summaryrefslogtreecommitdiff
path: root/src
AgeCommit message (Collapse)Author
2025-03-07Custom quantization rules with regular expressions (#244)Kawrakow
* Custom quantization rules with regular expressions * Add the --custom-q option to the help --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-03-05DeepSeek CUDA Flash Attention (#241)Kawrakow
* WIP CUDA FA with Dk != Dv * WIP * CUDA FA WIP - It actually works! No TG yet, but for PP I can run FA with fp16 cache and it gets the same answer. * CUDA FA WIP - it now works for Q8_0 + Q8_0 for KV cache * CUDA FA WIP - TG, not working yet. * CUDA FA with Dk != Dv: it works now for DeepSeek --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-03-03Flash MLA (CPU only) (#240)Kawrakow
* FlashMLA - it finally works (on the CPU) * FlashMLA: allow for f16 and bf16 cache in addition to q8_0 * It works with ggml FA, not with iqk FA * WIP * FlashMLA: it now works with iqk I had forgotten to divide the Q stride by sizeof(float) and that's why, very cobfusingly, it was working for TG but not for PP. * WIP * FlashMLA: that should be it for now --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-03-02SER - Smart Expert Reduction (#239)Kawrakow
* A better way to measure the cost of ggml_barrier * Smart expert selection * Add ser option to llama-bench --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-03-01Reduce size of compute buffers (#237)Kawrakow
* This reduces compute buffer size for MLA * This should accomplish it for standard attention * Much better * Better concat for contiguous tensors If all the op does is to concatenate the second tensor to the first, why would we want to have a loop? --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-02-27Option to use MLA without a transposed cache (#235)Kawrakow
The `-mla` command line option turns into an int from a bool. mla = 0: use standard attention mla = 1: use MLA with transposed cache mla > 1: use MLA without transposed cache Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-02-27Faster MLA on CUDA (#234)Kawrakow
* Slight MLA TG performance improvement on CUDA The low MLA performance on CUDA is dues to the wk_b * q_nope operation. It turns into n_head matrix multiplications with n_head separate quantization and GEMV steps. The associated overhead is just too much for TG where each GEMV is very fast (512 x 128 = 131 KFLOP for DeepSeek-Lite, 4X that for DeepSeekV3/R1). The way it was done there was also a copy of each q_nope row before quantization, which I have now eliminated. This results in a ~2.5% speedup. What needs to happen instead is to launch a single computation that quantizes all heads, and then have a kernel that does the GEMV for all heads instead of n_head sequential GEMVs. * Slightly better * CUDA: Quantize non-contiguous tensors * Much better MLA It is a total hack, but it works. * Cleanup Remove duplicated gemv's. --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-02-25Give the user the option to override where model weights are stored (#232)Kawrakow
* Give the user the option to override where model weights are stored * Fix ggml_nbytes() problem and cleanup For a tensor with zero elements ggml_nbytes() was returning uint64_t::max, and this was causing graph allocation failure. * Add timing info to CUDA graph evaluation * Add more timing info --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-02-23Fused MoE ffn_up and ffn_gate (#229)Kawrakow
* Fusing MoE up * unary(gate) * Fusing MoE up * unary(gate): CUDA We get ~13% speedup for PP-512 and ~2% for TG-128 for DeepSeek-Lite * On CUDA also fuse MoE down * (up * unary(gate)) in case the MUL_MAT_ID op for the down experts is the next op in the graph. * Command line option to enable fused MoE up*unary(gate) * Add fmoe option to llama-bench * Adding forgotten gelu, relu, silu on ARM --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-02-20Honor attn_output specified in the command line also for low-bit quantsIwan Kawrakow
2025-02-19Q8_KV: 8-bit quantization type targeting the KV cache (#208)Kawrakow
* Adding q8_KV - Basics + AVX2 gemm/gemv * q8_KV: Better AVX2 gemm * q8_KV: Better Zen4 gemm We get 225.7 t/s for L3-8B. In comparison q8_0 without run-tinme-repacking is at 169 t/s. * q8_KV: AVX2 gemm/gemv We get 254 t/s for L3-8B vs 194 t/s for q8_0 without rtr. * q8_KV: be able to use it for K cache This required quite a few fixes in ggml and llama.cpp: * ggml: do not calculate row size as n/block_size*type_size. I had removed most of it when implementing the quants with per row scale, bit it was stull lurking in ggml_copy. Not sure if these were the last remnants of ggmil-style row sizes, or if there are still places left * llama.cpp: get rid of the the 1d K cache assumption. Create and manage the K-cache as a 2D tensor so we can have per row meta data as needed by q8_KV. Using q8_KV for K-cache results in non-negligible performance gains. More details to follow, but for DeepSeek-Lite with MLA, we get 18% speedup for PP-8192 compared to q8_0 K-cache. * q8_KV: be able to use it for K cache in FA * q8_KV: repack it for K*Q in FA * q8_KV: slightly faster gemv on Zen4 * q8_KV: slightly faster gemv on Zen4 * q8_KV: ARM_NEON We get PP-512 = 167 t/s for L3-8B without interleaving! We do the interleaving on the fly, so I wonder if this could be done for other quants as well. * q8_KV: use it in FA on NEON * q8_KV_r8 - repacked q8_KV On Zen4 it is slower than q8_k_r8 (292 vs 370 t/s) This makes no sense whatsoever as the q8_KV_r8 GEMM is basically the q8_k_r8 GEMM with the unnecessary block stuff removed (so, one would think that it would be faster). * q8_KV_r8: don't use nrc_y = 16 on Zen4 This is faster - 350 t/s. Why? Much better than the 290 t/s we had before, but still slower than the 370 t/s for q8_k_r8. * q8_KV: nrc_y = 16 also doesn't pay off in FA * Minor --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-02-13MLA: allow Q8_0 K-cache for MLA (#206)Kawrakow
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-02-13Faster MLA prompt processing (#205)Kawrakow
* Do not allocate / report caches that are not used It is either the standard KV cache or MLA cache, not both. * Rename X_pe to X_rope Much easier to follow, at least for my brain, when we have X_rope : rotational position encoding X_nope : no position encoding instead of X_pe and X_nope, where I was wondering wtf is 'pe' and 'nope'. * WIP * WIP * WIP * WIP * Warn user when disabling MLA * MLA: compile time option to not use transposed KV cache Cuts KV cache size in nearly half at the expense of slower TG performance for long contexts (it becomes similar to no-MLA). --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-02-11DeepSeek FA support (CPU only) (#200)Kawrakow
* Adding support for K head size != V head size This is relevant for DeepSeek models. At this point ggml CPU FA works. Now I need to go and change iqk FA to make it work with Dk != Dv. * iqk support for K head size != V head size To not have compilation time explode, just Dk = 192, Dv = 128 for now (DeepSeek) * FA: very slightly faster for nq = 1 (TG) --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-02-10 Load all MoE experts during warmup and make warmup 1 token (#198)saood06
* Load all MoE experts during warmup Co-authored-by: Stanisław Szymczyk <sszymczy@gmail.com> * Unify warmup to one token --------- Co-authored-by: Stanisław Szymczyk <sszymczy@gmail.com>
2025-02-09Add optional MLA (#188)Kawrakow
* Deepseek MLA Optimizations Co-authored-by: Stanisław Szymczyk <sszymczy@gmail.com> * Make MLA optional * Remove some unnecessary copies in the MLA attention * Deepseek MLA Optimizations V2 (#195) * Avoid allocating MHA KV cache when MLA is turned on * Added missing gguf-py file * Added final optimizations Co-authored-by: Stanisław Szymczyk <sszymczy@gmail.com> * Make sure we do have wk_b and wv_b before enabling MLA --------- Co-authored-by: Stanisław Szymczyk <sszymczy@gmail.com> Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com> * Use type_k and type_v to set the types of the MLA caches They were hard-coded at f16. On my Ryzen-7950X with native bf16 support I get a fairly significant PP performance boost with bf16 KV-cache: PP-4096 = 320 t/s up from 292 t/s with fp16 KV-cache. * Better gemm strategy when nth > nhead It gives a ~10% PP performance boost for DeepSeek-Lite with 32 threads (with or without MLA). Before this commit, when nth > nhead heads were processed sequentially with all nth threads participating in each matrix multiplication. Now we ind the gcd of nhead and nth and split threads into nth/gcd groups, each group processing nhead/gcd heads. --------- Co-authored-by: Saood Karim <saood05@gmail.com> Co-authored-by: Stanisław Szymczyk <sszymczy@gmail.com> Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-02-07cuda: non-contiguous rms norm (#190)Kawrakow
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-02-06Rename q4_0_r4, q8_0_r4 and iq4_xs_r4 to _r8 (#189)Kawrakow
* Rename q4_0_r4 to q4_0_r8 to reflect actual row interleaving * Rename q8_0_r4 to q8_0_r8 to reflect actual row interleaving * Rename iq4_xs_r4 to iq4_xs_r8 to reflect actual row interleaving --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-02-06IQ1_M_R4: better 1.75 bpw quants (#187)Kawrakow
* iq1_m_r4: basics (quantize/dequantize) * iq1_m_r4: Zen4 gemm * iq1_m_r4: neon gemm * iq1_m_r4: switch to q8_0_x4 also on AVX2/Zen4 With the deltas being per group of 8, we cannot make use of the q8 sums stored in q8_1, so we get a tiny gain by using q8_0_x4. * iq1_m_r4: rename mul_mat_iq1_m_r4_q8_1 to mul_mat_iq1_m_r4_q8_0 --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-02-05IQ1_S_R4: better 1.5 bpw quants (#185)Kawrakow
* iq1_s_r4: basics - quantize/dequantize * iq1_s_r4: gemm/gemv works on AVX2/Zen4 * Don't forget to make sure we have a multiple of 4 rows per thread * iq1_s_r4: this is better * iq1_s_r4: fix Zen4 after AVX2 changes * iq1_s_r4: NEON gemm/gemv * iq1_s_r4: more bits for shared experts With this mix we arrive at PPL(512) = 9.4140 for Deepseek-Lite using 1.766 bpw for the repeating layers. On the Ryzen-7950X we get PP-512 = 494 t/s and TG-128 = 52 t/s @ 16 threads. * Forgotten counter increment * iq1_s_r4: slightly faster AVX2/Zen4 gemm/gemv * Compiler warnings --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-01-30Deepseek-Lite (#184)Kawrakow
* Quantization mixes tweaks * Make iq4_nl_r4 work with row size that are not a multiple of 128 ... on Zen4 * Make iq4_nl_r4 work with row size that are not a multiple of 128 ... on AVX2 * Make iq4_nl_r4 work with row size that are not a multiple of 128 ... on AVX2 * Make q6_0_w4 work with row size that are not a multiple of 128 ... on Zen4 * Make q6_0_w4 work with row size that are not a multiple of 128 ... on Zen4 * Make q5_0_r4 work with row size that are not a multiple of 128 ... on Zen4 and AVX2 * Make q5,6_0_r4, iq4_nl_e4 work with row size that are not a multiple of 128 also on NEON. --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-01-27Minor performance improvements (#179)Kawrakow
* Try interleaving 8 rows for iq4_xs On Zen4, PP-512 goes up from ~260 t/s to 288 t/s for L3-8B. TG-128 reaches max. performance at 2 threads and is slightly higher than 4 interleaved rows (14.48 t/s vs 13.11 t/s @ 2 threads and 14/28 t/s @ 4 threads). * Try interleaving 8 iq4_xs rows It is also faster on AVX2. This is the NEON implementation. It is tiny bit faster than 4 interleaved rows (~0.5%). So, this looks like a winner given the Zen4/AVX2 improvement without associated NEON egression. * Cleanup * 8-rows interleaved q8_0 (AVX2) * 8-rows interleaved q8_0 (Zen4) * 8-rows interleaved q8_0 (Zen4) - slightly better PP-512 is now 284 t/s compared to 257 t/s for 4-rows interleaved. TG-128 reaches peak of 8.16 t/s at just 2 threads compared to 7.95 t/s @ 4 threads before. * 8-rows interleaved q8_0 (NEON) PP-512 is slightly better (138 t/s vs 132.5 t/s), TG-128 is about the same. * FA: repack Q8_0 to Q8_0_R8 * Remove special purpose mul_mat_q8_0_r4_q8_1_128 (Zen4) * FA: repack Q8_0 to Q8_0_R8 (NEON) Very slightly faster than the general purpose gemm, slightly slower than the D = 128 special case gemm mul_mat_q8_0_r4_q8_0_128. Still removing mul_mat_q8_0_r4_q8_0_128 as we simply don't have enough vector registers to hold 8 interleaved rows, so there is no point to have the special purpose implementation. * q4_0_r8 (AVX2) * q4_0_r8 (NEON) Tiny bit faster PP (~128 vs ~126 t/s), same TG. * q4_0_r8 (Zen4) Somehow only marginally faster? 268 t/s vs 261 t/s * q4_0_r8 (Zen4) - slightly better 282 t/s for a pure q4_0 L3-8B quantization. * Apply platform specific modifications when repacking E.g., on NEON it is useful to pre-apply q ^ 0x88 to q4_0. This results in a ~3% performance improvement. Hence, * Changed the signature of the repack_X functions to take a bool argument indicating if the repacking is done online and, if so, apply modifications as appropriate while repacking. * Added iqk_modify_tensor to apply modifications to models that have already been repacked while loading the model. Caveat: just like rtr, this needs to have mmap disabled (else one would need to move the data to a not mmap-ed buffer, so much more complicated). * Apply platform specific modifications when repacking On Zen4 we can pre-convert the signed quants in q8_0_r4 and q8_k_r8 to unsigned thus avoiding these operations in matrix multiplications. With this change we hit PP-512 = 382.40 t/s (q8_k_r8) PP-512 = 306.92 t/s (q8_0_r4) for L3-8B on a Ryzen-7950X using q8_0 KV-cache. * Process up to 16 columns per kernel call for q8_k_r8 This brings PP-512 up to 389 t/s. * Be able to load Deepseek-v2-Lite --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-01-27Interleave 8 rows (Q8_0, IQ4_XS) (#178)Kawrakow
* Try interleaving 8 rows for iq4_xs On Zen4, PP-512 goes up from ~260 t/s to 288 t/s for L3-8B. TG-128 reaches max. performance at 2 threads and is slightly higher than 4 interleaved rows (14.48 t/s vs 13.11 t/s @ 2 threads and 14/28 t/s @ 4 threads). * Try interleaving 8 iq4_xs rows It is also faster on AVX2. This is the NEON implementation. It is tiny bit faster than 4 interleaved rows (~0.5%). So, this looks like a winner given the Zen4/AVX2 improvement without associated NEON egression. * Cleanup * 8-rows interleaved q8_0 (AVX2) * 8-rows interleaved q8_0 (Zen4) * 8-rows interleaved q8_0 (Zen4) - slightly better PP-512 is now 284 t/s compared to 257 t/s for 4-rows interleaved. TG-128 reaches peak of 8.16 t/s at just 2 threads compared to 7.95 t/s @ 4 threads before. * 8-rows interleaved q8_0 (NEON) PP-512 is slightly better (138 t/s vs 132.5 t/s), TG-128 is about the same. * FA: repack Q8_0 to Q8_0_R8 * Remove special purpose mul_mat_q8_0_r4_q8_1_128 (Zen4) * FA: repack Q8_0 to Q8_0_R8 (NEON) Very slightly faster than the general purpose gemm, slightly slower than the D = 128 special case gemm mul_mat_q8_0_r4_q8_0_128. Still removing mul_mat_q8_0_r4_q8_0_128 as we simply don't have enough vector registers to hold 8 interleaved rows, so there is no point to have the special purpose implementation. --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-01-24Update chat templates (#177)Kawrakow
* Adopting chat template stuff from llama.cpp * Removing missed conflict marker --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-01-23Deepseek V3 support added (#176)saood06
Co-authored-by: Stanisław Szymczyk <sszymczy@gmail.com>
2025-01-23Add Deepseek-R1-Distill pre-tokenizerIwan Kawrakow
2025-01-10Be able to re-quantize MS BitNet I2_S models (#169)Kawrakow
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-01-10Falcon3 changes (#168)Kawrakow
* Add Falcon3 pre-tokinizer (same as llama3) * q8_k16: use integer arithmetic to sum row values The existing implementation that just sums up the f32 quantizations works fine for the original BitNet models and also for the TriLM ternary models. But for Falcon3 I see a significant difference between the CPU and the GPU perplexity. If I use the q8_K16 int8_t quants to sum up the values in a row, then the CPU-GPU PPL difference becomes much smaller, and we get a lower PPL than Microsoft BitNet, which claims to be "losless". --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-12-23IQ3_S_R4 (#162)Kawrakow
* iq3_s_r4: WIP * iq3_s_r4: Zen4 * iq3_s_r4: slightly better Zen4 * iq3_s_r4: AVX2 * iq3_s_r4: NEON * iq3_s_r4: rearrange quants * iq3_s_r4: rearranged quants - AVX2 * iq3_s_r4: rearranged quants - NEON --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-12-21IQ2_S_R4 (#156)Kawrakow
* iq2_s_r4: Zen4 * Minor * iq2_s_r4: NEON --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-12-21IQ2_XS_R4 (#155)Kawrakow
* iq2_xs_r4: Zen4 * iq2_xs_r4: AVX2 * iq2_xs_r4: slightly better matrix x vector on AVX2 * iq2_xs_r4: NEON - not much better than iq2_xs * iq2_xs_r4: slightly better NEON --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-12-20IQ2_XXS_R4 (#154)Kawrakow
* iq2_xxs_r4: Zen4 Disapointing gain: 134.7 t/s -> 151.1 t/s for PP-512 TG-128 is better: 3.45 -> 4.61 t/s @ 1 thread * Minor * iq2_xxs_r4: NEON --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-12-20IQ3_XXS_R4 (#153)Kawrakow
* iq3_xxs_r4: 1st shot on Zen4 PP-512: 107 t/s -> 137 t/s TG-128(1 thread): 2.64 t/s -> 3.44 t/s * iq4_xxs_r4: WIP * iq4_xxs_r4: 1st shot at AVX2 Note: there is a bug in the AVX2 implementation for nrc_y = 1 for IQ quants with blocks of 32. I have fixed it for now by using the nrc_y > 1 implementation (which works) also for nrc_y = 1. * iq3_xxs_r4: NEON --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-12-18IQ4_KS_R4 (#150)Kawrakow
* iq4_ks_r4: Zen4 * iq4_ks_r4: AVX2 * iq4_ks_r4: WIP * iq4_ks_r4: slightly better Zen4 * iq4_ks_r4: slightly better Zen4 * iq4_ks_r4: NEON * Minor --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-12-18IQ5_K_R4 (#149)Kawrakow
* iq5_k_r4: Zen4 Much slower than the others. * iq5_k_r5: WIP * Minor * iq5_k_r4: fix AVX2 nrc_y = 1 case * iq5_k_r4: better Zen4 But TG is still slower than iq5_k * iq5_k_r4: slightly better AVX2 * iq5_k_r4: NEON --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-12-17Be able to repack tensors at run time (#147)Kawrakow
* Be able to repack tensors at run time * Repack: also add bf16 as repackable type * Repack: make sure number of rows is a multiple of the packing --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-12-17IQ2_K_R4 (#146)Kawrakow
* iq2_k_r4: Zen4 * iq2_k_r4: NEON * iq2_k_r4: better matrix x vector multiplication on NEON --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-12-17IQ3_K_R4 (#145)Kawrakow
* iq3_k_r4 WIP * iq3_k_r4: Zen4 * iq3_k_r4: AVX2 * iq3_k_r4: NEON * iq3_k_r4: faster matrix x vector multiplication on NEON --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-12-15BF16_R16 - 16 interleaved bf16 rows (#142)Kawrakow
* Not working bf16_r4 * Adding bf16_r8 Small performance gain compared to bf16 - 258 t/s vs 234 t/s. I guess, this is still sub-obtimal. * bf16_rx: Very slightly faster by interleaving 16 rows 258 t/s -> 263 t/s * Rename bf16_r4 to bf16_r16 We are interleaving 16 rows now. * Cleanup unused stuff --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-12-14Q8_K_R8: Fastest quantized matrix multiplications (#141)Kawrakow
* q8_k_r8: fastest matrix multiplication known to human kind We get PP-512(LLaMA-3.1-8B) = 370 t/s on a Ryzen-7950X! * q8_k_r8: AVX2 I was worried that we don't have enough vector registrers on AVX2, but it looks like it handles it just fine. We get PP-512(LLaMA-3.1-8B) = 354 t/s on a Ryzen-5975WX. Slightly slower than the Zen4 version with double the threads, but still a huge upgrade compared to Q8_0_R4. * q8_k_r4: NEON We get PP-512(LLaMA-3.1-8B) = 159.2 t/s. Compare this to the 128 t/s we have fr Q8_0_R4. * q8_k_r4: go to signed ints Why? * On AVX2 _mm256_maddubs_epi16() may overflow, so we need to stay within the signed int range and use _mm256_sign_epi8. Not yet tested on the AVX2 comp, vut expect major slowdown. * It is almost 10% faster on ARM_NEON. Somehow the veorrq_u8() needed tto convert from unsigned to signed seems to be extremely slow on the M2-Max * We only lose ~0.5% in oerformance on Zen4 (there the exclusive or that we now use to convert fro signed to unsigned seems to be much faster than on M2-Max) * Shutup useless compiler warnings --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-12-12IQ4_K_R4 (#138)Kawrakow
* iq4_k_r4: WIP * iq4_k_r4: Zen4 and hopefully AVX2 On Zen4 we get PP-512(LLaMA-3.1-8B) = 232.6 t/s, up from 182.2 t/s for iq4_k. Applying the extra shift costs a ~6 performance penalty. * iq4_k_r4: AVX2 PP-512 = 227.60 t/s. The shifts are really costly. * iq4_k_r4: NEON We get PP-512(LLaMA-3.1-8B) = 108 t/s, up from 58.2 t/s for iq4_k. --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-12-11Q2_K_R4 (#136)Kawrakow
* q2_k_r4: Zen4 PP-512(LLaMA-3.1-8B) = 256 t/s * q3_k_r4: AVX2 * q2_k_r4: AVX2 We get PP-512(LLaMA-3.1-8B) = 287 t/s. Also cherry-picked the q3_k_r4 AVX2 adaptation that I somehow forgot to push upstream. * q2_k_r4: NEON We get PP-512(LLaMA-3.1-8B) = 106.2 t/s. TG-128 is 36.02 t/s, which is ~10% higher than q2_K_S. * Make sure rows per thread are a multiple of 4 --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-12-11Q3_K_R4 (#134)Kawrakow
* q3_k_r4: Zen4 works, but not as good as it should be 238 t/s, so sloghtly slower than q6_k_r4. * q3_k_r4: NEON We get PP-512(LLaMA-3.1-8B) = 106.9 t/s. This is 1.93X faster than q3_K_S! --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-12-10Q5_K_R4 (#132)Kawrakow
* q5_k_r4: WIP * q5_k_r4: Zen4 and AVX2 We get PP-512(LLaMA-3.1-8B) = 248.3 t/s on Zen4. Q5_K_S has PP-512 = 190 t/s. * q5_k_r4: NEON We get PP-512(LLaMA-3.1-8B) = 96.1 t/s. --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-12-10Q6_K_R4 (#130)Kawrakow
* Adding q6_k_r4 * q6_k_r4: 1st functional AVX2 version * q6_k_r4: AVX2 and simple Zen4 "Simple" as in processing 4 instead of 8 rows at once. On Zen4 we get PP-512(LLaMA-3.1-8B) = 238.3 t/s vs 195.2 t/s for Q6_K. TG-128 @ 1 thread is 7.94 t/s vs 5.38 t/s for Q6_K. * q6_k_r4: 1st NEON version PP-512(LLaMA-3.1-8B) = 78 t/s vs 57.6 t/s for q6_K. TG-128 is slightly lower rthan q6_K for low number of threads, becomes very slightly better at 8 threads. * q6_k_r4: slightly faster NEON PP-512(LLaMA-3.1-8B) = 83.25 t/s * q6_k_r4: slightly faster Zen4 238.3 t/s -> 243.2 t/s --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-12-09Q4_K_R4 (#129)Kawrakow
* Something is still wrong * Simply don't see what is wrong * q4_k_r4: finally works on Zen4 I had forgotten to prevent token_embd.weight being quantized with q4_k_r4! * q4_k_r4: AVX2 We get PP-512(LLaMA-3.1-8B) = 267 t/s on a Ryzen-5975WX. This is ~30% better than Q4_K_S. * q4_k_r4: NEON We get PP-512(LLaMA-3.1-8B) = 110 t/s. Not quite as good as q4_0_r4, but still a massive improvement compared to he 69 t/s for q4_K. * q4_k_r4: slightly better AVX2 PP-512 goes from 267 t/s to 282 t/s on Ryzen-5975WX * Minor * Minor --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-12-08Rename iq4_nl_x4 to iq4_nl_r4 (#126)Kawrakow
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-12-08R4 improvements on ARM_NEON (#125)Kawrakow
* q4_0_r4: 6% faster PP on NEON * qx_0_r4_q8_0 template Applied to q4_0_r4 and q5_0_r4. It makes q5_0_r4 PP ~7% faster. * Apply qx_0_r4_q8_0 template also to q6_0_r4 and iq4_nl_x4 * Simplify * Minor iq4_xs_r4 improvement on NEON --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-12-06iq2_bn_r4: fastest Bitnet CPU implementation on the planet (#124)Kawrakow
* Adding iq2_bn_r4 This Zen4-only implementation achieves PP-512 = 826 t/s (!!!) for Bitnet-1.58b-3B, up from 620 t/s for iq2_bn. * Make sure rows per thread are a multiple of the number of interleaved rows With this I can run iq2_bn_r4 with 32 threads and this increases PP-512 to 872 t/s. * iq2_bn_r4: 1st shot at NEON PP-512 is already faster than iq2_bn (284 t/s vs 246 t/s for Bitnet-1.58b-3B). TG-128 is ~5% slower. * iq2_bn_r4: NEON PP-512 is now 296 t/s. TG-128 is ~20% faster than iq2_bn for 1 thread, but saturates to about the same 93 t/s at 8 threads. * iq2_bn_r4: Experimenting on NEON The matrix x vvector multiplication is erratic. iq2_bn_r4 is faster at 1, 2, and 4 threads, but saturates to a lower t/s at 8 threads compared to iq2_bn. iq2_bn actually manages 99 t/s at 8 threads and not 93 as I wrore in the last commit. iq2_bn_r4 performance has huge fluctuations at 4 and 8 threads. * Some cleanup * iq2_bn_r4: AVX2 As expected, PP is slightly slower as we just don;t have enough vector registers (690 vs 710 t/s). TG is slightly faster (18.2 vs 16.7 t/s at 1 thread). * iq2_bn_r4: use AVX2 implementation on Zen4 for matrix x vector It is faster - we get 29.6 t/s at 1 thread vs 25.9 t/s for iq2_bn. * iq2_bn_r4: simdify q8_K16 quantization (AVX2) PP-512 becomes 834 t/s and TG-128 now saturates to the same performance as iq2_bn for 4 threads. * iq2_bn_r4: simdify q8_K16 quantization (NEON) PP-512 is now 304.7 t/s, and TG-128 @ 8 threads very slightly outperforms iq2_bn (100.7 t/s vs 99.6 t/s) * iq2_bn_r4: fix AVX2 after breaking it two commits ago * iq2_bn_r4: better AVX2 As we don't have enough vector registers on AVX2, it is better to do two passes per row needing only half of the accumulator registers that way. With this, we now beat iq2_bn PP also on AVX2 by a small margin. --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-12-04IQ4_XS_R4 (#123)Kawrakow
* Adding iq4_xs_r4 This is a 1st working version on Zen4. We get PP-512(LLaMA-3.1-8B) = 226 t/s, so 16% slower than iq4_nl_x4. * iq4_xs_r4: WIP * iq4_xs_r4: Use AVX2 version for matrix x vector on Zen4 * iq4_xs_r4: NEON We get PP-512(LLaMA-3.1-8B) = 115.6 t/s on M2-Max, up from 68.2 t/s for iq4_xs! * DRY --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>