From ee3dff6b8e39bb8c1cdea1782a7b95ef0118f970 Mon Sep 17 00:00:00 2001 From: fairydreaming <166155368+fairydreaming@users.noreply.github.com> Date: Tue, 28 May 2024 17:07:05 +0200 Subject: Add support for DeepseekV2ForCausalLM (#7519) MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit * common : increase max number of experts to 160 * common : add tensors ATTN_Q_A, ATTN_Q_A_NORM, ATTN_Q_B, ATTN_KV_A_MQA, ATTN_KV_A_NORM, ATTN_KV_B needed by DeepSeek-V2 MLA (multi-head latent attention) architecture * common : add model header parameters: leading_dense_block_count, expert_feed_forward_length, expert_shared_count, expert_weights_scale, attention.q_lora_rank, attention.kv_lora_rank, rope.scaling.yarn_log_multiplier * convert-hf : add model conversion support for DeepseekV2ForCausalLM * llama : add model types for DeepSeek-V2 and DeepSeek-V2-Lite models * llama : add two new llm_build_moe_ffn() arguments: scale_w (whether to scale weights of selected MoE experts) and w_scale (numerical value of the scaling factor) * llama : add inference support for LLM_ARCH_DEEPSEEK2 --------- Co-authored-by: Stanisław Szymczyk --- gguf-py/gguf/tensor_mapping.py | 29 ++++++++++++++++++++++++++++- 1 file changed, 28 insertions(+), 1 deletion(-) (limited to 'gguf-py/gguf/tensor_mapping.py') diff --git a/gguf-py/gguf/tensor_mapping.py b/gguf-py/gguf/tensor_mapping.py index 8b1b21d7..83e3c4c3 100644 --- a/gguf-py/gguf/tensor_mapping.py +++ b/gguf-py/gguf/tensor_mapping.py @@ -256,6 +256,7 @@ class TensorNameMap: MODEL_TENSOR.FFN_UP_SHEXP: ( "model.layers.{bid}.mlp.shared_expert.up_proj", # qwen2moe + "model.layers.{bid}.mlp.shared_experts.up_proj", # deepseek2 ), # AWQ-activation gate @@ -285,6 +286,7 @@ class TensorNameMap: MODEL_TENSOR.FFN_GATE_SHEXP: ( "model.layers.{bid}.mlp.shared_expert.gate_proj", # qwen2moe + "model.layers.{bid}.mlp.shared_experts.gate_proj", # deepseek2 ), # Feed-forward down @@ -320,6 +322,7 @@ class TensorNameMap: MODEL_TENSOR.FFN_DOWN_SHEXP: ( "model.layers.{bid}.mlp.shared_expert.down_proj", # qwen2moe + "model.layers.{bid}.mlp.shared_experts.down_proj", # deepseek2 ), MODEL_TENSOR.ATTN_Q_NORM: ( @@ -383,6 +386,30 @@ class TensorNameMap: "model.layers.{bid}.out_proj", "backbone.layers.{bid}.mixer.out_proj", ), + + MODEL_TENSOR.ATTN_Q_A: ( + "model.layers.{bid}.self_attn.q_a_proj", # deepseek2 + ), + + MODEL_TENSOR.ATTN_Q_B: ( + "model.layers.{bid}.self_attn.q_b_proj", # deepseek2 + ), + + MODEL_TENSOR.ATTN_KV_A_MQA: ( + "model.layers.{bid}.self_attn.kv_a_proj_with_mqa", # deepseek2 + ), + + MODEL_TENSOR.ATTN_KV_B: ( + "model.layers.{bid}.self_attn.kv_b_proj", # deepseek2 + ), + + MODEL_TENSOR.ATTN_Q_A_NORM: ( + "model.layers.{bid}.self_attn.q_a_layernorm", # deepseek2 + ), + + MODEL_TENSOR.ATTN_KV_A_NORM: ( + "model.layers.{bid}.self_attn.kv_a_layernorm", # deepseek2 + ), } # architecture-specific block mappings @@ -415,7 +442,7 @@ class TensorNameMap: if tensor not in MODEL_TENSORS[arch]: continue # TODO: make this configurable - n_experts = 128 + n_experts = 160 for xid in range(n_experts): tensor_name = TENSOR_NAMES[tensor].format(bid = bid, xid = xid) self.mapping[tensor_name] = (tensor, tensor_name) -- cgit v1.2.3