git lfs install git clone https://huggingface.co/CohereForAI/c4ai-command-r-v01 2) Run: python3 convert-hf-to-gguf.py --outtype f16 ./c4ai-command-r-v01
2024-03-15fix set main gpu error (#6073)Neo Zhang Jianyu
2024-03-15llama : add Orion chat template (#6066)Xuan Son Nguyen
2024-03-14llama : fix integer overflow during quantization (#6063)Georgi Gerganov