From 73bdcb395ef9a997d9c02950c7cd4249546162cd Mon Sep 17 00:00:00 2001 From: Andrew Godfrey Date: Wed, 1 Nov 2023 04:49:04 -0700 Subject: finetune : add -ngl parameter (#3762) * Add '-ngl' support to finetune.cpp * Add fprintf in ggml_cuda_op_add When I tried CUDA offloading during finetuning following the readme, I got an assert here. This probably isn't an important case because inference later gives a warning saying you should use f16 or f32 instead when using lora * Add 'finetune.sh', which currently fails when using GPU "error: operator (): Finetuning on tensors with type 'f16' is not yet supported" * tweak finetune.sh * Suppress some warnings in ggml.c * Add f16 implementation to ggml_compute_forward_add_f16_f32 * Add an f16 case to ggml_add_cast_impl and llama_build_lora_finetune_graphs * finetune.sh: Edit comments * Add "add_f16_f32_f32_cuda" * Tweak an error message * finetune.sh: Add an optional LLAMA_MODEL_DIR variable * finetune.sh: Add an optional LLAMA_TRAINING_DIR variable * train : minor * tabs to spaces --------- Co-authored-by: Georgi Gerganov Co-authored-by: cebtenzzre --- examples/finetune/finetune.cpp | 14 +++++++++++++- 1 file changed, 13 insertions(+), 1 deletion(-) (limited to 'examples/finetune/finetune.cpp') diff --git a/examples/finetune/finetune.cpp b/examples/finetune/finetune.cpp index 35824cd2..60c7faa7 100644 --- a/examples/finetune/finetune.cpp +++ b/examples/finetune/finetune.cpp @@ -652,7 +652,7 @@ static struct ggml_tensor * llama_build_lora_finetune_graphs( GGML_ASSERT(tokens_input->type == GGML_TYPE_I32); auto add_to_f32 = [] (struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b) { - if (ggml_is_quantized(a->type)) { + if (ggml_is_quantized(a->type) || a->type == GGML_TYPE_F16) { return ggml_add_cast(ctx, a, b, GGML_TYPE_F32); } else if (a->type == GGML_TYPE_F32) { return ggml_add(ctx, a, b); @@ -1459,6 +1459,17 @@ static bool train_params_parse(int argc, char ** argv, struct train_params * par } params->n_rank_w3 = std::stoi(argv[i]); params->custom_n_rank_w3 = true; + } else if (arg == "--gpu-layers" || arg == "-ngl" || arg == "--n-gpu-layers") { + if (++i >= argc) { + invalid_param = true; + break; + } +#ifdef LLAMA_SUPPORTS_GPU_OFFLOAD + params->common.n_gpu_layers = std::stoi(argv[i]); +#else + fprintf(stderr, "warning: not compiled with GPU offload support, --n-gpu-layers option will be ignored\n"); + fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n"); +#endif } else { fprintf(stderr, "error: unknown argument: %s\n", arg.c_str()); train_print_usage(argc, argv, &default_params); @@ -1545,6 +1556,7 @@ int main(int argc, char ** argv) { srand(params.common.seed); struct llama_model_params llama_mparams = llama_model_default_params(); + llama_mparams.n_gpu_layers = params.common.n_gpu_layers; llama_mparams.vocab_only = false; printf("%s: model base = '%s'\n", __func__, params.fn_model_base); -- cgit v1.2.3