From 0becb22ac05b6542bd9d5f2235691aa1d3d4d307 Mon Sep 17 00:00:00 2001 From: Kawrakow <48489457+ikawrakow@users.noreply.github.com> Date: Tue, 27 Feb 2024 16:34:24 +0200 Subject: IQ4_XS: a 4.25 bpw quantization (#5747) * Try IQ4_NL with blocks of 64 - does not look good * iq4_xs: go to super-blocks of 256 and 6-bit scales for blocks of 32 * iq4_xs: CUDA works - 133.2 t/s * iq4_xs: AVX2 dot product * iq4_xs: ARM_NEON dot product * iq4_nl: Metal implementation As usual, Metal / Apple Silicon don't like my quants. * iq3_xs: minor fix * iq4_xs: shrink by using IQ3_S for attn_k and attn_q * iq4_xs: revert using IQ3_S for attn_k and attn_v PPL vs size is good, but CPU performance suffers: on M2 Max TG-128 drops to 21.7 t/s from 28.8, and on a Ryzen-7950X to 14.5 t/s from 15.8 t/s. On CUDA we have 135 t/s when using IQ3_S vs 133 t/s with pure IQ4_XS. * Fix CI * iq4_xs: Added forgotten check for 256 divisibility --------- Co-authored-by: Iwan Kawrakow --- llama.cpp | 22 +++++++++++++--------- 1 file changed, 13 insertions(+), 9 deletions(-) (limited to 'llama.cpp') diff --git a/llama.cpp b/llama.cpp index 6729bb99..464e1b89 100644 --- a/llama.cpp +++ b/llama.cpp @@ -2584,6 +2584,7 @@ struct llama_model_loader { case GGML_TYPE_IQ3_XXS: ftype = LLAMA_FTYPE_MOSTLY_IQ3_XXS; break; case GGML_TYPE_IQ1_S: ftype = LLAMA_FTYPE_MOSTLY_IQ1_S; break; case GGML_TYPE_IQ4_NL: ftype = LLAMA_FTYPE_MOSTLY_IQ4_NL; break; + case GGML_TYPE_IQ4_XS: ftype = LLAMA_FTYPE_MOSTLY_IQ4_XS; break; case GGML_TYPE_IQ3_S: ftype = LLAMA_FTYPE_MOSTLY_IQ3_S; break; default: { @@ -2941,6 +2942,7 @@ static std::string llama_model_ftype_name(llama_ftype ftype) { case LLAMA_FTYPE_MOSTLY_IQ3_XXS:return "IQ3_XXS - 3.0625 bpw"; case LLAMA_FTYPE_MOSTLY_IQ1_S :return "IQ1_S - 1.5625 bpw"; case LLAMA_FTYPE_MOSTLY_IQ4_NL: return "IQ4_NL - 4.5 bpw"; + case LLAMA_FTYPE_MOSTLY_IQ4_XS: return "IQ4_XS - 4.25 bpw"; case LLAMA_FTYPE_MOSTLY_IQ3_S: return "IQ3_S - 3.4375 bpw"; case LLAMA_FTYPE_MOSTLY_IQ3_M: return "IQ3_S mix - 3.66 bpw"; @@ -10871,7 +10873,7 @@ static ggml_type get_k_quant_type(quantize_state_internal & qs, ggml_type new_ty new_type = qs.i_attention_wv < 2 ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K; } else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K; - else if (ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL && qs.model.hparams.n_gqa() >= 4) { + else if ((ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) && qs.model.hparams.n_gqa() >= 4) { new_type = GGML_TYPE_Q5_K; } else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) && @@ -10940,8 +10942,8 @@ static ggml_type get_k_quant_type(quantize_state_internal & qs, ggml_type new_ty if (use_more_bits(i_layer, n_layer)) new_type = GGML_TYPE_Q6_K; } } - else if (ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL && !qs.has_imatrix) { - if (i_layer < n_layer/8) new_type = GGML_TYPE_Q5_K; + else if (i_layer < n_layer/8 && (ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) && !qs.has_imatrix) { + new_type = GGML_TYPE_Q5_K; } else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M && use_more_bits(i_layer, n_layer)) new_type = GGML_TYPE_Q6_K; else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && arch != LLM_ARCH_FALCON && i_layer < n_layer/8) { @@ -10961,7 +10963,7 @@ static ggml_type get_k_quant_type(quantize_state_internal & qs, ggml_type new_ty if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL || ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_IQ3_S || - ftype == LLAMA_FTYPE_MOSTLY_IQ3_M) { + ftype == LLAMA_FTYPE_MOSTLY_IQ3_M || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) { new_type = GGML_TYPE_Q5_K; } } else { @@ -11012,7 +11014,7 @@ static ggml_type get_k_quant_type(quantize_state_internal & qs, ggml_type new_ty //} bool convert_incompatible_tensor = false; if (new_type == GGML_TYPE_Q2_K || new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K || - new_type == GGML_TYPE_Q5_K || new_type == GGML_TYPE_Q6_K || + new_type == GGML_TYPE_Q5_K || new_type == GGML_TYPE_Q6_K || new_type == GGML_TYPE_IQ4_XS || new_type == GGML_TYPE_IQ2_XS || new_type == GGML_TYPE_IQ2_XXS || new_type == GGML_TYPE_IQ2_S || new_type == GGML_TYPE_IQ3_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || new_type == GGML_TYPE_IQ3_S) { int nx = tensor->ne[0]; @@ -11033,10 +11035,11 @@ static ggml_type get_k_quant_type(quantize_state_internal & qs, ggml_type new_ty case GGML_TYPE_IQ3_S: case GGML_TYPE_IQ1_S: case GGML_TYPE_Q2_K: - case GGML_TYPE_Q3_K: new_type = GGML_TYPE_IQ4_NL; break; - case GGML_TYPE_Q4_K: new_type = GGML_TYPE_Q5_0; break; - case GGML_TYPE_Q5_K: new_type = GGML_TYPE_Q5_1; break; - case GGML_TYPE_Q6_K: new_type = GGML_TYPE_Q8_0; break; + case GGML_TYPE_Q3_K: + case GGML_TYPE_IQ4_XS: new_type = GGML_TYPE_IQ4_NL; break; + case GGML_TYPE_Q4_K: new_type = GGML_TYPE_Q5_0; break; + case GGML_TYPE_Q5_K: new_type = GGML_TYPE_Q5_1; break; + case GGML_TYPE_Q6_K: new_type = GGML_TYPE_Q8_0; break; default: throw std::runtime_error("\nUnsupported tensor size encountered\n"); } LLAMA_LOG_WARN(" - using fallback quantization %s\n", ggml_type_name(new_type)); @@ -11078,6 +11081,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s case LLAMA_FTYPE_MOSTLY_IQ3_XXS: quantized_type = GGML_TYPE_IQ3_XXS; break; case LLAMA_FTYPE_MOSTLY_IQ1_S: quantized_type = GGML_TYPE_IQ1_S; break; case LLAMA_FTYPE_MOSTLY_IQ4_NL: quantized_type = GGML_TYPE_IQ4_NL; break; + case LLAMA_FTYPE_MOSTLY_IQ4_XS: quantized_type = GGML_TYPE_IQ4_XS; break; case LLAMA_FTYPE_MOSTLY_IQ3_S: quantized_type = GGML_TYPE_IQ3_S; break; case LLAMA_FTYPE_MOSTLY_IQ3_M: quantized_type = GGML_TYPE_IQ3_S; break; -- cgit v1.2.3