From 154e0d75fccf1784fe9ff6fd76a630b66563da3d Mon Sep 17 00:00:00 2001 From: Kawrakow <48489457+ikawrakow@users.noreply.github.com> Date: Sat, 27 Jul 2024 07:55:01 +0200 Subject: Merge mainline llama.cpp (#3) * Merging mainline - WIP * Merging mainline - WIP AVX2 and CUDA appear to work. CUDA performance seems slightly (~1-2%) lower as it is so often the case with llama.cpp/ggml after some "improvements" have been made. * Merging mainline - fix Metal * Remove check --------- Co-authored-by: Iwan Kawrakow --- src/llama.cpp | 19336 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 19336 insertions(+) create mode 100644 src/llama.cpp (limited to 'src/llama.cpp') diff --git a/src/llama.cpp b/src/llama.cpp new file mode 100644 index 00000000..eecfccbd --- /dev/null +++ b/src/llama.cpp @@ -0,0 +1,19336 @@ +#include "llama-impl.h" +#include "llama-vocab.h" +#include "llama-grammar.h" +#include "llama-sampling.h" + +#include "unicode.h" + +#include "ggml.h" +#include "ggml-alloc.h" +#include "ggml-backend.h" + +#ifdef GGML_USE_RPC +# include "ggml-rpc.h" +#endif + +#ifdef GGML_USE_CUDA +# include "ggml-cuda.h" +#elif defined(GGML_USE_VULKAN) +# include "ggml-vulkan.h" +#elif defined(GGML_USE_SYCL) +# include "ggml-sycl.h" +#elif defined(GGML_USE_KOMPUTE) +# include "ggml-kompute.h" +#elif defined(GGML_USE_CANN) +# include "ggml-cann.h" +#endif + +#ifdef GGML_USE_BLAS +# include "ggml-blas.h" +#endif + +#ifdef GGML_USE_METAL +# include "ggml-metal.h" +#endif + +// TODO: replace with ggml API call +#define QK_K 256 +#define QK_IQ1BN 64 + +#ifdef __has_include + #if __has_include() + #include + #if defined(_POSIX_MAPPED_FILES) + #include + #include + #endif + #if defined(_POSIX_MEMLOCK_RANGE) + #include + #endif + #endif +#endif + +#if defined(_WIN32) + #define WIN32_LEAN_AND_MEAN + #ifndef NOMINMAX + #define NOMINMAX + #endif + #include + #ifndef PATH_MAX + #define PATH_MAX MAX_PATH + #endif + #include +#endif + +#if __cplusplus >= 202000L + #define LU8(x) (const char*)(u8##x) +#else + #define LU8(x) u8##x +#endif + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +#if defined(_MSC_VER) +#pragma warning(disable: 4244 4267) // possible loss of data +#endif + +// bump if necessary +#define LLAMA_MAX_NODES 8192 +#define LLAMA_MAX_LAYERS 512 +#define LLAMA_MAX_EXPERTS 160 // DeepSeekV2 + +// +// helpers +// + +// trim whitespace from the beginning and end of a string +static std::string trim(const std::string & str) { + size_t start = 0; + size_t end = str.size(); + while (start < end && isspace(str[start])) { + start += 1; + } + while (end > start && isspace(str[end - 1])) { + end -= 1; + } + return str.substr(start, end - start); +} + +static void replace_all(std::string & s, const std::string & search, const std::string & replace) { + std::string result; + for (size_t pos = 0; ; pos += search.length()) { + auto new_pos = s.find(search, pos); + if (new_pos == std::string::npos) { + result += s.substr(pos, s.size() - pos); + break; + } + result += s.substr(pos, new_pos - pos) + replace; + pos = new_pos; + } + s = std::move(result); +} + +static bool is_float_close(float a, float b, float abs_tol) { + // Check for non-negative tolerance + if (abs_tol < 0.0) { + throw std::invalid_argument("Tolerance must be non-negative"); + } + + // Exact equality check + if (a == b) { + return true; + } + + // Check for infinities + if (std::isinf(a) || std::isinf(b)) { + return false; + } + + // Regular comparison using the provided absolute tolerance + return std::fabs(b - a) <= abs_tol; +} + +static void zeros(std::ofstream & file, size_t n) { + char zero = 0; + for (size_t i = 0; i < n; ++i) { + file.write(&zero, 1); + } +} + +LLAMA_ATTRIBUTE_FORMAT(1, 2) +static std::string format(const char * fmt, ...) { + va_list ap; + va_list ap2; + va_start(ap, fmt); + va_copy(ap2, ap); + int size = vsnprintf(NULL, 0, fmt, ap); + GGML_ASSERT(size >= 0 && size < INT_MAX); // NOLINT + std::vector buf(size + 1); + int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2); + GGML_ASSERT(size2 == size); + va_end(ap2); + va_end(ap); + return std::string(buf.data(), size); +} + +// +// gguf constants (sync with gguf.py) +// + +enum llm_arch { + LLM_ARCH_LLAMA, + LLM_ARCH_FALCON, + LLM_ARCH_BAICHUAN, + LLM_ARCH_GROK, + LLM_ARCH_GPT2, + LLM_ARCH_GPTJ, + LLM_ARCH_GPTNEOX, + LLM_ARCH_MPT, + LLM_ARCH_STARCODER, + LLM_ARCH_REFACT, + LLM_ARCH_BERT, + LLM_ARCH_NOMIC_BERT, + LLM_ARCH_JINA_BERT_V2, + LLM_ARCH_BLOOM, + LLM_ARCH_STABLELM, + LLM_ARCH_QWEN, + LLM_ARCH_QWEN2, + LLM_ARCH_QWEN2MOE, + LLM_ARCH_PHI2, + LLM_ARCH_PHI3, + LLM_ARCH_PLAMO, + LLM_ARCH_CODESHELL, + LLM_ARCH_ORION, + LLM_ARCH_INTERNLM2, + LLM_ARCH_MINICPM, + LLM_ARCH_GEMMA, + LLM_ARCH_GEMMA2, + LLM_ARCH_STARCODER2, + LLM_ARCH_MAMBA, + LLM_ARCH_XVERSE, + LLM_ARCH_COMMAND_R, + LLM_ARCH_DBRX, + LLM_ARCH_OLMO, + LLM_ARCH_OPENELM, + LLM_ARCH_ARCTIC, + LLM_ARCH_DEEPSEEK2, + LLM_ARCH_CHATGLM, + LLM_ARCH_BITNET, + LLM_ARCH_T5, + LLM_ARCH_JAIS, + LLM_ARCH_UNKNOWN, +}; + +static const std::map LLM_ARCH_NAMES = { + { LLM_ARCH_LLAMA, "llama" }, + { LLM_ARCH_FALCON, "falcon" }, + { LLM_ARCH_GROK, "grok" }, + { LLM_ARCH_GPT2, "gpt2" }, + { LLM_ARCH_GPTJ, "gptj" }, + { LLM_ARCH_GPTNEOX, "gptneox" }, + { LLM_ARCH_MPT, "mpt" }, + { LLM_ARCH_BAICHUAN, "baichuan" }, + { LLM_ARCH_STARCODER, "starcoder" }, + { LLM_ARCH_REFACT, "refact" }, + { LLM_ARCH_BERT, "bert" }, + { LLM_ARCH_NOMIC_BERT, "nomic-bert" }, + { LLM_ARCH_JINA_BERT_V2, "jina-bert-v2" }, + { LLM_ARCH_BLOOM, "bloom" }, + { LLM_ARCH_STABLELM, "stablelm" }, + { LLM_ARCH_QWEN, "qwen" }, + { LLM_ARCH_QWEN2, "qwen2" }, + { LLM_ARCH_QWEN2MOE, "qwen2moe" }, + { LLM_ARCH_PHI2, "phi2" }, + { LLM_ARCH_PHI3, "phi3" }, + { LLM_ARCH_PLAMO, "plamo" }, + { LLM_ARCH_CODESHELL, "codeshell" }, + { LLM_ARCH_ORION, "orion" }, + { LLM_ARCH_INTERNLM2, "internlm2" }, + { LLM_ARCH_MINICPM, "minicpm" }, + { LLM_ARCH_GEMMA, "gemma" }, + { LLM_ARCH_GEMMA2, "gemma2" }, + { LLM_ARCH_STARCODER2, "starcoder2" }, + { LLM_ARCH_MAMBA, "mamba" }, + { LLM_ARCH_XVERSE, "xverse" }, + { LLM_ARCH_COMMAND_R, "command-r" }, + { LLM_ARCH_DBRX, "dbrx" }, + { LLM_ARCH_OLMO, "olmo" }, + { LLM_ARCH_OPENELM, "openelm" }, + { LLM_ARCH_ARCTIC, "arctic" }, + { LLM_ARCH_DEEPSEEK2, "deepseek2" }, + { LLM_ARCH_CHATGLM, "chatglm" }, + { LLM_ARCH_BITNET, "bitnet" }, + { LLM_ARCH_T5, "t5" }, + { LLM_ARCH_JAIS, "jais" }, + { LLM_ARCH_UNKNOWN, "(unknown)" }, +}; + +enum llm_kv { + LLM_KV_GENERAL_TYPE, + LLM_KV_GENERAL_ARCHITECTURE, + LLM_KV_GENERAL_QUANTIZATION_VERSION, + LLM_KV_GENERAL_ALIGNMENT, + LLM_KV_GENERAL_NAME, + LLM_KV_GENERAL_AUTHOR, + LLM_KV_GENERAL_VERSION, + LLM_KV_GENERAL_URL, + LLM_KV_GENERAL_DESCRIPTION, + LLM_KV_GENERAL_LICENSE, + LLM_KV_GENERAL_SOURCE_URL, + LLM_KV_GENERAL_SOURCE_HF_REPO, + + LLM_KV_VOCAB_SIZE, + LLM_KV_CONTEXT_LENGTH, + LLM_KV_EMBEDDING_LENGTH, + LLM_KV_BLOCK_COUNT, + LLM_KV_LEADING_DENSE_BLOCK_COUNT, + LLM_KV_FEED_FORWARD_LENGTH, + LLM_KV_EXPERT_FEED_FORWARD_LENGTH, + LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, + LLM_KV_USE_PARALLEL_RESIDUAL, + LLM_KV_TENSOR_DATA_LAYOUT, + LLM_KV_EXPERT_COUNT, + LLM_KV_EXPERT_USED_COUNT, + LLM_KV_EXPERT_SHARED_COUNT, + LLM_KV_EXPERT_WEIGHTS_SCALE, + LLM_KV_POOLING_TYPE, + LLM_KV_LOGIT_SCALE, + LLM_KV_DECODER_START_TOKEN_ID, + LLM_KV_ATTN_LOGIT_SOFTCAPPING, + LLM_KV_FINAL_LOGIT_SOFTCAPPING, + + LLM_KV_ATTENTION_HEAD_COUNT, + LLM_KV_ATTENTION_HEAD_COUNT_KV, + LLM_KV_ATTENTION_MAX_ALIBI_BIAS, + LLM_KV_ATTENTION_CLAMP_KQV, + LLM_KV_ATTENTION_KEY_LENGTH, + LLM_KV_ATTENTION_VALUE_LENGTH, + LLM_KV_ATTENTION_LAYERNORM_EPS, + LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, + LLM_KV_ATTENTION_CAUSAL, + LLM_KV_ATTENTION_Q_LORA_RANK, + LLM_KV_ATTENTION_KV_LORA_RANK, + LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT, + LLM_KV_ATTENTION_SLIDING_WINDOW, + + LLM_KV_ROPE_DIMENSION_COUNT, + LLM_KV_ROPE_FREQ_BASE, + LLM_KV_ROPE_SCALE_LINEAR, + LLM_KV_ROPE_SCALING_TYPE, + LLM_KV_ROPE_SCALING_FACTOR, + LLM_KV_ROPE_SCALING_ATTN_FACTOR, + LLM_KV_ROPE_SCALING_ORIG_CTX_LEN, + LLM_KV_ROPE_SCALING_FINETUNED, + LLM_KV_ROPE_SCALING_YARN_LOG_MUL, + + LLM_KV_SPLIT_NO, + LLM_KV_SPLIT_COUNT, + LLM_KV_SPLIT_TENSORS_COUNT, + + LLM_KV_SSM_INNER_SIZE, + LLM_KV_SSM_CONV_KERNEL, + LLM_KV_SSM_STATE_SIZE, + LLM_KV_SSM_TIME_STEP_RANK, + + LLM_KV_TOKENIZER_MODEL, + LLM_KV_TOKENIZER_PRE, + LLM_KV_TOKENIZER_LIST, + LLM_KV_TOKENIZER_TOKEN_TYPE, + LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, + LLM_KV_TOKENIZER_SCORES, + LLM_KV_TOKENIZER_MERGES, + LLM_KV_TOKENIZER_BOS_ID, + LLM_KV_TOKENIZER_EOS_ID, + LLM_KV_TOKENIZER_UNK_ID, + LLM_KV_TOKENIZER_SEP_ID, + LLM_KV_TOKENIZER_PAD_ID, + LLM_KV_TOKENIZER_CLS_ID, + LLM_KV_TOKENIZER_MASK_ID, + LLM_KV_TOKENIZER_ADD_BOS, + LLM_KV_TOKENIZER_ADD_EOS, + LLM_KV_TOKENIZER_ADD_PREFIX, + LLM_KV_TOKENIZER_REMOVE_EXTRA_WS, + LLM_KV_TOKENIZER_PRECOMPILED_CHARSMAP, + LLM_KV_TOKENIZER_HF_JSON, + LLM_KV_TOKENIZER_RWKV, + LLM_KV_TOKENIZER_PREFIX_ID, + LLM_KV_TOKENIZER_SUFFIX_ID, + LLM_KV_TOKENIZER_MIDDLE_ID, + LLM_KV_TOKENIZER_EOT_ID, + + LLM_KV_ADAPTER_TYPE, + LLM_KV_ADAPTER_LORA_ALPHA, +}; + +static const std::map LLM_KV_NAMES = { + { LLM_KV_GENERAL_TYPE, "general.type" }, + { LLM_KV_GENERAL_ARCHITECTURE, "general.architecture" }, + { LLM_KV_GENERAL_QUANTIZATION_VERSION, "general.quantization_version" }, + { LLM_KV_GENERAL_ALIGNMENT, "general.alignment" }, + { LLM_KV_GENERAL_NAME, "general.name" }, + { LLM_KV_GENERAL_AUTHOR, "general.author" }, + { LLM_KV_GENERAL_VERSION, "general.version" }, + { LLM_KV_GENERAL_URL, "general.url" }, + { LLM_KV_GENERAL_DESCRIPTION, "general.description" }, + { LLM_KV_GENERAL_LICENSE, "general.license" }, + { LLM_KV_GENERAL_SOURCE_URL, "general.source.url" }, + { LLM_KV_GENERAL_SOURCE_HF_REPO, "general.source.huggingface.repository" }, + + { LLM_KV_VOCAB_SIZE, "%s.vocab_size" }, + { LLM_KV_CONTEXT_LENGTH, "%s.context_length" }, + { LLM_KV_EMBEDDING_LENGTH, "%s.embedding_length" }, + { LLM_KV_BLOCK_COUNT, "%s.block_count" }, + { LLM_KV_LEADING_DENSE_BLOCK_COUNT, "%s.leading_dense_block_count" }, + { LLM_KV_FEED_FORWARD_LENGTH, "%s.feed_forward_length" }, + { LLM_KV_EXPERT_FEED_FORWARD_LENGTH, "%s.expert_feed_forward_length" }, + { LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, "%s.expert_shared_feed_forward_length" }, + { LLM_KV_USE_PARALLEL_RESIDUAL, "%s.use_parallel_residual" }, + { LLM_KV_TENSOR_DATA_LAYOUT, "%s.tensor_data_layout" }, + { LLM_KV_EXPERT_COUNT, "%s.expert_count" }, + { LLM_KV_EXPERT_USED_COUNT, "%s.expert_used_count" }, + { LLM_KV_EXPERT_SHARED_COUNT, "%s.expert_shared_count" }, + { LLM_KV_EXPERT_WEIGHTS_SCALE, "%s.expert_weights_scale" }, + { LLM_KV_POOLING_TYPE , "%s.pooling_type" }, + { LLM_KV_LOGIT_SCALE, "%s.logit_scale" }, + { LLM_KV_DECODER_START_TOKEN_ID, "%s.decoder_start_token_id" }, + { LLM_KV_ATTN_LOGIT_SOFTCAPPING, "%s.attn_logit_softcapping" }, + { LLM_KV_FINAL_LOGIT_SOFTCAPPING, "%s.final_logit_softcapping" }, + + { LLM_KV_ATTENTION_HEAD_COUNT, "%s.attention.head_count" }, + { LLM_KV_ATTENTION_HEAD_COUNT_KV, "%s.attention.head_count_kv" }, + { LLM_KV_ATTENTION_MAX_ALIBI_BIAS, "%s.attention.max_alibi_bias" }, + { LLM_KV_ATTENTION_CLAMP_KQV, "%s.attention.clamp_kqv" }, + { LLM_KV_ATTENTION_KEY_LENGTH, "%s.attention.key_length" }, + { LLM_KV_ATTENTION_VALUE_LENGTH, "%s.attention.value_length" }, + { LLM_KV_ATTENTION_LAYERNORM_EPS, "%s.attention.layer_norm_epsilon" }, + { LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, "%s.attention.layer_norm_rms_epsilon" }, + { LLM_KV_ATTENTION_CAUSAL, "%s.attention.causal" }, + { LLM_KV_ATTENTION_Q_LORA_RANK, "%s.attention.q_lora_rank" }, + { LLM_KV_ATTENTION_KV_LORA_RANK, "%s.attention.kv_lora_rank" }, + { LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT, "%s.attention.relative_buckets_count" }, + { LLM_KV_ATTENTION_SLIDING_WINDOW, "%s.attention.sliding_window" }, + + { LLM_KV_ROPE_DIMENSION_COUNT, "%s.rope.dimension_count" }, + { LLM_KV_ROPE_FREQ_BASE, "%s.rope.freq_base" }, + { LLM_KV_ROPE_SCALE_LINEAR, "%s.rope.scale_linear" }, + { LLM_KV_ROPE_SCALING_TYPE, "%s.rope.scaling.type" }, + { LLM_KV_ROPE_SCALING_FACTOR, "%s.rope.scaling.factor" }, + { LLM_KV_ROPE_SCALING_ATTN_FACTOR, "%s.rope.scaling.attn_factor" }, + { LLM_KV_ROPE_SCALING_ORIG_CTX_LEN, "%s.rope.scaling.original_context_length" }, + { LLM_KV_ROPE_SCALING_FINETUNED, "%s.rope.scaling.finetuned" }, + { LLM_KV_ROPE_SCALING_YARN_LOG_MUL, "%s.rope.scaling.yarn_log_multiplier" }, + + { LLM_KV_SPLIT_NO, "split.no" }, + { LLM_KV_SPLIT_COUNT, "split.count" }, + { LLM_KV_SPLIT_TENSORS_COUNT, "split.tensors.count" }, + + { LLM_KV_SSM_CONV_KERNEL, "%s.ssm.conv_kernel" }, + { LLM_KV_SSM_INNER_SIZE, "%s.ssm.inner_size" }, + { LLM_KV_SSM_STATE_SIZE, "%s.ssm.state_size" }, + { LLM_KV_SSM_TIME_STEP_RANK, "%s.ssm.time_step_rank" }, + + { LLM_KV_TOKENIZER_MODEL, "tokenizer.ggml.model" }, + { LLM_KV_TOKENIZER_PRE, "tokenizer.ggml.pre" }, + { LLM_KV_TOKENIZER_LIST, "tokenizer.ggml.tokens" }, + { LLM_KV_TOKENIZER_TOKEN_TYPE, "tokenizer.ggml.token_type" }, + { LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, "tokenizer.ggml.token_type_count" }, + { LLM_KV_TOKENIZER_SCORES, "tokenizer.ggml.scores" }, + { LLM_KV_TOKENIZER_MERGES, "tokenizer.ggml.merges" }, + { LLM_KV_TOKENIZER_BOS_ID, "tokenizer.ggml.bos_token_id" }, + { LLM_KV_TOKENIZER_EOS_ID, "tokenizer.ggml.eos_token_id" }, + { LLM_KV_TOKENIZER_UNK_ID, "tokenizer.ggml.unknown_token_id" }, + { LLM_KV_TOKENIZER_SEP_ID, "tokenizer.ggml.seperator_token_id" }, + { LLM_KV_TOKENIZER_PAD_ID, "tokenizer.ggml.padding_token_id" }, + { LLM_KV_TOKENIZER_CLS_ID, "tokenizer.ggml.cls_token_id" }, + { LLM_KV_TOKENIZER_MASK_ID, "tokenizer.ggml.mask_token_id" }, + { LLM_KV_TOKENIZER_ADD_BOS, "tokenizer.ggml.add_bos_token" }, + { LLM_KV_TOKENIZER_ADD_EOS, "tokenizer.ggml.add_eos_token" }, + { LLM_KV_TOKENIZER_ADD_PREFIX, "tokenizer.ggml.add_space_prefix" }, + { LLM_KV_TOKENIZER_REMOVE_EXTRA_WS, "tokenizer.ggml.remove_extra_whitespaces" }, + { LLM_KV_TOKENIZER_PRECOMPILED_CHARSMAP, "tokenizer.ggml.precompiled_charsmap" }, + { LLM_KV_TOKENIZER_HF_JSON, "tokenizer.huggingface.json" }, + { LLM_KV_TOKENIZER_RWKV, "tokenizer.rwkv.world" }, + { LLM_KV_TOKENIZER_PREFIX_ID, "tokenizer.ggml.prefix_token_id" }, + { LLM_KV_TOKENIZER_SUFFIX_ID, "tokenizer.ggml.suffix_token_id" }, + { LLM_KV_TOKENIZER_MIDDLE_ID, "tokenizer.ggml.middle_token_id" }, + { LLM_KV_TOKENIZER_EOT_ID, "tokenizer.ggml.eot_token_id" }, + + { LLM_KV_ADAPTER_TYPE, "adapter.type" }, + { LLM_KV_ADAPTER_LORA_ALPHA, "adapter.lora.alpha" }, +}; + +struct LLM_KV { + LLM_KV(llm_arch arch) : arch(arch) {} + + llm_arch arch; + + std::string operator()(llm_kv kv) const { + return ::format(LLM_KV_NAMES.at(kv), LLM_ARCH_NAMES.at(arch)); + } +}; + +enum llm_tensor { + LLM_TENSOR_TOKEN_EMBD, + LLM_TENSOR_TOKEN_EMBD_NORM, + LLM_TENSOR_TOKEN_TYPES, + LLM_TENSOR_POS_EMBD, + LLM_TENSOR_OUTPUT, + LLM_TENSOR_OUTPUT_NORM, + LLM_TENSOR_ROPE_FREQS, + LLM_TENSOR_ROPE_FACTORS_LONG, + LLM_TENSOR_ROPE_FACTORS_SHORT, + LLM_TENSOR_ATTN_Q, + LLM_TENSOR_ATTN_K, + LLM_TENSOR_ATTN_V, + LLM_TENSOR_ATTN_QKV, + LLM_TENSOR_ATTN_OUT, + LLM_TENSOR_ATTN_NORM, + LLM_TENSOR_ATTN_NORM_2, + LLM_TENSOR_ATTN_OUT_NORM, + LLM_TENSOR_ATTN_POST_NORM, + LLM_TENSOR_ATTN_ROT_EMBD, + LLM_TENSOR_FFN_GATE_INP, + LLM_TENSOR_FFN_GATE_INP_SHEXP, + LLM_TENSOR_FFN_NORM, + LLM_TENSOR_FFN_POST_NORM, + LLM_TENSOR_FFN_GATE, + LLM_TENSOR_FFN_DOWN, + LLM_TENSOR_FFN_UP, + LLM_TENSOR_FFN_ACT, + LLM_TENSOR_FFN_DOWN_EXP, // split experts for backward compatibility + LLM_TENSOR_FFN_GATE_EXP, + LLM_TENSOR_FFN_UP_EXP, + LLM_TENSOR_FFN_NORM_EXPS, + LLM_TENSOR_FFN_DOWN_EXPS, // merged experts + LLM_TENSOR_FFN_GATE_EXPS, + LLM_TENSOR_FFN_UP_EXPS, + LLM_TENSOR_FFN_DOWN_SHEXP, + LLM_TENSOR_FFN_GATE_SHEXP, + LLM_TENSOR_FFN_UP_SHEXP, + LLM_TENSOR_ATTN_Q_NORM, + LLM_TENSOR_ATTN_K_NORM, + LLM_TENSOR_LAYER_OUT_NORM, + LLM_TENSOR_SSM_IN, + LLM_TENSOR_SSM_CONV1D, + LLM_TENSOR_SSM_X, + LLM_TENSOR_SSM_DT, + LLM_TENSOR_SSM_A, + LLM_TENSOR_SSM_D, + LLM_TENSOR_SSM_OUT, + LLM_TENSOR_ATTN_Q_A, + LLM_TENSOR_ATTN_Q_B, + LLM_TENSOR_ATTN_KV_A_MQA, + LLM_TENSOR_ATTN_KV_B, + LLM_TENSOR_ATTN_Q_A_NORM, + LLM_TENSOR_ATTN_KV_A_NORM, + LLM_TENSOR_ATTN_SUB_NORM, + LLM_TENSOR_FFN_SUB_NORM, + LLM_TENSOR_DEC_ATTN_NORM, + LLM_TENSOR_DEC_ATTN_Q, + LLM_TENSOR_DEC_ATTN_K, + LLM_TENSOR_DEC_ATTN_V, + LLM_TENSOR_DEC_ATTN_OUT, + LLM_TENSOR_DEC_ATTN_REL_B, + LLM_TENSOR_DEC_CROSS_ATTN_NORM, + LLM_TENSOR_DEC_CROSS_ATTN_Q, + LLM_TENSOR_DEC_CROSS_ATTN_K, + LLM_TENSOR_DEC_CROSS_ATTN_V, + LLM_TENSOR_DEC_CROSS_ATTN_OUT, + LLM_TENSOR_DEC_CROSS_ATTN_REL_B, + LLM_TENSOR_DEC_FFN_NORM, + LLM_TENSOR_DEC_FFN_GATE, + LLM_TENSOR_DEC_FFN_DOWN, + LLM_TENSOR_DEC_FFN_UP, + LLM_TENSOR_DEC_OUTPUT_NORM, + LLM_TENSOR_ENC_ATTN_NORM, + LLM_TENSOR_ENC_ATTN_Q, + LLM_TENSOR_ENC_ATTN_K, + LLM_TENSOR_ENC_ATTN_V, + LLM_TENSOR_ENC_ATTN_OUT, + LLM_TENSOR_ENC_ATTN_REL_B, + LLM_TENSOR_ENC_FFN_NORM, + LLM_TENSOR_ENC_FFN_GATE, + LLM_TENSOR_ENC_FFN_DOWN, + LLM_TENSOR_ENC_FFN_UP, + LLM_TENSOR_ENC_OUTPUT_NORM, +}; + +static const std::map> LLM_TENSOR_NAMES = { + { + LLM_ARCH_LLAMA, + { + { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, + { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, + { LLM_TENSOR_OUTPUT, "output" }, + { LLM_TENSOR_ROPE_FREQS, "rope_freqs" }, + { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, + { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, + { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, + { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, + { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, + { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" }, + { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" }, + { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, + { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, + { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, + { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, + { LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" }, + { LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" }, + { LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" }, + { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" }, + { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" }, + { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" }, + }, + }, + { + LLM_ARCH_BAICHUAN, + { + { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, + { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, + { LLM_TENSOR_OUTPUT, "output" }, + { LLM_TENSOR_ROPE_FREQS, "rope_freqs" }, + { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, + { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, + { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, + { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, + { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, + { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" }, + { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, + { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, + { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, + { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, + }, + }, + { + LLM_ARCH_FALCON, + { + { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, + { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, + { LLM_TENSOR_OUTPUT, "output" }, + { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, + { LLM_TENSOR_ATTN_NORM_2, "blk.%d.attn_norm_2" }, + { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" }, + { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, + { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, + { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, + }, + }, + { + LLM_ARCH_GROK, + { + { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, + { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, + { LLM_TENSOR_OUTPUT, "output" }, + { LLM_TENSOR_ROPE_FREQS, "rope_freqs" }, + { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, + { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, + { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, + { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, + { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, + { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" }, + { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" }, + { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, + { LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" }, + { LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" }, + { LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" }, + { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" }, + { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" }, + { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" }, + { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" }, + { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" }, + }, + }, + { + LLM_ARCH_GPT2, + { + { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, + { LLM_TENSOR_POS_EMBD, "position_embd" }, + { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, + { LLM_TENSOR_OUTPUT, "output" }, + { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, + { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" }, + { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, + { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, + { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, + { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, + }, + }, + { + LLM_ARCH_GPTJ, + { + { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, + }, + }, + { + LLM_ARCH_GPTNEOX, + { + { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, + { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, + { LLM_TENSOR_OUTPUT, "output" }, + { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, + { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" }, + { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, + { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, + { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, + { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, + }, + }, + { + LLM_ARCH_MPT, + { + { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, + { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, + { LLM_TENSOR_OUTPUT, "output"}, + { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, + { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, + { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" }, + { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, + { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, + { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, + { LLM_TENSOR_FFN_ACT, "blk.%d.ffn.act" }, + { LLM_TENSOR_POS_EMBD, "position_embd" }, + { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm"}, + { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm"}, + }, + }, + { + LLM_ARCH_STARCODER, + { + { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, + { LLM_TENSOR_POS_EMBD, "position_embd" }, + { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, + { LLM_TENSOR_OUTPUT, "output" }, + { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, + { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" }, + { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, + { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, + { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, + { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, + }, + }, + { + LLM_ARCH_REFACT, + { + { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, + { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, + { LLM_TENSOR_OUTPUT, "output" }, + { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, + { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, + { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, + { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, + { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, + { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, + { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, + { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, + { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, + }, + }, + { + LLM_ARCH_BERT, + { + { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, + { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" }, + { LLM_TENSOR_TOKEN_TYPES, "token_types" }, + { LLM_TENSOR_POS_EMBD, "position_embd" }, + { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" }, + { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, + { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, + { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, + { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, + { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" }, + { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, + { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, + }, + }, + { + LLM_ARCH_NOMIC_BERT, + { + { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, + { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" }, + { LLM_TENSOR_TOKEN_TYPES, "token_types" }, + { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" }, + { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" }, + { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, + { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" }, + { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, + { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, + { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, + }, + }, + { + LLM_ARCH_JINA_BERT_V2, + { + { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, + { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" }, + { LLM_TENSOR_TOKEN_TYPES, "token_types" }, + { LLM_TENSOR_ATTN_NORM_2, "blk.%d.attn_norm_2" }, + { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" }, + { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, + { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" }, + { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, + { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" }, + { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, + { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, + { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" }, + { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, + { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, + { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, + }, + }, + { + LLM_ARCH_BLOOM, + { + { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, + { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" }, + { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, + { LLM_TENSOR_OUTPUT, "output" }, + { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, + { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" }, + { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, + { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, + { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, + { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, + }, + }, + { + LLM_ARCH_STABLELM, + { + { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, + { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, + { LLM_TENSOR_OUTPUT, "output" }, + { LLM_TENSOR_ROPE_FREQS, "rope_freqs" }, + { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, + { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, + { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, + { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, + { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, + { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, + { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, + { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, + { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, + { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" }, + { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" }, + }, + }, + { + LLM_ARCH_QWEN, + { + { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, + { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, + { LLM_TENSOR_OUTPUT, "output" }, + { LLM_TENSOR_ROPE_FREQS, "rope_freqs" }, + { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, + { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" }, + { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, + { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, + { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, + { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, + { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, + }, + }, + { + LLM_ARCH_QWEN2, + { + { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, + { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, + { LLM_TENSOR_OUTPUT, "output" }, + { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, + { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, + { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, + { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, + { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, + { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, + { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, + { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, + { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, + }, + }, + { + LLM_ARCH_QWEN2MOE, + { + { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, + { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, + { LLM_TENSOR_OUTPUT, "output" }, + { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, + { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, + { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, + { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, + { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, + { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, + { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" }, + { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" }, + { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" }, + { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" }, + { LLM_TENSOR_FFN_GATE_INP_SHEXP, "blk.%d.ffn_gate_inp_shexp" }, + { LLM_TENSOR_FFN_GATE_SHEXP, "blk.%d.ffn_gate_shexp" }, + { LLM_TENSOR_FFN_DOWN_SHEXP, "blk.%d.ffn_down_shexp" }, + { LLM_TENSOR_FFN_UP_SHEXP, "blk.%d.ffn_up_shexp" }, + }, + }, + { + LLM_ARCH_PHI2, + { + { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, + { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, + { LLM_TENSOR_OUTPUT, "output" }, + { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, + { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" }, + { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, + { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, + { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, + { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, + { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, + { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, + }, + }, + { + LLM_ARCH_PHI3, + { + { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, + { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, + { LLM_TENSOR_OUTPUT, "output" }, + { LLM_TENSOR_ROPE_FACTORS_LONG, "rope_factors_long" }, + { LLM_TENSOR_ROPE_FACTORS_SHORT, "rope_factors_short" }, + { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, + { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" }, + { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, + { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, + { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, + { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, + { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, + { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, + { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, + }, + }, + { + LLM_ARCH_PLAMO, + { + { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, + { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, + { LLM_TENSOR_OUTPUT, "output" }, + { LLM_TENSOR_ROPE_FREQS, "rope_freqs" }, + { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, + { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, + { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, + { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, + { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, + { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" }, + { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, + { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, + { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, + }, + }, + { + LLM_ARCH_CODESHELL, + { + { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, + { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, + { LLM_TENSOR_OUTPUT, "output" }, + { LLM_TENSOR_ROPE_FREQS, "rope_freqs" }, + { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, + { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, + { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, + { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, + { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" }, + { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, + { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" }, + { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, + { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, + { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, + { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, + }, + }, + { + LLM_ARCH_ORION, + { + { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, + { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, + { LLM_TENSOR_OUTPUT, "output" }, + { LLM_TENSOR_ROPE_FREQS, "rope_freqs" }, + { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, + { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, + { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, + { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, + { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, + { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" }, + { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, + { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, + { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, + { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, + }, + }, + { + LLM_ARCH_INTERNLM2, + { + { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, + { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, + { LLM_TENSOR_OUTPUT, "output" }, + { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, + { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, + { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, + { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, + { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, + { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, + { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, + { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, + { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, + }, + }, + { + LLM_ARCH_MINICPM, + { + { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, + { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, + { LLM_TENSOR_OUTPUT, "output" }, + { LLM_TENSOR_ROPE_FREQS, "rope_freqs" }, + { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, + { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, + { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, + { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, + { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, + { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" }, + { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" }, + { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, + { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, + { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, + { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, + { LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" }, + { LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" }, + { LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" }, + }, + }, + { + LLM_ARCH_GEMMA, + { + { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, + { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, + { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, + { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, + { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, + { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, + { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, + { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, + { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, + { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, + { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, + }, + }, + { + LLM_ARCH_GEMMA2, + { + { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, + { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, + { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, + { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, + { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, + { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, + { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, + { LLM_TENSOR_ATTN_POST_NORM, "blk.%d.post_attention_norm" }, + { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, + { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, + { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, + { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, + { LLM_TENSOR_FFN_POST_NORM, "blk.%d.post_ffw_norm" }, + }, + }, + { + LLM_ARCH_STARCODER2, + { + { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, + { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, + { LLM_TENSOR_OUTPUT, "output" }, + { LLM_TENSOR_ROPE_FREQS, "rope_freqs" }, + { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, + { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, + { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, + { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, + { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, + { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" }, + { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, + { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, + { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, + }, + }, + { + LLM_ARCH_MAMBA, + { + { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, + { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, + { LLM_TENSOR_OUTPUT, "output" }, + { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, + { LLM_TENSOR_SSM_IN, "blk.%d.ssm_in" }, + { LLM_TENSOR_SSM_CONV1D, "blk.%d.ssm_conv1d" }, + { LLM_TENSOR_SSM_X, "blk.%d.ssm_x" }, + { LLM_TENSOR_SSM_DT, "blk.%d.ssm_dt" }, + { LLM_TENSOR_SSM_A, "blk.%d.ssm_a" }, + { LLM_TENSOR_SSM_D, "blk.%d.ssm_d" }, + { LLM_TENSOR_SSM_OUT, "blk.%d.ssm_out" }, + }, + }, + { + LLM_ARCH_XVERSE, + { + { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, + { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, + { LLM_TENSOR_OUTPUT, "output" }, + { LLM_TENSOR_ROPE_FREQS, "rope_freqs" }, + { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, + { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, + { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, + { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, + { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, + { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" }, + { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, + { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, + { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, + { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, + }, + }, + { + LLM_ARCH_COMMAND_R, + { + { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, + { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, + { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, + { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, + { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, + { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, + { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, + { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, + { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, + { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, + { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" }, + { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" }, + }, + }, + { + LLM_ARCH_DBRX, + { + { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, + { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, + { LLM_TENSOR_OUTPUT, "output" }, + { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" }, + { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, + { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, + { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" }, + { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" }, + { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" }, + { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" }, + { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" }, + }, + }, + { + LLM_ARCH_OLMO, + { + { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, + { LLM_TENSOR_OUTPUT, "output" }, + { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, + { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, + { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, + { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, + { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, + { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, + { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, + }, + }, + { + LLM_ARCH_OPENELM, + { + { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, + { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, + { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, + { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" }, + { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" }, + { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" }, + { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, + { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, + { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, + { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, + { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, + }, + }, + { + LLM_ARCH_ARCTIC, + { + { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, + { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, + { LLM_TENSOR_OUTPUT, "output" }, + { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, + { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, + { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, + { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, + { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, + { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" }, + { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, + { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, + { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, + { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, + { LLM_TENSOR_FFN_NORM_EXPS, "blk.%d.ffn_norm_exps" }, + { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" }, + { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" }, + { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" }, + }, + }, + { + LLM_ARCH_DEEPSEEK2, + { + { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, + { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, + { LLM_TENSOR_OUTPUT, "output" }, + { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, + { LLM_TENSOR_ATTN_Q_A_NORM, "blk.%d.attn_q_a_norm" }, + { LLM_TENSOR_ATTN_KV_A_NORM, "blk.%d.attn_kv_a_norm" }, + { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, + { LLM_TENSOR_ATTN_Q_A, "blk.%d.attn_q_a" }, + { LLM_TENSOR_ATTN_Q_B, "blk.%d.attn_q_b" }, + { LLM_TENSOR_ATTN_KV_A_MQA, "blk.%d.attn_kv_a_mqa" }, + { LLM_TENSOR_ATTN_KV_B, "blk.%d.attn_kv_b" }, + { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, + { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, + { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, + { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, + { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, + { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" }, + { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" }, + { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" }, + { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" }, + { LLM_TENSOR_FFN_GATE_INP_SHEXP, "blk.%d.ffn_gate_inp_shexp" }, + { LLM_TENSOR_FFN_GATE_SHEXP, "blk.%d.ffn_gate_shexp" }, + { LLM_TENSOR_FFN_DOWN_SHEXP, "blk.%d.ffn_down_shexp" }, + { LLM_TENSOR_FFN_UP_SHEXP, "blk.%d.ffn_up_shexp" }, + }, + }, + { + LLM_ARCH_BITNET, + { + { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, + { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, + { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, + { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, + { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, + { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, + { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, + { LLM_TENSOR_ATTN_SUB_NORM, "blk.%d.attn_sub_norm" }, + { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, + { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, + { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, + { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, + { LLM_TENSOR_FFN_SUB_NORM, "blk.%d.ffn_sub_norm" }, + }, + }, + { + LLM_ARCH_T5, + { + { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, + { LLM_TENSOR_OUTPUT, "output" }, + { LLM_TENSOR_DEC_OUTPUT_NORM, "dec.output_norm" }, + { LLM_TENSOR_DEC_ATTN_NORM, "dec.blk.%d.attn_norm" }, + { LLM_TENSOR_DEC_ATTN_Q, "dec.blk.%d.attn_q" }, + { LLM_TENSOR_DEC_ATTN_K, "dec.blk.%d.attn_k" }, + { LLM_TENSOR_DEC_ATTN_V, "dec.blk.%d.attn_v" }, + { LLM_TENSOR_DEC_ATTN_OUT, "dec.blk.%d.attn_o" }, + { LLM_TENSOR_DEC_ATTN_REL_B, "dec.blk.%d.attn_rel_b" }, + { LLM_TENSOR_DEC_CROSS_ATTN_NORM, "dec.blk.%d.cross_attn_norm" }, + { LLM_TENSOR_DEC_CROSS_ATTN_Q, "dec.blk.%d.cross_attn_q" }, + { LLM_TENSOR_DEC_CROSS_ATTN_K, "dec.blk.%d.cross_attn_k" }, + { LLM_TENSOR_DEC_CROSS_ATTN_V, "dec.blk.%d.cross_attn_v" }, + { LLM_TENSOR_DEC_CROSS_ATTN_OUT, "dec.blk.%d.cross_attn_o" }, + { LLM_TENSOR_DEC_CROSS_ATTN_REL_B, "dec.blk.%d.cross_attn_rel_b" }, + { LLM_TENSOR_DEC_FFN_NORM, "dec.blk.%d.ffn_norm" }, + { LLM_TENSOR_DEC_FFN_GATE, "dec.blk.%d.ffn_gate" }, + { LLM_TENSOR_DEC_FFN_DOWN, "dec.blk.%d.ffn_down" }, + { LLM_TENSOR_DEC_FFN_UP, "dec.blk.%d.ffn_up" }, + { LLM_TENSOR_ENC_OUTPUT_NORM, "enc.output_norm" }, + { LLM_TENSOR_ENC_ATTN_NORM, "enc.blk.%d.attn_norm" }, + { LLM_TENSOR_ENC_ATTN_Q, "enc.blk.%d.attn_q" }, + { LLM_TENSOR_ENC_ATTN_K, "enc.blk.%d.attn_k" }, + { LLM_TENSOR_ENC_ATTN_V, "enc.blk.%d.attn_v" }, + { LLM_TENSOR_ENC_ATTN_OUT, "enc.blk.%d.attn_o" }, + { LLM_TENSOR_ENC_ATTN_REL_B, "enc.blk.%d.attn_rel_b" }, + { LLM_TENSOR_ENC_FFN_NORM, "enc.blk.%d.ffn_norm" }, + { LLM_TENSOR_ENC_FFN_GATE, "enc.blk.%d.ffn_gate" }, + { LLM_TENSOR_ENC_FFN_DOWN, "enc.blk.%d.ffn_down" }, + { LLM_TENSOR_ENC_FFN_UP, "enc.blk.%d.ffn_up" }, + }, + }, + { + LLM_ARCH_JAIS, + { + { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, + { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, + { LLM_TENSOR_OUTPUT, "output" }, + { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, + { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" }, + { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, + { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, + { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, + { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, + { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, + }, + }, + { + LLM_ARCH_UNKNOWN, + { + { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, + }, + }, +}; + +static llm_arch llm_arch_from_string(const std::string & name) { + for (const auto & kv : LLM_ARCH_NAMES) { // NOLINT + if (kv.second == name) { + return kv.first; + } + } + + return LLM_ARCH_UNKNOWN; +} + +// helper to handle gguf constants +// usage: +// +// const auto tn = LLM_TN(LLM_ARCH_LLAMA); +// +// std::string name = tn(LLM_TENSOR_OUTPUT); -> "output" +// std::string name = tn(LLM_TENSOR_TOKEN_EMBD, "bias"); -> "token_embd.bias" +// std::string name = tn(LLM_TENSOR_ATTN_NORM, "weight", 3); -> "blk.3.attn_norm.weight" +// +struct LLM_TN { + LLM_TN(llm_arch arch) : arch(arch) {} + + llm_arch arch; + + std::string operator()(llm_tensor tensor) const { + if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) { + return "__missing__"; + } + return LLM_TENSOR_NAMES.at(arch).at(tensor); + } + + std::string operator()(llm_tensor tensor, const std::string & suffix) const { + if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) { + return "__missing__"; + } + return LLM_TENSOR_NAMES.at(arch).at(tensor) + "." + suffix; + } + + std::string operator()(llm_tensor tensor, int bid) const { + if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) { + return "__missing__"; + } + return ::format(LLM_TENSOR_NAMES.at(arch).at(tensor).c_str(), bid); + } + + std::string operator()(llm_tensor tensor, const std::string & suffix, int bid) const { + if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) { + return "__missing__"; + } + return ::format(LLM_TENSOR_NAMES.at(arch).at(tensor).c_str(), bid) + "." + suffix; + } + + std::string operator()(llm_tensor tensor, const std::string & suffix, int bid, int xid) const { + if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) { + return "__missing__"; + } + return ::format(LLM_TENSOR_NAMES.at(arch).at(tensor).c_str(), bid, xid) + "." + suffix; + } +}; + +// +// gguf helpers +// + +static const std::map LLAMA_ROPE_SCALING_TYPES = { + { LLAMA_ROPE_SCALING_TYPE_NONE, "none" }, + { LLAMA_ROPE_SCALING_TYPE_LINEAR, "linear" }, + { LLAMA_ROPE_SCALING_TYPE_YARN, "yarn" }, +}; + +static llama_rope_scaling_type llama_rope_scaling_type_from_string(const std::string & name) { + for (const auto & kv : LLAMA_ROPE_SCALING_TYPES) { + if (kv.second == name) { + return (llama_rope_scaling_type) kv.first; + } + } + + return LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED; +} + +static std::string gguf_data_to_str(enum gguf_type type, const void * data, int i) { + switch (type) { + case GGUF_TYPE_UINT8: return std::to_string(((const uint8_t *)data)[i]); + case GGUF_TYPE_INT8: return std::to_string(((const int8_t *)data)[i]); + case GGUF_TYPE_UINT16: return std::to_string(((const uint16_t *)data)[i]); + case GGUF_TYPE_INT16: return std::to_string(((const int16_t *)data)[i]); + case GGUF_TYPE_UINT32: return std::to_string(((const uint32_t *)data)[i]); + case GGUF_TYPE_INT32: return std::to_string(((const int32_t *)data)[i]); + case GGUF_TYPE_UINT64: return std::to_string(((const uint64_t *)data)[i]); + case GGUF_TYPE_INT64: return std::to_string(((const int64_t *)data)[i]); + case GGUF_TYPE_FLOAT32: return std::to_string(((const float *)data)[i]); + case GGUF_TYPE_FLOAT64: return std::to_string(((const double *)data)[i]); + case GGUF_TYPE_BOOL: return ((const bool *)data)[i] ? "true" : "false"; + default: return format("unknown type %d", type); + } +} + +static std::string gguf_kv_to_str(const struct gguf_context * ctx_gguf, int i) { + const enum gguf_type type = gguf_get_kv_type(ctx_gguf, i); + + switch (type) { + case GGUF_TYPE_STRING: + return gguf_get_val_str(ctx_gguf, i); + case GGUF_TYPE_ARRAY: + { + const enum gguf_type arr_type = gguf_get_arr_type(ctx_gguf, i); + int arr_n = gguf_get_arr_n(ctx_gguf, i); + const void * data = gguf_get_arr_data(ctx_gguf, i); + std::stringstream ss; + ss << "["; + for (int j = 0; j < arr_n; j++) { + if (arr_type == GGUF_TYPE_STRING) { + std::string val = gguf_get_arr_str(ctx_gguf, i, j); + // escape quotes + replace_all(val, "\\", "\\\\"); + replace_all(val, "\"", "\\\""); + ss << '"' << val << '"'; + } else if (arr_type == GGUF_TYPE_ARRAY) { + ss << "???"; + } else { + ss << gguf_data_to_str(arr_type, data, j); + } + if (j < arr_n - 1) { + ss << ", "; + } + } + ss << "]"; + return ss.str(); + } + default: + return gguf_data_to_str(type, gguf_get_val_data(ctx_gguf, i), 0); + } +} + +// +// llama helpers +// + +#if defined(_WIN32) +static std::string llama_format_win_err(DWORD err) { + LPSTR buf; + size_t size = FormatMessageA(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS, + NULL, err, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), (LPSTR)&buf, 0, NULL); + if (!size) { + return "FormatMessageA failed"; + } + std::string ret(buf, size); + LocalFree(buf); + return ret; +} +#endif + +template +struct no_init { + T value; + no_init() { /* do nothing */ } +}; + +struct llama_file { + +#if defined(_WIN32) + // use FILE * so we don't have to re-open the file to mmap + FILE * fp; + HANDLE fp_win32; + size_t size; + +private: + std::string GetErrorMessageWin32(DWORD error_code) const { + std::string ret; + LPSTR lpMsgBuf = NULL; + DWORD bufLen = FormatMessageA(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS, + NULL, error_code, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), (LPSTR)&lpMsgBuf, 0, NULL); + if (!bufLen) { + ret = format("Win32 error code: %s", error_code); + } else { + ret = lpMsgBuf; + LocalFree(lpMsgBuf); + } + + return ret; + } + +public: + + llama_file(const char * fname, const char * mode) { + fp = ggml_fopen(fname, mode); + if (fp == NULL) { + throw std::runtime_error(format("failed to open %s: %s", fname, strerror(errno))); + } + fp_win32 = (HANDLE) _get_osfhandle(_fileno(fp)); + seek(0, SEEK_END); + size = tell(); + seek(0, SEEK_SET); + } + + size_t tell() const { + // SetFilePointerEx returns the current position when seeking relative 0 bytes + LARGE_INTEGER li; + li.QuadPart = 0; + BOOL ret = SetFilePointerEx(fp_win32, li, &li, FILE_CURRENT); + if (!ret) { + throw std::runtime_error(format("read error: %s", GetErrorMessageWin32(GetLastError()).c_str())); + } + + return li.QuadPart; + } + + void seek(size_t offset, int whence) const { + // no need to convert SEEK_* to FILE_*. The enums are the same. + // Still, keep static asserts to avoid failures in the future. + static_assert(SEEK_SET == FILE_BEGIN, "SEEK_SET != FILE_BEGIN"); + static_assert(SEEK_CUR == FILE_CURRENT, "SEEK_CUR != FILE_CURRENT"); + static_assert(SEEK_END == FILE_END, "SEEK_END != FILE_END"); + + LARGE_INTEGER li; + li.QuadPart = offset; + BOOL ret = SetFilePointerEx(fp_win32, li, NULL, whence); + if (!ret) { + throw std::runtime_error(format("read error: %s", GetErrorMessageWin32(GetLastError()).c_str())); + } + } + + void read_raw(void * ptr, size_t len) const { + // On Win32 ReadFile is significant faster than fread which is again significant faster than std::fstream. Thus + // use the Win32 API to do file io instead of the C/C++ library functions. + + // There are conditions under which ReadFile cannot read chunks >64MB. + // Thus split the operation into smaller chunks if len exceeds this limit. + size_t bytes_read = 0; + while (bytes_read < len) { + size_t chunk_size = std::min(len - bytes_read, 64*1024*1024); + DWORD chunk_read = 0; + BOOL result = ReadFile(fp_win32, reinterpret_cast(ptr) + bytes_read, chunk_size, &chunk_read, NULL); + if (!result) { + throw std::runtime_error(format("read error: %s", GetErrorMessageWin32(GetLastError()).c_str())); + } + if (chunk_read < chunk_size || chunk_read == 0) { + throw std::runtime_error("unexpectedly reached end of file"); + } + + bytes_read += chunk_read; + } ; + } + + uint32_t read_u32() const { + uint32_t val; + read_raw(&val, sizeof(val)); + return val; + } + + void write_raw(const void * ptr, size_t len) const { + // There are conditions under which WriteFile cannot write chunks >64MB. + // Thus split the operation into smaller chunks if len exceeds this limit. + size_t bytes_written = 0; + while (bytes_written < len) { + size_t chunk_size = std::min(len - bytes_written, 64*1024*1024); + DWORD chunk_written = 0; + BOOL result = WriteFile(fp_win32, reinterpret_cast(ptr) + bytes_written, chunk_size, &chunk_written, NULL); + if (!result) { + throw std::runtime_error(format("write error: %s", GetErrorMessageWin32(GetLastError()).c_str())); + } + if (chunk_written < chunk_size || chunk_written == 0) { + throw std::runtime_error("unexpectedly failed to write bytes"); + } + + bytes_written += chunk_written; + } + } + + void write_u32(std::uint32_t val) const { + write_raw(&val, sizeof(val)); + } + + ~llama_file() { + if (fp) { + std::fclose(fp); + } + } +#else + // use FILE * so we don't have to re-open the file to mmap + FILE * fp; + size_t size; + + llama_file(const char * fname, const char * mode) { + fp = ggml_fopen(fname, mode); + if (fp == NULL) { + throw std::runtime_error(format("failed to open %s: %s", fname, strerror(errno))); + } + seek(0, SEEK_END); + size = tell(); + seek(0, SEEK_SET); + } + + size_t tell() const { +#ifdef _WIN32 + __int64 ret = _ftelli64(fp); +#else + long ret = std::ftell(fp); +#endif + if (ret == -1) { + throw std::runtime_error(format("ftell error: %s", strerror(errno))); + } + + return (size_t) ret; + } + + void seek(size_t offset, int whence) const { +#ifdef _WIN32 + int ret = _fseeki64(fp, (__int64) offset, whence); +#else + int ret = std::fseek(fp, (long) offset, whence); +#endif + if (ret != 0) { + throw std::runtime_error(format("seek error: %s", strerror(errno))); + } + } + + void read_raw(void * ptr, size_t len) const { + if (len == 0) { + return; + } + errno = 0; + std::size_t ret = std::fread(ptr, len, 1, fp); + if (ferror(fp)) { + throw std::runtime_error(format("read error: %s", strerror(errno))); + } + if (ret != 1) { + throw std::runtime_error("unexpectedly reached end of file"); + } + } + + uint32_t read_u32() const { + uint32_t ret; + read_raw(&ret, sizeof(ret)); + return ret; + } + + void write_raw(const void * ptr, size_t len) const { + if (len == 0) { + return; + } + errno = 0; + size_t ret = std::fwrite(ptr, len, 1, fp); + if (ret != 1) { + throw std::runtime_error(format("write error: %s", strerror(errno))); + } + } + + void write_u32(std::uint32_t val) const { + write_raw(&val, sizeof(val)); + } + + ~llama_file() { + if (fp) { + std::fclose(fp); + } + } +#endif +}; +using llama_files = std::vector>; + +struct llama_mmap { + void * addr; + size_t size; + + llama_mmap(const llama_mmap &) = delete; + +#ifdef _POSIX_MAPPED_FILES + static constexpr bool SUPPORTED = true; + + // list of mapped fragments (first_offset, last_offset) + std::vector> mapped_fragments; + + llama_mmap(struct llama_file * file, size_t prefetch = (size_t) -1 /* -1 = max value */, bool numa = false) { + size = file->size; + int fd = fileno(file->fp); + int flags = MAP_SHARED; + // prefetch/readahead impairs performance on NUMA systems + if (numa) { prefetch = 0; } +#ifdef __linux__ + // advise the kernel to read the file sequentially (increases readahead) + if (posix_fadvise(fd, 0, 0, POSIX_FADV_SEQUENTIAL)) { + LLAMA_LOG_WARN("warning: posix_fadvise(.., POSIX_FADV_SEQUENTIAL) failed: %s\n", + strerror(errno)); + } + if (prefetch) { flags |= MAP_POPULATE; } +#endif + addr = mmap(NULL, file->size, PROT_READ, flags, fd, 0); + if (addr == MAP_FAILED) { // NOLINT + throw std::runtime_error(format("mmap failed: %s", strerror(errno))); + } + + if (prefetch > 0) { + // advise the kernel to preload the mapped memory + if (posix_madvise(addr, std::min(file->size, prefetch), POSIX_MADV_WILLNEED)) { + LLAMA_LOG_WARN("warning: posix_madvise(.., POSIX_MADV_WILLNEED) failed: %s\n", + strerror(errno)); + } + } + if (numa) { + // advise the kernel not to use readahead + // (because the next page might not belong on the same node) + if (posix_madvise(addr, file->size, POSIX_MADV_RANDOM)) { + LLAMA_LOG_WARN("warning: posix_madvise(.., POSIX_MADV_RANDOM) failed: %s\n", + strerror(errno)); + } + } + + // initialize list of mapped_fragments + mapped_fragments.emplace_back(0, file->size); + } + + static void align_range(size_t * first, size_t * last, size_t page_size) { + // align first to the next page + size_t offset_in_page = *first & (page_size - 1); + size_t offset_to_page = offset_in_page == 0 ? 0 : page_size - offset_in_page; + *first += offset_to_page; + + // align last to the previous page + *last = *last & ~(page_size - 1); + + if (*last <= *first) { + *last = *first; + } + } + + // partially unmap the file in the range [first, last) + void unmap_fragment(size_t first, size_t last) { + // note: this function must not be called multiple times with overlapping ranges + // otherwise, there is a risk of invalidating addresses that have been repurposed for other mappings + int page_size = sysconf(_SC_PAGESIZE); + align_range(&first, &last, page_size); + size_t len = last - first; + + if (len == 0) { + return; + } + + GGML_ASSERT(first % page_size == 0); + GGML_ASSERT(last % page_size == 0); + GGML_ASSERT(last > first); + + void * next_page_start = (uint8_t *) addr + first; + + // unmap the range + if (munmap(next_page_start, len)) { + LLAMA_LOG_WARN("warning: munmap failed: %s\n", strerror(errno)); + } + + // update the list of mapped fragments to avoid unmapping the same range again in the destructor + std::vector> new_mapped_fragments; + for (const auto & frag : mapped_fragments) { + if (frag.first < first && frag.second > last) { + // the range is in the middle of the fragment, split it + new_mapped_fragments.emplace_back(frag.first, first); + new_mapped_fragments.emplace_back(last, frag.second); + } else if (frag.first < first && frag.second > first) { + // the range starts in the middle of the fragment + new_mapped_fragments.emplace_back(frag.first, first); + } else if (frag.first < last && frag.second > last) { + // the range ends in the middle of the fragment + new_mapped_fragments.emplace_back(last, frag.second); + } else if (frag.first >= first && frag.second <= last) { + // the range covers the entire fragment + } else { + // the range is outside the fragment + new_mapped_fragments.push_back(frag); + } + } + mapped_fragments = std::move(new_mapped_fragments); + } + + ~llama_mmap() { + for (const auto & frag : mapped_fragments) { + if (munmap((char *) addr + frag.first, frag.second - frag.first)) { + LLAMA_LOG_WARN("warning: munmap failed: %s\n", strerror(errno)); + } + } + } +#elif defined(_WIN32) + static constexpr bool SUPPORTED = true; + + llama_mmap(struct llama_file * file, size_t prefetch = (size_t) -1, bool numa = false) { + GGML_UNUSED(numa); + + size = file->size; + + HANDLE hFile = (HANDLE) _get_osfhandle(_fileno(file->fp)); + + HANDLE hMapping = CreateFileMappingA(hFile, NULL, PAGE_READONLY, 0, 0, NULL); + + if (hMapping == NULL) { + DWORD error = GetLastError(); + throw std::runtime_error(format("CreateFileMappingA failed: %s", llama_format_win_err(error).c_str())); + } + + addr = MapViewOfFile(hMapping, FILE_MAP_READ, 0, 0, 0); + DWORD error = GetLastError(); + CloseHandle(hMapping); + + if (addr == NULL) { + throw std::runtime_error(format("MapViewOfFile failed: %s", llama_format_win_err(error).c_str())); + } + + if (prefetch > 0) { +#if _WIN32_WINNT >= 0x602 + // PrefetchVirtualMemory is only present on Windows 8 and above, so we dynamically load it + BOOL (WINAPI *pPrefetchVirtualMemory) (HANDLE, ULONG_PTR, PWIN32_MEMORY_RANGE_ENTRY, ULONG); + HMODULE hKernel32 = GetModuleHandleW(L"kernel32.dll"); + + // may fail on pre-Windows 8 systems + pPrefetchVirtualMemory = reinterpret_cast (GetProcAddress(hKernel32, "PrefetchVirtualMemory")); + + if (pPrefetchVirtualMemory) { + // advise the kernel to preload the mapped memory + WIN32_MEMORY_RANGE_ENTRY range; + range.VirtualAddress = addr; + range.NumberOfBytes = (SIZE_T) std::min(size, prefetch); + if (!pPrefetchVirtualMemory(GetCurrentProcess(), 1, &range, 0)) { + LLAMA_LOG_WARN("warning: PrefetchVirtualMemory failed: %s\n", + llama_format_win_err(GetLastError()).c_str()); + } + } +#else + throw std::runtime_error("PrefetchVirtualMemory unavailable"); +#endif + } + } + + void unmap_fragment(size_t first, size_t last) { + // not supported + GGML_UNUSED(first); + GGML_UNUSED(last); + } + + ~llama_mmap() { + if (!UnmapViewOfFile(addr)) { + LLAMA_LOG_WARN("warning: UnmapViewOfFile failed: %s\n", + llama_format_win_err(GetLastError()).c_str()); + } + } +#else + static constexpr bool SUPPORTED = false; + + llama_mmap(struct llama_file * file, size_t prefetch = -1, bool numa = false) { + GGML_UNUSED(file); + GGML_UNUSED(prefetch); + GGML_UNUSED(numa); + + throw std::runtime_error("mmap not supported"); + } + + void unmap_fragment(size_t first, size_t last) { + GGML_UNUSED(first); + GGML_UNUSED(last); + + throw std::runtime_error("mmap not supported"); + } +#endif +}; +using llama_mmaps = std::vector>; + +// Represents some region of memory being locked using mlock or VirtualLock; +// will automatically unlock on destruction. +struct llama_mlock { + void * addr = NULL; + size_t size = 0; + + bool failed_already = false; + + llama_mlock() {} + llama_mlock(const llama_mlock &) = delete; + + ~llama_mlock() { + if (size) { + raw_unlock(addr, size); + } + } + + void init(void * ptr) { + GGML_ASSERT(addr == NULL && size == 0); // NOLINT + addr = ptr; + } + + void grow_to(size_t target_size) { + GGML_ASSERT(addr); + if (failed_already) { + return; + } + size_t granularity = lock_granularity(); + target_size = (target_size + granularity - 1) & ~(granularity - 1); + if (target_size > size) { + if (raw_lock((uint8_t *) addr + size, target_size - size)) { + size = target_size; + } else { + failed_already = true; + } + } + } + +#ifdef _POSIX_MEMLOCK_RANGE + static constexpr bool SUPPORTED = true; + + static size_t lock_granularity() { + return (size_t) sysconf(_SC_PAGESIZE); + } + + #ifdef __APPLE__ + #define MLOCK_SUGGESTION \ + "Try increasing the sysctl values 'vm.user_wire_limit' and 'vm.global_user_wire_limit' and/or " \ + "decreasing 'vm.global_no_user_wire_amount'. Also try increasing RLIMIT_MEMLOCK (ulimit -l).\n" + #else + #define MLOCK_SUGGESTION \ + "Try increasing RLIMIT_MEMLOCK ('ulimit -l' as root).\n" + #endif + + bool raw_lock(const void * addr, size_t size) const { + if (!mlock(addr, size)) { + return true; + } + + char* errmsg = std::strerror(errno); + bool suggest = (errno == ENOMEM); + + // Check if the resource limit is fine after all + struct rlimit lock_limit; + if (suggest && getrlimit(RLIMIT_MEMLOCK, &lock_limit)) { + suggest = false; + } + if (suggest && (lock_limit.rlim_max > lock_limit.rlim_cur + size)) { + suggest = false; + } + + LLAMA_LOG_WARN("warning: failed to mlock %zu-byte buffer (after previously locking %zu bytes): %s\n%s", + size, this->size, errmsg, suggest ? MLOCK_SUGGESTION : ""); + return false; + } + + #undef MLOCK_SUGGESTION + + static void raw_unlock(void * addr, size_t size) { + if (munlock(addr, size)) { + LLAMA_LOG_WARN("warning: failed to munlock buffer: %s\n", std::strerror(errno)); + } + } +#elif defined(_WIN32) + static constexpr bool SUPPORTED = true; + + static size_t lock_granularity() { + SYSTEM_INFO si; + GetSystemInfo(&si); + return (size_t) si.dwPageSize; + } + + bool raw_lock(void * ptr, size_t len) const { + for (int tries = 1; ; tries++) { + if (VirtualLock(ptr, len)) { + return true; + } + if (tries == 2) { + LLAMA_LOG_WARN("warning: failed to VirtualLock %zu-byte buffer (after previously locking %zu bytes): %s\n", + len, size, llama_format_win_err(GetLastError()).c_str()); + return false; + } + + // It failed but this was only the first try; increase the working + // set size and try again. + SIZE_T min_ws_size, max_ws_size; + if (!GetProcessWorkingSetSize(GetCurrentProcess(), &min_ws_size, &max_ws_size)) { + LLAMA_LOG_WARN("warning: GetProcessWorkingSetSize failed: %s\n", + llama_format_win_err(GetLastError()).c_str()); + return false; + } + // Per MSDN: "The maximum number of pages that a process can lock + // is equal to the number of pages in its minimum working set minus + // a small overhead." + // Hopefully a megabyte is enough overhead: + size_t increment = len + 1048576; + // The minimum must be <= the maximum, so we need to increase both: + min_ws_size += increment; + max_ws_size += increment; + if (!SetProcessWorkingSetSize(GetCurrentProcess(), min_ws_size, max_ws_size)) { + LLAMA_LOG_WARN("warning: SetProcessWorkingSetSize failed: %s\n", + llama_format_win_err(GetLastError()).c_str()); + return false; + } + } + } + + static void raw_unlock(void * ptr, size_t len) { + if (!VirtualUnlock(ptr, len)) { + LLAMA_LOG_WARN("warning: failed to VirtualUnlock buffer: %s\n", + llama_format_win_err(GetLastError()).c_str()); + } + } +#else + static constexpr bool SUPPORTED = false; + + static size_t lock_granularity() { + return (size_t) 65536; + } + + bool raw_lock(const void * addr, size_t len) const { + LLAMA_LOG_WARN("warning: mlock not supported on this system\n"); + return false; + } + + static void raw_unlock(const void * addr, size_t len) {} +#endif +}; +using llama_mlocks = std::vector>; + +// NOTE: avoid ever using this except for building the token_to_piece caches +static std::string llama_token_to_piece(const struct llama_model * model, llama_token token, bool special) { + std::string piece; + piece.resize(piece.capacity()); // using string internal cache + const int n_chars = llama_token_to_piece(model, token, &piece[0], piece.size(), 0, special); + if (n_chars < 0) { + piece.resize(-n_chars); + int check = llama_token_to_piece(model, token, &piece[0], piece.size(), 0, special); + GGML_ASSERT(check == -n_chars); + } + else { + piece.resize(n_chars); + } + + return piece; +} + +static ggml_backend_buffer_type_t llama_default_buffer_type_cpu(bool host_buffer) { + ggml_backend_buffer_type_t buft = nullptr; + +#if defined(GGML_USE_CUDA) + // host buffers should only be used when data is expected to be copied to/from the GPU + if (host_buffer) { + buft = ggml_backend_cuda_host_buffer_type(); + } +#elif defined(GGML_USE_SYCL) + if (host_buffer) { + buft = ggml_backend_sycl_host_buffer_type(); + } +#elif defined(GGML_USE_CPU_HBM) + buft = ggml_backend_cpu_hbm_buffer_type(); +#elif defined(GGML_USE_VULKAN) + if (host_buffer) { + buft = ggml_backend_vk_host_buffer_type(); + } +#endif + + if (buft == nullptr) { + buft = ggml_backend_cpu_buffer_type(); + } + return buft; + + GGML_UNUSED(host_buffer); +} + +// +// globals +// + +struct llama_state { + llama_state() { +#ifdef GGML_USE_METAL + ggml_backend_metal_log_set_callback(log_callback, log_callback_user_data); +#elif defined(GGML_USE_CUDA) + ggml_backend_cuda_log_set_callback(log_callback, log_callback_user_data); +#elif defined(GGML_USE_CANN) + ggml_backend_cann_log_set_callback(log_callback, log_callback_user_data); +#endif + } + + // We save the log callback globally + ggml_log_callback log_callback = llama_log_callback_default; + void * log_callback_user_data = nullptr; +}; + +static llama_state g_state; + +// available llama models +enum e_model { + MODEL_UNKNOWN, + MODEL_14M, + MODEL_17M, + MODEL_22M, + MODEL_33M, + MODEL_60M, + MODEL_70M, + MODEL_80M, + MODEL_109M, + MODEL_137M, + MODEL_160M, + MODEL_220M, + MODEL_250M, + MODEL_270M, + MODEL_335M, + MODEL_410M, + MODEL_450M, + MODEL_770M, + MODEL_780M, + MODEL_0_5B, + MODEL_1B, + MODEL_1_3B, + MODEL_1_4B, + MODEL_2B, + MODEL_2_8B, + MODEL_3B, + MODEL_4B, + MODEL_6B, + MODEL_6_9B, + MODEL_7B, + MODEL_8B, + MODEL_9B, + MODEL_11B, + MODEL_12B, + MODEL_13B, + MODEL_14B, + MODEL_15B, + MODEL_16B, + MODEL_20B, + MODEL_30B, + MODEL_34B, + MODEL_35B, + MODEL_40B, + MODEL_65B, + MODEL_70B, + MODEL_236B, + MODEL_314B, + MODEL_SMALL, + MODEL_MEDIUM, + MODEL_LARGE, + MODEL_XL, + MODEL_A2_7B, + MODEL_8x7B, + MODEL_8x22B, + MODEL_16x12B, + MODEL_10B_128x3_66B, + MODEL_57B_A14B, + MODEL_27B, +}; + +static const size_t kiB = 1024; +static const size_t MiB = 1024*kiB; +static const size_t GiB = 1024*MiB; + +struct llama_hparams { + bool vocab_only; + bool rope_finetuned; + bool use_par_res; + + uint32_t n_vocab; + uint32_t n_ctx_train; // context size the model was trained on + uint32_t n_embd; + uint32_t n_layer; + uint32_t n_rot; + uint32_t n_swa = 0; // sliding window attention (SWA) + uint32_t n_embd_head_k; // dimension of keys (d_k). d_q is assumed to be the same, but there are n_head q heads, and only n_head_kv k-v heads + uint32_t n_embd_head_v; // dimension of values (d_v) aka n_embd_head + uint32_t n_expert = 0; + uint32_t n_expert_used = 0; + uint32_t n_vocab_type = 0; // for BERT-style token types + uint32_t n_rel_attn_bkts = 0; + + std::array n_head_arr; + std::array n_head_kv_arr; + std::array n_ff_arr; + + uint32_t n_layer_dense_lead = 0; + uint32_t n_lora_q = 0; + uint32_t n_lora_kv = 0; + uint32_t n_ff_exp = 0; + uint32_t n_ff_shexp = 0; + uint32_t n_expert_shared = 0; + float expert_weights_scale = 0.0; + + float f_norm_eps; + float f_norm_rms_eps; + + float f_attn_logit_softcapping = 50.0f; + float f_final_logit_softcapping = 30.0f; + + float rope_attn_factor = 1.0f; + float rope_freq_base_train; + float rope_freq_scale_train; + uint32_t n_ctx_orig_yarn; + float rope_yarn_log_mul; + + // for State Space Models + uint32_t ssm_d_conv = 0; + uint32_t ssm_d_inner = 0; + uint32_t ssm_d_state = 0; + uint32_t ssm_dt_rank = 0; + + float f_clamp_kqv = 0.0f; + float f_max_alibi_bias = 0.0f; + float f_logit_scale = 0.0f; + + bool causal_attn = true; + bool use_alibi = false; + bool attn_soft_cap = false; + + // needed by encoder-decoder models (e.g. T5, FLAN-T5) + // ref: https://github.com/ggerganov/llama.cpp/pull/8141 + llama_token dec_start_token_id = -1; + + enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_NONE; + enum llama_rope_type rope_type = LLAMA_ROPE_TYPE_NONE; + enum llama_rope_scaling_type rope_scaling_type_train = LLAMA_ROPE_SCALING_TYPE_NONE; + + bool operator!=(const llama_hparams & other) const { + if (this->vocab_only != other.vocab_only) return true; + if (this->n_vocab != other.n_vocab) return true; + if (this->n_ctx_train != other.n_ctx_train) return true; + if (this->n_embd != other.n_embd) return true; + if (this->n_layer != other.n_layer) return true; + if (this->n_rot != other.n_rot) return true; + if (this->n_swa != other.n_swa) return true; + if (this->n_embd_head_k != other.n_embd_head_k) return true; + if (this->n_embd_head_v != other.n_embd_head_v) return true; + if (this->n_expert != other.n_expert) return true; + if (this->n_expert_used != other.n_expert_used) return true; + + if (this->n_head_arr != other.n_head_arr) return true; + if (this->n_head_kv_arr != other.n_head_kv_arr) return true; + if (this->n_ff_arr != other.n_ff_arr) return true; + + if (this->n_rel_attn_bkts != other.n_rel_attn_bkts) return true; + if (this->n_layer_dense_lead != other.n_layer_dense_lead) return true; + if (this->n_lora_q != other.n_lora_q) return true; + if (this->n_lora_kv != other.n_lora_kv) return true; + if (this->n_ff_exp != other.n_ff_exp) return true; + if (this->n_ff_shexp != other.n_ff_shexp) return true; + if (this->n_expert_shared != other.n_expert_shared) return true; + + if (this->rope_finetuned != other.rope_finetuned) return true; + if (this->n_ctx_orig_yarn != other.n_ctx_orig_yarn) return true; + + if (this->ssm_d_conv != other.ssm_d_conv) return true; + if (this->ssm_d_inner != other.ssm_d_inner) return true; + if (this->ssm_d_state != other.ssm_d_state) return true; + if (this->ssm_dt_rank != other.ssm_dt_rank) return true; + + if (this->dec_start_token_id != other.dec_start_token_id) return true; + + const float EPSILON = 1e-9f; + + if (!is_float_close(this->f_norm_eps, other.f_norm_eps, EPSILON)) return true; + if (!is_float_close(this->f_norm_rms_eps, other.f_norm_rms_eps, EPSILON)) return true; + if (!is_float_close(this->rope_attn_factor, other.rope_attn_factor, EPSILON)) return true; + if (!is_float_close(this->rope_freq_base_train, other.rope_freq_base_train, EPSILON)) return true; + if (!is_float_close(this->rope_freq_scale_train, other.rope_freq_scale_train, EPSILON)) return true; + if (!is_float_close(this->expert_weights_scale, other.expert_weights_scale, EPSILON)) return true; + if (!is_float_close(this->rope_yarn_log_mul, other.rope_yarn_log_mul, EPSILON)) return true; + + return false; + } + + uint32_t n_head(uint32_t il = 0) const { + if (il < n_layer) { + return n_head_arr[il]; + } + + GGML_ASSERT(false); + return 0; + } + + uint32_t n_head_kv(uint32_t il = 0) const { + if (il < n_layer) { + return n_head_kv_arr[il]; + } + + GGML_ASSERT(false); + return 0; + } + + uint32_t n_ff(uint32_t il = 0) const { + if (il < n_layer) { + return n_ff_arr[il]; + } + + GGML_ASSERT(false); + return 0; + } + + uint32_t n_gqa(uint32_t il = 0) const { + const uint32_t n_head = this->n_head(il); + const uint32_t n_head_kv = this->n_head_kv(il); + + if (n_head_kv == 0) { + return 0; + } + + return n_head/n_head_kv; + } + + uint32_t n_embd_k_gqa(uint32_t il = 0) const { // dimension of key embeddings across all k-v heads + const uint32_t n_head_kv = this->n_head_kv(il); + + return n_embd_head_k * n_head_kv; + } + + uint32_t n_embd_v_gqa(uint32_t il = 0) const { // dimension of value embeddings across all k-v heads + const uint32_t n_head_kv = this->n_head_kv(il); + + return n_embd_head_v * n_head_kv; + } + + uint32_t n_embd_k_s() const { // dimension of the rolling state embeddings + // corresponds to Mamba's conv_states size + // TODO: maybe support other convolution strides than 1 + // NOTE: since the first column of the conv_state is shifted out each time, it's not actually needed + return (ssm_d_conv > 0 ? ssm_d_conv - 1 : 0) * ssm_d_inner; + } + + uint32_t n_embd_v_s() const { // dimension of the recurrent state embeddings + // corresponds to Mamba's ssm_states size + return ssm_d_state * ssm_d_inner; + } +}; + +static_assert(std::is_trivially_copyable::value, "llama_hparams must be trivially copyable"); + +struct llama_cparams { + uint32_t n_ctx; // context size used during inference + uint32_t n_batch; + uint32_t n_ubatch; + uint32_t n_seq_max; + uint32_t n_threads; // number of threads to use for generation + uint32_t n_threads_batch; // number of threads to use for batch processing + + float rope_freq_base; + float rope_freq_scale; + + uint32_t n_ctx_orig_yarn; + // These hyperparameters are not exposed in GGUF, because all + // existing YaRN models use the same values for them. + float yarn_ext_factor; + float yarn_attn_factor; + float yarn_beta_fast; + float yarn_beta_slow; + float defrag_thold; + + bool embeddings; + bool causal_attn; + bool offload_kqv; + bool flash_attn; + + enum llama_pooling_type pooling_type; + + ggml_backend_sched_eval_callback cb_eval; + void * cb_eval_user_data; +}; + +// TODO: separate into "llama_layer_enc" and "llama_layer_dec" +struct llama_layer { + // normalization + struct ggml_tensor * attn_norm; + struct ggml_tensor * attn_norm_b; + struct ggml_tensor * attn_norm_2; + struct ggml_tensor * attn_norm_2_b; + struct ggml_tensor * attn_q_norm; + struct ggml_tensor * attn_q_norm_b; + struct ggml_tensor * attn_k_norm; + struct ggml_tensor * attn_k_norm_b; + struct ggml_tensor * attn_out_norm; + struct ggml_tensor * attn_out_norm_b; + struct ggml_tensor * attn_q_a_norm; + struct ggml_tensor * attn_kv_a_norm; + struct ggml_tensor * attn_sub_norm; + struct ggml_tensor * attn_post_norm; + struct ggml_tensor * ffn_sub_norm; + struct ggml_tensor * attn_norm_cross; + struct ggml_tensor * attn_norm_enc; + + // attention + struct ggml_tensor * wq; + struct ggml_tensor * wk; + struct ggml_tensor * wv; + struct ggml_tensor * wo; + struct ggml_tensor * wqkv; + struct ggml_tensor * wq_a; + struct ggml_tensor * wq_b; + struct ggml_tensor * wkv_a_mqa; + struct ggml_tensor * wkv_b; + struct ggml_tensor * wq_cross; + struct ggml_tensor * wk_cross; + struct ggml_tensor * wv_cross; + struct ggml_tensor * wo_cross; + struct ggml_tensor * wq_enc; + struct ggml_tensor * wk_enc; + struct ggml_tensor * wv_enc; + struct ggml_tensor * wo_enc; + + // attention bias + struct ggml_tensor * bq; + struct ggml_tensor * bk; + struct ggml_tensor * bv; + struct ggml_tensor * bo; + struct ggml_tensor * bqkv; + + // relative position bias + struct ggml_tensor * attn_rel_b; + struct ggml_tensor * attn_rel_b_enc; + struct ggml_tensor * attn_rel_b_cross; + + // normalization + struct ggml_tensor * ffn_norm; + struct ggml_tensor * ffn_norm_b; + struct ggml_tensor * ffn_post_norm; + struct ggml_tensor * layer_out_norm; + struct ggml_tensor * layer_out_norm_b; + struct ggml_tensor * ffn_norm_exps; + struct ggml_tensor * ffn_norm_enc; + + // ff + struct ggml_tensor * ffn_gate; // w1 + struct ggml_tensor * ffn_down; // w2 + struct ggml_tensor * ffn_up; // w3 + struct ggml_tensor * ffn_gate_enc; + struct ggml_tensor * ffn_down_enc; + struct ggml_tensor * ffn_up_enc; + + // ff MoE + struct ggml_tensor * ffn_gate_inp; + struct ggml_tensor * ffn_gate_exps; + struct ggml_tensor * ffn_down_exps; + struct ggml_tensor * ffn_up_exps ; + + // ff shared expert (shexp) + struct ggml_tensor * ffn_gate_inp_shexp; + struct ggml_tensor * ffn_gate_shexp; + struct ggml_tensor * ffn_down_shexp; + struct ggml_tensor * ffn_up_shexp; + + // ff bias + struct ggml_tensor * ffn_gate_b = nullptr; + struct ggml_tensor * ffn_down_b = nullptr; // b2 + struct ggml_tensor * ffn_up_b = nullptr; // b3 + struct ggml_tensor * ffn_act; + + // mamba proj + struct ggml_tensor * ssm_in; + struct ggml_tensor * ssm_x; + struct ggml_tensor * ssm_dt; + struct ggml_tensor * ssm_out; + + // mamba + struct ggml_tensor * ssm_conv1d; + struct ggml_tensor * ssm_a; + struct ggml_tensor * ssm_d; + + // mamba bias + struct ggml_tensor * ssm_conv1d_b; + struct ggml_tensor * ssm_dt_b; + + // long rope factors + struct ggml_tensor * rope_long = nullptr; + struct ggml_tensor * rope_short = nullptr; + + // bitnet scale + struct ggml_tensor * wq_scale; + struct ggml_tensor * wk_scale; + struct ggml_tensor * wv_scale; + struct ggml_tensor * wo_scale; + struct ggml_tensor * ffn_gate_scale; + struct ggml_tensor * ffn_up_scale; + struct ggml_tensor * ffn_down_scale; +}; + +struct llama_kv_cell { + llama_pos pos = -1; + llama_pos delta = 0; + int32_t src = 0; // used by recurrent state models to copy states + + std::set seq_id; + + bool has_seq_id(const llama_seq_id & id) const { + return seq_id.find(id) != seq_id.end(); + } + + bool is_empty() const { + return seq_id.empty(); + } + + bool is_same_seq(const llama_kv_cell & other) const { + return seq_id == other.seq_id; + } +}; + +// ring-buffer of cached KV data +struct llama_kv_cache { + bool has_shift = false; + bool do_defrag = false; + bool do_copy = false; + bool recurrent = false; // with recurrent state models, a cell can hold the state for more than one past token + bool v_trans = true; // the value tensor is transposed + + // Note: The value of head isn't only used to optimize searching + // for a free KV slot. llama_decode_internal also uses it, so it + // cannot be freely changed after a slot has been allocated. + uint32_t head = 0; + uint32_t size = 0; + uint32_t used = 0; // used cells (i.e. at least one seq_id) + + // computed before each graph build + uint32_t n = 0; + + ggml_type type_k = GGML_TYPE_F16; + ggml_type type_v = GGML_TYPE_F16; + + std::vector cells; + + std::vector k_l; // per layer + std::vector v_l; + + std::vector ctxs; + std::vector bufs; + + size_t total_size() const { + size_t size = 0; + for (ggml_backend_buffer_t buf : bufs) { + size += ggml_backend_buffer_get_size(buf); + } + return size; + } + + ~llama_kv_cache() { + for (struct ggml_context * ctx : ctxs) { + ggml_free(ctx); + } + for (ggml_backend_buffer_t buf : bufs) { + ggml_backend_buffer_free(buf); + } + } +}; + +struct llama_control_vector { + std::vector tensors; // per layer + std::vector ctxs; + std::vector bufs; + + int32_t layer_start = -1; + int32_t layer_end = -1; + + struct ggml_tensor * tensor_for(int il) const { + if (il < 0 || il < layer_start || il > layer_end || (size_t) il >= tensors.size()) { + return nullptr; + } + return tensors[il]; + } + + struct ggml_tensor * apply_to(struct ggml_context * ctx, struct ggml_tensor * cur, int il) const { + ggml_tensor * layer_dir = tensor_for(il); + if (layer_dir != nullptr) { + cur = ggml_add(ctx, cur, layer_dir); + } + return cur; + } + + ~llama_control_vector() { + for (struct ggml_context * ctx : ctxs) { + ggml_free(ctx); + } + for (ggml_backend_buffer_t buf : bufs) { + ggml_backend_buffer_free(buf); + } + } +}; + +struct llama_model { + e_model type = MODEL_UNKNOWN; + llm_arch arch = LLM_ARCH_UNKNOWN; + llama_ftype ftype = LLAMA_FTYPE_ALL_F32; + + std::string name = "n/a"; + + llama_hparams hparams = {}; + llama_vocab vocab; + + struct ggml_tensor * tok_embd; + struct ggml_tensor * type_embd; + struct ggml_tensor * pos_embd; + struct ggml_tensor * tok_norm; + struct ggml_tensor * tok_norm_b; + + struct ggml_tensor * output_norm; + struct ggml_tensor * output_norm_b; + struct ggml_tensor * output; + struct ggml_tensor * output_b; + struct ggml_tensor * output_norm_enc; + + std::vector layers; + + llama_split_mode split_mode; + int main_gpu; + int n_gpu_layers; + + std::vector rpc_servers; + + // gguf metadata + std::unordered_map gguf_kv; + + // layer -> buffer type mapping + struct layer_buft { + layer_buft() : buft_matrix(nullptr), buft(nullptr) {} + layer_buft(ggml_backend_buffer_type_t matrix) : buft_matrix(matrix), buft(matrix) {} + layer_buft(ggml_backend_buffer_type_t matrix, ggml_backend_buffer_type_t other) : buft_matrix(matrix), buft(other) {} + + ggml_backend_buffer_type_t buft_matrix; // matrices only - used by split buffers and backends that support only matrix multiplication + ggml_backend_buffer_type_t buft; // everything else + }; + + layer_buft buft_input; + layer_buft buft_output; + std::vector buft_layer; + + // contexts where the model tensors metadata is stored + std::vector ctxs; + + // the model memory buffers for the tensor data + std::vector bufs; + + // model memory mapped files + llama_mmaps mappings; + + // objects representing data potentially being locked in memory + llama_mlocks mlock_bufs; + llama_mlocks mlock_mmaps; + + // for quantize-stats only + std::vector> tensors_by_name; + + int64_t t_load_us = 0; + int64_t t_start_us = 0; + + // keep track of loaded lora adapters + std::set lora_adapters; + + ~llama_model() { + for (struct ggml_context * ctx : ctxs) { + ggml_free(ctx); + } + for (ggml_backend_buffer_t buf : bufs) { +#ifdef GGML_USE_CUDA + if (ggml_backend_buffer_get_type(buf) == ggml_backend_cpu_buffer_type()) { + ggml_backend_cuda_unregister_host_buffer(ggml_backend_buffer_get_base(buf)); + } +#endif + ggml_backend_buffer_free(buf); + } + while (!lora_adapters.empty()) { + llama_lora_adapter_free(*lora_adapters.begin()); + } + } +}; + +struct llama_context { + llama_context(const llama_model & model) + : model(model) + , sampling(llama_n_vocab(&model)) + , t_start_us(model.t_start_us) + , t_load_us(model.t_load_us) {} + + ~llama_context() { + ggml_backend_sched_free(sched); + + for (ggml_backend_t backend : backends) { + ggml_backend_free(backend); + } + + ggml_backend_buffer_free(buf_output); + } + + const struct llama_model & model; + + struct llama_cparams cparams; + struct llama_sampling sampling; + struct llama_kv_cache kv_self; + struct llama_control_vector cvec; + + std::unordered_map lora_adapters; + + std::vector backends; +#ifdef GGML_USE_METAL + ggml_backend_t backend_metal = nullptr; +#endif +#ifdef GGML_USE_BLAS + ggml_backend_t backend_blas = nullptr; +#endif + ggml_backend_t backend_cpu = nullptr; + + bool has_evaluated_once = false; + + int64_t t_start_us; + int64_t t_load_us; + int64_t t_p_eval_us = 0; + int64_t t_eval_us = 0; + + int64_t t_compute_start_us = 0; + int64_t n_queued_tokens = 0; + + int32_t n_p_eval = 0; // number of tokens in eval calls for the prompt (with batch size > 1) + int32_t n_eval = 0; // number of eval calls + + // host buffer for the model output (logits and embeddings) + ggml_backend_buffer_t buf_output = nullptr; + + // decode output (2-dimensional array: [n_outputs][n_vocab]) + size_t logits_size = 0; // capacity (of floats) for logits + float * logits = nullptr; + + std::vector output_ids; // map batch token positions to ids of the logits and embd buffers + size_t output_size = 0; // capacity (of tokens positions) for the output buffers + int32_t n_outputs = 0; // number of actually-used outputs in the current ubatch or last logical batch + + bool logits_all = false; + + // embeddings output (2-dimensional array: [n_outputs][n_embd]) + // populated only when pooling_type == LLAMA_POOLING_TYPE_NONE + size_t embd_size = 0; // capacity (of floats) for embeddings + float * embd = nullptr; + + // sequence embeddings output (map of [n_embd] vectors) + // populated only when pooling_type != LLAMA_POOLING_TYPE_NONE + std::map> embd_seq; + + // whether we are computing encoder output or decoder output + bool is_encoding = false; + + // output of the encoder part of the encoder-decoder models + std::vector embd_enc; + std::vector> seq_ids_enc; + + // memory buffers used to evaluate the model + std::vector buf_compute_meta; + ggml_backend_sched_t sched = nullptr; + + ggml_abort_callback abort_callback = nullptr; + void * abort_callback_data = nullptr; + + // input tensors + struct ggml_tensor * inp_tokens; // I32 [n_batch] + struct ggml_tensor * inp_embd; // F32 [n_embd, n_batch] + struct ggml_tensor * inp_pos; // I32 [n_batch] + struct ggml_tensor * inp_out_ids; // I32 [n_outputs] + struct ggml_tensor * inp_KQ_mask; // F32 [kv_size, n_batch] + struct ggml_tensor * inp_KQ_mask_swa; // F32 [kv_size, n_batch] + struct ggml_tensor * inp_K_shift; // I32 [kv_size] + struct ggml_tensor * inp_mean; // F32 [n_batch, n_batch] + struct ggml_tensor * inp_cls; // I32 [n_batch] + struct ggml_tensor * inp_s_copy; // I32 [kv_size] + struct ggml_tensor * inp_s_mask; // F32 [1, n_kv] + struct ggml_tensor * inp_s_seq; // I32 [n_kv, n_batch] + struct ggml_tensor * inp_pos_bucket; // I32 [n_batch|n_kv, n_batch] + struct ggml_tensor * inp_embd_enc; // F32 [n_embd, n_outputs_enc] + struct ggml_tensor * inp_KQ_mask_cross; // F32 [n_outputs_enc, n_batch] +}; + +struct llama_lora_weight { + struct ggml_tensor * a = nullptr; + struct ggml_tensor * b = nullptr; + llama_lora_weight() = default; + llama_lora_weight(struct ggml_tensor * a, struct ggml_tensor * b): a(a), b(b) {} +}; + +struct llama_lora_adapter { + struct llama_model * base_model; + // map tensor name to lora_a_b + std::unordered_map ab_map; + std::vector ctxs; + std::vector bufs; + + float alpha; + + llama_lora_adapter(struct llama_model * base_model): base_model(base_model) { + base_model->lora_adapters.insert(this); + } + + llama_lora_weight * get_weight(struct ggml_tensor * w) { + std::string name(w->name); + auto pos = ab_map.find(name); + if (ab_map.find(name) != ab_map.end()) { + return &pos->second; + } + return nullptr; + } + + ~llama_lora_adapter() { + for (struct ggml_context * ctx : ctxs) { + ggml_free(ctx); + } + for (ggml_backend_buffer_t buf : bufs) { + ggml_backend_buffer_free(buf); + } + auto pos = base_model->lora_adapters.find(this); + if (pos != base_model->lora_adapters.end()) { + base_model->lora_adapters.erase(pos); + } + } +}; + +static size_t llama_get_device_count(const llama_model & model) { + size_t count = 1; +#if defined(GGML_USE_CUDA) + count = ggml_backend_cuda_get_device_count(); +#elif defined(GGML_USE_SYCL) + count = ggml_backend_sycl_get_device_count(); +#elif defined(GGML_USE_VULKAN) + count = ggml_backend_vk_get_device_count(); +#elif defined(GGML_USE_CANN) + return ggml_backend_cann_get_device_count(); +#endif +#if defined(GGML_USE_RPC) + count += model.rpc_servers.size(); +#endif + return count; + GGML_UNUSED(model); +} + +static ggml_backend_buffer_type_t llama_default_buffer_type_offload(const llama_model & model, int gpu) { + ggml_backend_buffer_type_t buft = nullptr; + +#if defined(GGML_USE_RPC) + int dev_count = (int)llama_get_device_count(model); + int rpc_count = (int)model.rpc_servers.size(); + if (gpu >= dev_count - rpc_count) { + const char * endpoint = model.rpc_servers[gpu - dev_count + rpc_count].c_str(); + return ggml_backend_rpc_buffer_type(endpoint); + } +#endif +#if defined(GGML_USE_METAL) + buft = ggml_backend_metal_buffer_type(); +#elif defined(GGML_USE_CUDA) + buft = ggml_backend_cuda_buffer_type(gpu); +#elif defined(GGML_USE_VULKAN) + buft = ggml_backend_vk_buffer_type(gpu); +#elif defined(GGML_USE_SYCL) + buft = ggml_backend_sycl_buffer_type(gpu); +#elif defined(GGML_USE_KOMPUTE) + buft = ggml_backend_kompute_buffer_type(gpu); + if (buft == nullptr) { + LLAMA_LOG_WARN("%s: cannot use GPU %d, check `vulkaninfo --summary`\n", __func__, gpu); + } +#elif defined(GGML_USE_CANN) + buft = ggml_backend_cann_buffer_type(gpu); +#endif + + if (buft == nullptr) { + buft = llama_default_buffer_type_cpu(true); + } + return buft; + GGML_UNUSED(model); + GGML_UNUSED(gpu); +} + +static ggml_backend_buffer_type_t llama_default_buffer_type_split(const llama_model & model, int fallback_gpu, const float * tensor_split) { + ggml_backend_buffer_type_t buft = nullptr; + +#ifdef GGML_USE_CUDA + if (ggml_backend_cuda_get_device_count() > 1) { + buft = ggml_backend_cuda_split_buffer_type(tensor_split); + } +#endif + +#ifdef GGML_USE_SYCL + if (ggml_backend_sycl_get_device_count() > 1) { + buft = ggml_backend_sycl_split_buffer_type(tensor_split); + } +#endif + + if (buft == nullptr) { + buft = llama_default_buffer_type_offload(model, fallback_gpu); + } + return buft; + + GGML_UNUSED(tensor_split); +} + +static size_t llama_get_device_memory(const llama_model & model, int device) { +#if defined(GGML_USE_RPC) + int dev_count = (int)llama_get_device_count(model); + int rpc_count = (int)model.rpc_servers.size(); + if (device >= dev_count - rpc_count) { + size_t total; + size_t free; + const char * endpoint = model.rpc_servers[device - dev_count + rpc_count].c_str(); + ggml_backend_rpc_get_device_memory(endpoint, &free, &total); + return free; + } +#endif +#if defined(GGML_USE_CUDA) + size_t total; + size_t free; + ggml_backend_cuda_get_device_memory(device, &free, &total); + return free; +#elif defined(GGML_USE_SYCL) + size_t total; + size_t free; + ggml_backend_sycl_get_device_memory(device, &free, &total); + return free; +#elif defined(GGML_USE_VULKAN) + size_t total; + size_t free; + ggml_backend_vk_get_device_memory(device, &free, &total); + return free; +#elif defined(GGML_USE_CANN) + size_t total; + size_t free; + ggml_backend_cann_get_device_memory(device, &free, &total); + return free; +#else + return 1; +#endif + GGML_UNUSED(model); + GGML_UNUSED(device); +} + +// +// kv cache helpers +// + +static bool llama_kv_cache_init( + struct llama_kv_cache & cache, + const llama_context * ctx, + ggml_type type_k, + ggml_type type_v, + uint32_t kv_size, + bool offload) { + const llama_model & model = ctx->model; + const llama_cparams & cparams = ctx->cparams; + + const struct llama_hparams & hparams = model.hparams; + + const int64_t n_layer = hparams.n_layer; + + cache.has_shift = false; + + // TODO: find a nicer way to add other recurrent model architectures + cache.recurrent = model.arch == LLM_ARCH_MAMBA; + cache.v_trans = !cparams.flash_attn; + + cache.head = 0; + cache.size = kv_size; + cache.used = 0; + + cache.type_k = type_k; + cache.type_v = type_v; + + cache.cells.clear(); + cache.cells.resize(kv_size); + + if (cache.recurrent) { + // init state copy sources + for (uint32_t i = 0; i < cache.size; ++i) { + cache.cells[i].src = i; + } + } + + // count used buffer types + std::map buft_layer_count; + if (offload) { + for (int64_t i = 0; i < n_layer; ++i) { + buft_layer_count[model.buft_layer[i].buft]++; + } + } else { + buft_layer_count[llama_default_buffer_type_cpu(true)] = n_layer; + } + + // create a context for each buffer type + std::map ctx_map; + for (auto & it : buft_layer_count) { + int n_layers = it.second; + struct ggml_init_params params = { + /*.mem_size =*/ 2u*n_layers*ggml_tensor_overhead(), + /*.mem_buffer =*/ NULL, + /*.no_alloc =*/ true, + }; + ggml_context * ctx = ggml_init(params); + if (!ctx) { + LLAMA_LOG_ERROR("%s: failed to allocate context for kv cache\n", __func__); + return false; + } + ctx_map[it.first] = ctx; + cache.ctxs.push_back(ctx); + } + + cache.k_l.reserve(n_layer); + cache.v_l.reserve(n_layer); + + for (int i = 0; i < (int) n_layer; i++) { + const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(i) + hparams.n_embd_k_s(); + const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(i) + hparams.n_embd_v_s(); + + struct ggml_context * ctx = offload ? ctx_map.at(model.buft_layer[i].buft) : cache.ctxs.front(); + ggml_tensor * k = ggml_new_tensor_1d(ctx, type_k, n_embd_k_gqa*kv_size); + ggml_tensor * v = ggml_new_tensor_1d(ctx, type_v, n_embd_v_gqa*kv_size); + ggml_format_name(k, "cache_k_l%d", i); + ggml_format_name(v, "cache_v_l%d", i); + cache.k_l.push_back(k); + cache.v_l.push_back(v); + } + + // allocate tensors and initialize the buffers to avoid NaNs in the padding + for (auto it : ctx_map) { + ggml_backend_buffer_type_t buft = it.first; + ggml_context * ctx = it.second; + ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft); + if (!buf) { + LLAMA_LOG_ERROR("%s: failed to allocate buffer for kv cache\n", __func__); + return false; + } + ggml_backend_buffer_clear(buf, 0); + LLAMA_LOG_INFO("%s: %10s KV buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf)/1024.0/1024.0); + cache.bufs.push_back(buf); + } + + return true; +} + +// find an empty slot of size "n_tokens" in the cache +// updates the cache head +// Note: On success, it's important that cache.head points +// to the first cell of the slot. +static bool llama_kv_cache_find_slot( + struct llama_kv_cache & cache, + const struct llama_batch & batch) { + const uint32_t n_tokens = batch.n_tokens; + + if (cache.recurrent) { + // For recurrent state architectures (like Mamba), + // each KV cache cell can store the state for a whole sequence. + + llama_seq_id min = cache.size - 1; + llama_seq_id max = 0; + + for (uint32_t i = 0; i < n_tokens; ++i) { + for (int32_t j = 0; j < batch.n_seq_id[i]; ++j) { + llama_seq_id seq_id = batch.seq_id[i][j]; + // make sure it's a valid seq_id + if ((uint32_t) seq_id < cache.size) { + if (seq_id > max) { + max = seq_id; + } + if (seq_id < min) { + min = seq_id; + } + // Assuming the tokens are in-order + if (batch.pos[i] != cache.cells[seq_id].pos + 1) { + // What should happen when the pos backtracks or skips a value? + // Clearing the state mid-batch would require special-casing which isn't done. + LLAMA_LOG_WARN("%s: non-consecutive token position %d after %d for sequence %d\n", + __func__, batch.pos[i], cache.cells[seq_id].pos, seq_id); + } + if (cache.cells[seq_id].pos < 0 && 0 <= batch.pos[i]) { + cache.used += 1; + } + cache.cells[seq_id].pos = batch.pos[i]; + // NOTE: seq_ids are not inserted here; they are handled when the input tensors are set + } else { + // too big seq_id + // TODO: would it be possible to resize the KV cache size instead? + LLAMA_LOG_ERROR("%s: seq_id=%d >= kv_size=%d Try using a bigger --parallel value\n", __func__, seq_id, cache.size); + return false; + } + } + } + + // allow getting the range of used cells, from head to head + n + cache.head = min; + cache.n = max - min + 1; + + // sanity check + return max >= min; + } + // otherwise, one cell per token. + + if (n_tokens > cache.size) { + LLAMA_LOG_ERROR("%s: n_tokens=%d > cache.size=%d\n", __func__, n_tokens, cache.size); + return false; + } + + uint32_t n_tested = 0; + + while (true) { + if (cache.head + n_tokens > cache.size) { + n_tested += cache.size - cache.head; + cache.head = 0; + continue; + } + + bool found = true; + for (uint32_t i = 0; i < n_tokens; i++) { + if (cache.cells[cache.head + i].pos >= 0) { + found = false; + cache.head += i + 1; + n_tested += i + 1; + break; + } + } + + if (found) { + break; + } + + if (n_tested >= cache.size) { + //LLAMA_LOG_ERROR("%s: failed to find a slot for %d tokens\n", __func__, n_tokens); + return false; + } + } + + for (uint32_t i = 0; i < n_tokens; i++) { + cache.cells[cache.head + i].pos = batch.pos[i]; + + for (int32_t j = 0; j < batch.n_seq_id[i]; j++) { + cache.cells[cache.head + i].seq_id.insert(batch.seq_id[i][j]); + } + } + + cache.used += n_tokens; + + return true; +} + +// find how many cells are currently in use +static uint32_t llama_kv_cache_cell_max(const struct llama_kv_cache & cache) { + for (uint32_t i = cache.size; i > 0; --i) { + const llama_kv_cell & cell = cache.cells[i - 1]; + + if (cell.pos >= 0 && !cell.is_empty()) { + return i; + } + } + + return 0; +} + +static void llama_kv_cache_clear(struct llama_kv_cache & cache) { + for (int32_t i = 0; i < (int32_t) cache.size; ++i) { + cache.cells[i].pos = -1; + cache.cells[i].seq_id.clear(); + } + cache.head = 0; + cache.used = 0; + + for (auto & buf : cache.bufs) { + ggml_backend_buffer_clear(buf, 0); + } +} + +static bool llama_kv_cache_seq_rm( + struct llama_kv_cache & cache, + llama_seq_id seq_id, + llama_pos p0, + llama_pos p1) { + uint32_t new_head = cache.size; + + if (p0 < 0) p0 = 0; + if (p1 < 0) p1 = std::numeric_limits::max(); + + // models like Mamba can't have a state partially erased + if (cache.recurrent) { + if (seq_id >= (int64_t) cache.size) { + // could be fatal + return false; + } + if (0 <= seq_id) { + // partial intersection is invalid + if ((0 < p0 && p0 <= cache.cells[seq_id].pos) || (0 < p1 && p1 <= cache.cells[seq_id].pos)) { + return false; + } + } else { + // seq_id is negative, then the range should include everything or nothing + if (p0 != p1 && (p0 != 0 || p1 != std::numeric_limits::max())) { + return false; + } + } + } + + for (uint32_t i = 0; i < cache.size; ++i) { + if (cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) { + if (seq_id < 0) { + cache.cells[i].seq_id.clear(); + } else if (cache.cells[i].has_seq_id(seq_id)) { + cache.cells[i].seq_id.erase(seq_id); + } else { + continue; + } + if (cache.cells[i].is_empty()) { + // keep count of the number of used cells + if (cache.cells[i].pos >= 0) cache.used--; + + cache.cells[i].pos = -1; + if (new_head == cache.size) new_head = i; + } + } + } + + // If we freed up a slot, set head to it so searching can start there. + if (new_head != cache.size && new_head < cache.head) cache.head = new_head; + + return true; +} + +static void llama_kv_cache_seq_cp( + struct llama_kv_cache & cache, + llama_seq_id seq_id_src, + llama_seq_id seq_id_dst, + llama_pos p0, + llama_pos p1) { + if (p0 < 0) p0 = 0; + if (p1 < 0) p1 = std::numeric_limits::max(); + + if (cache.recurrent) { + if ((uint32_t) seq_id_dst < cache.size && (uint32_t) seq_id_src < cache.size) { + seq_id_src = cache.cells[seq_id_src].src; + GGML_ASSERT((uint32_t) seq_id_src < cache.size); + // intent to "copy from" + // supports copy chains thanks to taking the source of the source + cache.cells[seq_id_dst].src = seq_id_src; + + // preserve the "keep or clear" status of the copied sequence + if (cache.cells[seq_id_src].has_seq_id(seq_id_src)) { + cache.cells[seq_id_dst].seq_id.insert(seq_id_dst); + } else { + cache.cells[seq_id_dst].seq_id.erase(seq_id_dst); + } + + cache.do_copy = true; + + cache.cells[seq_id_dst].pos = cache.cells[seq_id_src].pos; + } + return; + } + // otherwise, this is the KV cache of a Transformer-like model + + cache.head = 0; + + for (uint32_t i = 0; i < cache.size; ++i) { + if (cache.cells[i].has_seq_id(seq_id_src) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) { + cache.cells[i].seq_id.insert(seq_id_dst); + } + } +} + +static void llama_kv_cache_seq_keep(struct llama_kv_cache & cache, llama_seq_id seq_id) { + uint32_t new_head = cache.size; + + for (uint32_t i = 0; i < cache.size; ++i) { + if (!cache.cells[i].has_seq_id(seq_id)) { + if (cache.cells[i].pos >= 0) cache.used--; + cache.cells[i].pos = -1; + cache.cells[i].seq_id.clear(); + if (new_head == cache.size) new_head = i; + } else { + cache.cells[i].seq_id.clear(); + cache.cells[i].seq_id.insert(seq_id); + } + } + + // If we freed up a slot, set head to it so searching can start there. + if (new_head != cache.size && new_head < cache.head) cache.head = new_head; +} + +static void llama_kv_cache_seq_add( + struct llama_kv_cache & cache, + llama_seq_id seq_id, + llama_pos p0, + llama_pos p1, + llama_pos delta) { + uint32_t new_head = cache.size; + + if (p0 < 0) p0 = 0; + if (p1 < 0) p1 = std::numeric_limits::max(); + // If there is no range then return early to avoid looping over the cache. + if (p0 == p1) return; + + if (cache.recurrent) { + // for Mamba-like models, only the pos needs to be shifted + if (0 <= seq_id && seq_id < (int64_t) cache.size) { + llama_kv_cell & cell = cache.cells[seq_id]; + if (cell.has_seq_id(seq_id) && p0 <= cell.pos && cell.pos < p1) { + cell.pos += delta; + } + } + return; + } + + for (uint32_t i = 0; i < cache.size; ++i) { + if (cache.cells[i].has_seq_id(seq_id) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) { + cache.has_shift = true; + cache.cells[i].pos += delta; + cache.cells[i].delta += delta; + + if (cache.cells[i].pos < 0) { + if (!cache.cells[i].is_empty()) { + cache.used--; + } + cache.cells[i].pos = -1; + cache.cells[i].seq_id.clear(); + if (new_head == cache.size) { + new_head = i; + } + } + } + } + + // If we freed up a slot, set head to it so searching can start there. + // Otherwise we just start the next search from the beginning. + cache.head = new_head != cache.size ? new_head : 0; +} + +static void llama_kv_cache_seq_div( + struct llama_kv_cache & cache, + llama_seq_id seq_id, + llama_pos p0, + llama_pos p1, + int d) { + if (p0 < 0) p0 = 0; + if (p1 < 0) p1 = std::numeric_limits::max(); + // If there is no range then return early to avoid looping over the cache. + if (p0 == p1) return; + + if (cache.recurrent) { + // for Mamba-like models, only the pos needs to be changed + if (0 <= seq_id && seq_id < (int64_t) cache.size) { + llama_kv_cell & cell = cache.cells[seq_id]; + if (cell.has_seq_id(seq_id) && p0 <= cell.pos && cell.pos < p1) { + cell.pos /= d; + } + } + return; + } + + for (uint32_t i = 0; i < cache.size; ++i) { + if (cache.cells[i].has_seq_id(seq_id) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) { + cache.has_shift = true; + + { + llama_pos p_old = cache.cells[i].pos; + cache.cells[i].pos /= d; + cache.cells[i].delta += cache.cells[i].pos - p_old; + } + } + } +} + +static llama_pos llama_kv_cache_seq_pos_max(struct llama_kv_cache & cache, llama_seq_id seq_id) { + llama_pos result = 0; + + for (uint32_t i = 0; i < cache.size; ++i) { + if (cache.cells[i].has_seq_id(seq_id)) { + result = std::max(result, cache.cells[i].pos); + } + } + + return result; +} + +static void llama_kv_cache_defrag(struct llama_kv_cache & cache) { + cache.do_defrag = true; +} + +static uint32_t llama_kv_cache_get_padding(const struct llama_cparams & cparams) { + // the FA kernels require padding to avoid extra runtime boundary checks + return cparams.flash_attn ? 256u : 32u; +} + +// +// model loading and saving +// + +enum llama_fver { + GGUF_FILE_VERSION_V1 = 1, + GGUF_FILE_VERSION_V2 = 2, + GGUF_FILE_VERSION_V3 = 3, +}; + +static const char * llama_file_version_name(llama_fver version) { + switch (version) { + case GGUF_FILE_VERSION_V1: return "GGUF V1 (support until nov 2023)"; + case GGUF_FILE_VERSION_V2: return "GGUF V2"; + case GGUF_FILE_VERSION_V3: return "GGUF V3 (latest)"; + } + + return "unknown"; +} + +static std::string llama_format_tensor_shape(const std::vector & ne) { + char buf[256]; + snprintf(buf, sizeof(buf), "%5" PRId64, ne.at(0)); + for (size_t i = 1; i < ne.size(); i++) { + snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), ", %5" PRId64, ne.at(i)); + } + return buf; +} + +static std::string llama_format_tensor_shape(const struct ggml_tensor * t) { + char buf[256]; + snprintf(buf, sizeof(buf), "%5" PRId64, t->ne[0]); + for (int i = 1; i < GGML_MAX_DIMS; i++) { + snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), ", %5" PRId64, t->ne[i]); + } + return buf; +} + +namespace GGUFMeta { + template + struct GKV_Base_Type { + static constexpr gguf_type gt = gt_; + + static T getter(const gguf_context * ctx, const int kid) { + return gfun(ctx, kid); + } + }; + + template struct GKV_Base; + + template<> struct GKV_Base: GKV_Base_Type {}; + template<> struct GKV_Base: GKV_Base_Type {}; + template<> struct GKV_Base: GKV_Base_Type {}; + template<> struct GKV_Base: GKV_Base_Type {}; + template<> struct GKV_Base: GKV_Base_Type {}; + template<> struct GKV_Base: GKV_Base_Type {}; + template<> struct GKV_Base: GKV_Base_Type {}; + template<> struct GKV_Base: GKV_Base_Type {}; + template<> struct GKV_Base: GKV_Base_Type {}; + template<> struct GKV_Base: GKV_Base_Type {}; + template<> struct GKV_Base: GKV_Base_Type {}; + template<> struct GKV_Base: GKV_Base_Type {}; + + template<> struct GKV_Base { + static constexpr gguf_type gt = GGUF_TYPE_STRING; + + static std::string getter(const gguf_context * ctx, const int kid) { + return gguf_get_val_str(ctx, kid); + } + }; + + struct ArrayInfo { + const gguf_type gt; + const size_t length; + const void * data; + }; + + template<> struct GKV_Base { + public: + static constexpr gguf_type gt = GGUF_TYPE_ARRAY; + static ArrayInfo getter(const gguf_context *ctx, const int k) { + return ArrayInfo { + gguf_get_arr_type(ctx, k), + size_t(gguf_get_arr_n(ctx, k)), + gguf_get_arr_data(ctx, k), + }; + } + }; + + template + class GKV : public GKV_Base { + GKV() = delete; + + public: + static T get_kv(const gguf_context * ctx, const int k) { + const enum gguf_type kt = gguf_get_kv_type(ctx, k); + + if (kt != GKV::gt) { + throw std::runtime_error(format("key %s has wrong type %s but expected type %s", + gguf_get_key(ctx, k), gguf_type_name(kt), gguf_type_name(GKV::gt))); + } + return GKV::getter(ctx, k); + } + + static const char * override_type_to_str(const llama_model_kv_override_type ty) { + switch (ty) { + case LLAMA_KV_OVERRIDE_TYPE_BOOL: return "bool"; + case LLAMA_KV_OVERRIDE_TYPE_INT: return "int"; + case LLAMA_KV_OVERRIDE_TYPE_FLOAT: return "float"; + case LLAMA_KV_OVERRIDE_TYPE_STR: return "str"; + } + return "unknown"; + } + + static bool validate_override(const llama_model_kv_override_type expected_type, const struct llama_model_kv_override * ovrd) { + if (!ovrd) { return false; } + if (ovrd->tag == expected_type) { + LLAMA_LOG_INFO("%s: Using metadata override (%5s) '%s' = ", + __func__, override_type_to_str(ovrd->tag), ovrd->key); + switch (ovrd->tag) { + case LLAMA_KV_OVERRIDE_TYPE_BOOL: { + LLAMA_LOG_INFO("%s\n", ovrd->val_bool ? "true" : "false"); + } break; + case LLAMA_KV_OVERRIDE_TYPE_INT: { + LLAMA_LOG_INFO("%" PRId64 "\n", ovrd->val_i64); + } break; + case LLAMA_KV_OVERRIDE_TYPE_FLOAT: { + LLAMA_LOG_INFO("%.6f\n", ovrd->val_f64); + } break; + case LLAMA_KV_OVERRIDE_TYPE_STR: { + LLAMA_LOG_INFO("%s\n", ovrd->val_str); + } break; + default: + // Shouldn't be possible to end up here, but just in case... + throw std::runtime_error( + format("Unsupported attempt to override %s type for metadata key %s\n", + override_type_to_str(ovrd->tag), ovrd->key)); + } + return true; + } + LLAMA_LOG_WARN("%s: Warning: Bad metadata override type for key '%s', expected %s but got %s\n", + __func__, ovrd->key, override_type_to_str(expected_type), override_type_to_str(ovrd->tag)); + return false; + } + + template + static typename std::enable_if::value, bool>::type + try_override(OT & target, const struct llama_model_kv_override * ovrd) { + if (validate_override(LLAMA_KV_OVERRIDE_TYPE_BOOL, ovrd)) { + target = ovrd->val_bool; + return true; + } + return false; + } + + template + static typename std::enable_if::value && std::is_integral::value, bool>::type + try_override(OT & target, const struct llama_model_kv_override * ovrd) { + if (validate_override(LLAMA_KV_OVERRIDE_TYPE_INT, ovrd)) { + target = ovrd->val_i64; + return true; + } + return false; + } + + template + static typename std::enable_if::value, bool>::type + try_override(T & target, const struct llama_model_kv_override * ovrd) { + if (validate_override(LLAMA_KV_OVERRIDE_TYPE_FLOAT, ovrd)) { + target = ovrd->val_f64; + return true; + } + return false; + } + + template + static typename std::enable_if::value, bool>::type + try_override(T & target, const struct llama_model_kv_override * ovrd) { + if (validate_override(LLAMA_KV_OVERRIDE_TYPE_STR, ovrd)) { + target = ovrd->val_str; + return true; + } + return false; + } + + static bool set(const gguf_context * ctx, const int k, T & target, const struct llama_model_kv_override * ovrd = nullptr) { + if (try_override(target, ovrd)) { + return true; + } + if (k < 0) { return false; } + target = get_kv(ctx, k); + return true; + } + + static bool set(const gguf_context * ctx, const char * key, T & target, const struct llama_model_kv_override * ovrd = nullptr) { + return set(ctx, gguf_find_key(ctx, key), target, ovrd); + } + + static bool set(const gguf_context * ctx, const std::string & key, T & target, const struct llama_model_kv_override * ovrd = nullptr) { + return set(ctx, key.c_str(), target, ovrd); + } + }; +} + +using llama_buf_map = std::unordered_map; + +struct llama_model_loader { + int n_kv = 0; + int n_tensors = 0; + int n_created = 0; + + int64_t n_elements = 0; + size_t n_bytes = 0; + + bool use_mmap = false; + bool check_tensors; + + llama_files files; + llama_ftype ftype; + llama_fver fver; + + llama_mmaps mappings; + + // Holds information on a model weight + struct llama_tensor_weight { + uint16_t idx; // source file index + size_t offs; // tensor data offset in the original file + + ggml_tensor * tensor; + + llama_tensor_weight(const llama_file * file, uint16_t idx, const char * name, const struct gguf_context * gguf_ctx, ggml_tensor * tensor) : idx(idx), tensor(tensor) { + const int tensor_idx = gguf_find_tensor(gguf_ctx, name); + offs = gguf_get_data_offset(gguf_ctx) + gguf_get_tensor_offset(gguf_ctx, tensor_idx); + + if (offs + ggml_nbytes(tensor) < offs || offs + ggml_nbytes(tensor) > file->size) { + throw std::runtime_error(format("tensor '%s' data is not within the file bounds, model is corrupted or incomplete", name)); + } + } + }; + std::vector weights; + + std::unordered_map kv_overrides; + + struct gguf_context * meta = NULL; + std::vector contexts; + + std::string arch_name; + LLM_KV llm_kv = LLM_KV(LLM_ARCH_UNKNOWN); + + llama_model_loader(const std::string & fname, bool use_mmap, bool check_tensors, const struct llama_model_kv_override * param_overrides_p) { + int trace = 0; + if (getenv("LLAMA_TRACE")) { + trace = atoi(getenv("LLAMA_TRACE")); + } + + if (param_overrides_p != nullptr) { + for (const struct llama_model_kv_override * p = param_overrides_p; p->key[0] != 0; p++) { + kv_overrides.insert({std::string(p->key), *p}); + } + } + + struct ggml_context * ctx = NULL; + struct gguf_init_params params = { + /*.no_alloc = */ true, + /*.ctx = */ &ctx, + }; + + meta = gguf_init_from_file(fname.c_str(), params); + if (!meta) { + throw std::runtime_error(format("%s: failed to load model from %s\n", __func__, fname.c_str())); + } + + get_key(llm_kv(LLM_KV_GENERAL_ARCHITECTURE), arch_name, false); + llm_kv = LLM_KV(llm_arch_from_string(arch_name)); + + files.emplace_back(new llama_file(fname.c_str(), "rb")); + contexts.emplace_back(ctx); + + // Save tensors data offset of the main file. + // For subsidiary files, `meta` tensor data offset must not be used, + // so we build a unified tensors index for weights. + for (ggml_tensor * cur = ggml_get_first_tensor(ctx); cur; cur = ggml_get_next_tensor(ctx, cur)) { + weights.emplace_back(files.back().get(), 0, cur->name, meta, cur); + } + uint16_t n_split = 0; + get_key(llm_kv(LLM_KV_SPLIT_COUNT), n_split, false); + + // Load additional GGML contexts + if (n_split > 1) { + uint16_t idx = 0; + get_key(llm_kv(LLM_KV_SPLIT_NO), idx); + if (idx != 0) { + throw std::runtime_error(format("illegal split file: %d, model must be loaded with the first split", idx)); + } + + char split_prefix[PATH_MAX] = {0}; + if (!llama_split_prefix(split_prefix, sizeof(split_prefix), fname.c_str(), idx, n_split)) { + throw std::runtime_error(format("invalid split file: %s", fname.c_str())); + } + + if (trace > 0) { + LLAMA_LOG_INFO("%s: loading additional %d GGUFs\n", __func__, n_split); + } + + char split_path[PATH_MAX] = {0}; + for (idx = 1; idx < n_split; idx++) { + llama_split_path(split_path, sizeof(split_path), split_prefix, idx, n_split); + + struct gguf_init_params split_params = { + /*.no_alloc = */ true, + /*.ctx = */ &ctx, + }; + struct gguf_context * ctx_gguf = gguf_init_from_file(split_path, split_params); + if (!ctx_gguf) { + throw std::runtime_error(format("%s: failed to load GGUF split from %s\n", __func__, split_path)); + } + + files.emplace_back(new llama_file(split_path, "rb")); + contexts.emplace_back(ctx); + + // Save tensors data offset info of the shard. + for (ggml_tensor * cur = ggml_get_first_tensor(ctx); cur; cur = ggml_get_next_tensor(ctx, cur)) { + weights.emplace_back(files.back().get(), idx, cur->name, ctx_gguf, cur); + } + + gguf_free(ctx_gguf); + } + + get_key(llm_kv(LLM_KV_SPLIT_TENSORS_COUNT), n_tensors); + + // sanity check + { + const int n_tensors_loaded = (int) weights.size(); + if (n_tensors != n_tensors_loaded) { + throw std::runtime_error(format("corrupted model: %d tensors expected but %d found", n_tensors, n_tensors_loaded)); + } + } + + LLAMA_LOG_INFO("%s: additional %d GGUFs metadata loaded.\n", __func__, n_split - 1); + } + + n_kv = gguf_get_n_kv(meta); + n_tensors = weights.size(); + + fver = (enum llama_fver) gguf_get_version(meta); + + std::set tensor_names; + for (auto & w : weights) { + n_elements += ggml_nelements(w.tensor); + n_bytes += ggml_nbytes(w.tensor); + // make sure there is no duplicated tensor names + const std::string name(w.tensor->name); + auto found = tensor_names.find(name); + if (found != tensor_names.end()) { + throw std::runtime_error(format("invalid model: tensor '%s' is duplicated", w.tensor->name)); + } + tensor_names.insert(name); + } + + LLAMA_LOG_INFO("%s: loaded meta data with %d key-value pairs and %d tensors from %s (version %s)\n", + __func__, n_kv, n_tensors, fname.c_str(), llama_file_version_name(fver)); + + // determine file type based on the number of tensors for each quantization and print meta data + // TODO: make optional + { + std::map n_type; + + uint32_t n_type_max = 0; + enum ggml_type type_max = GGML_TYPE_F32; + + for (int i = 0; i < n_tensors; i++) { + const ggml_tensor * tensor = weights.at(i).tensor; + enum ggml_type type = tensor->type; + + n_type[type]++; + + if (n_type_max < n_type[type]) { + n_type_max = n_type[type]; + type_max = type; + } + + if (trace > 0) { + const uint16_t sid = weights.at(i).idx; + LLAMA_LOG_INFO("%s: - tensor %4d, split %2d: %32s %-8s [ %s ]\n", __func__, i, sid, ggml_get_name(tensor), ggml_type_name(type), llama_format_tensor_shape(tensor).c_str()); + } + } + + switch (type_max) { + case GGML_TYPE_F32: ftype = LLAMA_FTYPE_ALL_F32; break; + case GGML_TYPE_F16: ftype = LLAMA_FTYPE_MOSTLY_F16; break; + case GGML_TYPE_BF16: ftype = LLAMA_FTYPE_MOSTLY_BF16; break; + case GGML_TYPE_Q4_0: ftype = LLAMA_FTYPE_MOSTLY_Q4_0; break; + case GGML_TYPE_Q4_1: ftype = LLAMA_FTYPE_MOSTLY_Q4_1; break; + case GGML_TYPE_Q5_0: ftype = LLAMA_FTYPE_MOSTLY_Q5_0; break; + case GGML_TYPE_Q5_1: ftype = LLAMA_FTYPE_MOSTLY_Q5_1; break; + case GGML_TYPE_Q8_0: ftype = LLAMA_FTYPE_MOSTLY_Q8_0; break; + case GGML_TYPE_Q2_K: ftype = LLAMA_FTYPE_MOSTLY_Q2_K; break; + case GGML_TYPE_Q3_K: ftype = LLAMA_FTYPE_MOSTLY_Q3_K_M; break; + case GGML_TYPE_Q4_K: ftype = LLAMA_FTYPE_MOSTLY_Q4_K_M; break; + case GGML_TYPE_Q5_K: ftype = LLAMA_FTYPE_MOSTLY_Q5_K_M; break; + case GGML_TYPE_Q6_K: ftype = LLAMA_FTYPE_MOSTLY_Q6_K; break; + case GGML_TYPE_IQ2_XXS: ftype = LLAMA_FTYPE_MOSTLY_IQ2_XXS; break; + case GGML_TYPE_IQ2_XS: ftype = LLAMA_FTYPE_MOSTLY_IQ2_XS; break; + case GGML_TYPE_IQ2_S: ftype = LLAMA_FTYPE_MOSTLY_IQ2_S; break; + case GGML_TYPE_IQ3_XXS: ftype = LLAMA_FTYPE_MOSTLY_IQ3_XXS; break; + case GGML_TYPE_IQ1_S: ftype = LLAMA_FTYPE_MOSTLY_IQ1_S; break; + case GGML_TYPE_IQ1_M: ftype = LLAMA_FTYPE_MOSTLY_IQ1_M; break; + case GGML_TYPE_IQ1_BN: ftype = LLAMA_FTYPE_MOSTLY_IQ1_BN; break; + case GGML_TYPE_IQ2_BN: ftype = LLAMA_FTYPE_MOSTLY_IQ2_BN; break; + case GGML_TYPE_IQ4_NL: ftype = LLAMA_FTYPE_MOSTLY_IQ4_NL; break; + case GGML_TYPE_IQ4_XS: ftype = LLAMA_FTYPE_MOSTLY_IQ4_XS; break; + case GGML_TYPE_IQ3_S: ftype = LLAMA_FTYPE_MOSTLY_IQ3_S; break; + case GGML_TYPE_Q4_0_4_4: ftype = LLAMA_FTYPE_MOSTLY_Q4_0_4_4; break; + case GGML_TYPE_Q4_0_4_8: ftype = LLAMA_FTYPE_MOSTLY_Q4_0_4_8; break; + case GGML_TYPE_Q4_0_8_8: ftype = LLAMA_FTYPE_MOSTLY_Q4_0_8_8; break; + default: + { + LLAMA_LOG_WARN("%s: unknown type %s\n", __func__, ggml_type_name(type_max)); + ftype = LLAMA_FTYPE_ALL_F32; + } break; + } + + // this is a way to mark that we have "guessed" the file type + ftype = (llama_ftype) (ftype | LLAMA_FTYPE_GUESSED); + + { + const int kid = gguf_find_key(meta, "general.file_type"); // TODO: use LLM_KV + if (kid >= 0) { + ftype = (llama_ftype) gguf_get_val_u32(meta, kid); + } + } + + LLAMA_LOG_INFO("%s: Dumping metadata keys/values. Note: KV overrides do not apply in this output.\n", __func__); + + for (int i = 0; i < n_kv; i++) { + const char * name = gguf_get_key(meta, i); + const enum gguf_type type = gguf_get_kv_type(meta, i); + const std::string type_name = + type == GGUF_TYPE_ARRAY + ? format("%s[%s,%d]", gguf_type_name(type), gguf_type_name(gguf_get_arr_type(meta, i)), gguf_get_arr_n(meta, i)) + : gguf_type_name(type); + + std::string value = gguf_kv_to_str(meta, i); + const size_t MAX_VALUE_LEN = 40; + if (value.size() > MAX_VALUE_LEN) { + value = format("%s...", value.substr(0, MAX_VALUE_LEN - 3).c_str()); + } + replace_all(value, "\n", "\\n"); + + LLAMA_LOG_INFO("%s: - kv %3d: %42s %-16s = %s\n", __func__, i, name, type_name.c_str(), value.c_str()); + } + + // print type counts + for (auto & kv : n_type) { + if (kv.second == 0) { + continue; + } + + LLAMA_LOG_INFO("%s: - type %4s: %4d tensors\n", __func__, ggml_type_name(kv.first), kv.second); + } + } + + if (!llama_mmap::SUPPORTED) { + LLAMA_LOG_WARN("%s: mmap is not supported on this platform\n", __func__); + use_mmap = false; + } + + this->use_mmap = use_mmap; + this->check_tensors = check_tensors; + } + + ~llama_model_loader() { + if (meta) { + gguf_free(meta); + } + for (auto * ctx : contexts) { + ggml_free(ctx); + } + } + + template + typename std::enable_if::value, bool>::type + get_arr_n(const std::string & key, T & result, const bool required = true) { + const int kid = gguf_find_key(meta, key.c_str()); + + if (kid < 0) { + if (required) { + throw std::runtime_error(format("key not found in model: %s", key.c_str())); + } + return false; + } + + struct GGUFMeta::ArrayInfo arr_info = + GGUFMeta::GKV::get_kv(meta, kid); + + + result = arr_info.length; + return true; + } + + template + typename std::enable_if::value, bool>::type + get_arr_n(const enum llm_kv kid, T & result, const bool required = true) { + return get_arr_n(llm_kv(kid), result, required); + } + + template + bool get_arr(const std::string & key, std::vector & result, const bool required = true) { + const int kid = gguf_find_key(meta, key.c_str()); + + if (kid < 0 || gguf_get_kv_type(meta, kid) != GGUF_TYPE_ARRAY) { + if (required) { + throw std::runtime_error(format("array key not found in model: %s", key.c_str())); + } + return false; + } + + struct GGUFMeta::ArrayInfo arr_info = + GGUFMeta::GKV::get_kv(meta, kid); + + switch (arr_info.gt) { + case GGUF_TYPE_FLOAT32: GGML_ASSERT((std::is_same::value)); break; + case GGUF_TYPE_INT32: GGML_ASSERT( + (std::is_same::value) || + (std::is_same::value)); break; + default: + throw std::runtime_error(format("%s is not a float32, int32 array", key.c_str())); + } + + result.resize(arr_info.length); + result.assign((const T*)arr_info.data, (const T *)arr_info.data + arr_info.length); + + return true; + } + + template + bool get_arr(const std::string & key, std::array & result, const bool required = true) { + const int kid = gguf_find_key(meta, key.c_str()); + + if (kid < 0 || gguf_get_kv_type(meta, kid) != GGUF_TYPE_ARRAY) { + if (required) { + throw std::runtime_error(format("array key not found in model: %s", key.c_str())); + } + return false; + } + + struct GGUFMeta::ArrayInfo arr_info = + GGUFMeta::GKV::get_kv(meta, kid); + + switch (arr_info.gt) { + case GGUF_TYPE_FLOAT32: GGML_ASSERT((std::is_same::value)); break; + case GGUF_TYPE_INT32: GGML_ASSERT( + (std::is_same::value) || + (std::is_same::value)); break; + default: + throw std::runtime_error(format("%s is not a float32, int32 array", key.c_str())); + } + + if (arr_info.length > N_MAX) { + throw std::runtime_error(format("array length %u for key %s exceeds max %u", (uint32_t) arr_info.length, key.c_str(), (uint32_t) N_MAX)); + } + + std::copy((const T*)arr_info.data, (const T *)arr_info.data + arr_info.length, result.begin()); + + return true; + } + + template + bool get_arr(const enum llm_kv kid, T & result, const bool required = true) { + return get_arr(llm_kv(kid), result, required); + } + + template + bool get_key(const std::string & key, T & result, const bool required = true) { + auto it = kv_overrides.find(key); + + const struct llama_model_kv_override * override = + it != kv_overrides.end() ? &it->second : nullptr; + + const bool found = GGUFMeta::GKV::set(meta, key, result, override); + + if (required && !found) { + throw std::runtime_error(format("key not found in model: %s", key.c_str())); + } + + return found; + } + + template + bool get_key(const enum llm_kv kid, T & result, const bool required = true) { + return get_key(llm_kv(kid), result, required); + } + + // get array of n <= N_MAX elements, or a single element repeated n times + template + bool get_key_or_arr(const std::string & key, std::array & result, uint32_t n, const bool required = true) { + const int kid = gguf_find_key(meta, key.c_str()); + + if (kid < 0) { + if (required) { + throw std::runtime_error(format("key not found in model: %s", key.c_str())); + } + return false; + } + + if (n > N_MAX) { + throw std::runtime_error(format("n > N_MAX: %u > %u for key %s", (uint32_t) n, (uint32_t) N_MAX, key.c_str())); + } + + if (gguf_get_kv_type(meta, kid) == GGUF_TYPE_ARRAY) { + struct GGUFMeta::ArrayInfo arr_info = + GGUFMeta::GKV::get_kv(meta, kid); + + if (n != arr_info.length) { + throw std::runtime_error(format("key %s has wrong array length; expected %u, got %u", key.c_str(), n, (uint32_t) arr_info.length)); + } + + return get_arr(key, result, required); + } else { + T value; + + bool ok = get_key(key, value, required); + if (!ok) { + return false; + } + + for (uint32_t i = 0; i < n; i++) { + result[i] = value; + } + + return true; + } + } + + template + bool get_key_or_arr(const enum llm_kv kid, T & result, uint32_t n, const bool required = true) { + return get_key_or_arr(llm_kv(kid), result, n, required); + } + + std::string get_arch_name() const { + return arch_name; + } + + enum llm_arch get_arch() const { + return llm_kv.arch; + } + + const char * get_tensor_name(int i) const { + return weights.at(i).tensor->name; + } + + const llama_tensor_weight * get_weight(const char * name) const { + for (const auto & weight : weights) { + if (strcmp(name, weight.tensor->name) == 0) { + return &weight; + } + } + return nullptr; + } + + const llama_tensor_weight * get_weight(int i) const { + return get_weight(get_tensor_name(i)); + } + + const llama_tensor_weight & require_weight(const char * name) const { + const llama_tensor_weight * weight = get_weight(name); + if (!weight) { + throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name)); + } + return *weight; + } + + struct ggml_tensor * get_tensor_meta(const char * name) const { + const auto * weight = get_weight(name); + if (!weight) { + return nullptr; + } + return weight->tensor; + } + + struct ggml_tensor * require_tensor_meta(const char * name) const { + struct ggml_tensor * tensor = get_tensor_meta(name); + if (!tensor) { + throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name)); + } + return tensor; + } + + struct ggml_tensor * get_tensor_meta(int i) const { + return get_tensor_meta(get_tensor_name(i)); + } + + struct ggml_tensor * create_tensor_for(struct ggml_context * ctx, const struct ggml_tensor * cur, bool duplicated) { + struct ggml_tensor * tensor = ggml_dup_tensor(ctx, cur); + ggml_set_name(tensor, ggml_get_name(cur)); + + if (duplicated) { + size_data += ggml_nbytes(cur); + } else { + n_created++; + } + + return tensor; + } + + const struct ggml_tensor * check_tensor_dims(const std::string & name, const std::vector & ne, bool required) const { + const struct ggml_tensor * cur = get_tensor_meta(name.c_str()); + + if (cur == NULL) { + if (!required) { + return NULL; + } + throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name.c_str())); + } + + { + bool is_ok = true; + for (size_t i = 0; i < GGML_MAX_DIMS; ++i) { + if ((i < ne.size() && ne[i] != cur->ne[i]) || (i >= ne.size() && cur->ne[i] != 1)) { + is_ok = false; + break; + } + } + if (!is_ok) { + throw std::runtime_error( + format("%s: tensor '%s' has wrong shape; expected %s, got %s", + __func__, name.c_str(), + llama_format_tensor_shape(ne).c_str(), + llama_format_tensor_shape(cur).c_str())); + } + } + + return cur; + } + + static const int TENSOR_NOT_REQUIRED = 1; + static const int TENSOR_DUPLICATED = 2; + + struct ggml_tensor * create_tensor(struct ggml_context * ctx, const std::string & name, const std::vector & ne, int flags = 0) { + const struct ggml_tensor * cur = check_tensor_dims(name, ne, !(flags & TENSOR_NOT_REQUIRED)); + + if (cur == NULL) { + return NULL; + } + + return create_tensor_for(ctx, cur, flags & TENSOR_DUPLICATED); + } + + struct ggml_tensor * create_tensor_as_view(struct ggml_context * ctx, struct ggml_tensor * base, const std::string & name, const std::vector & ne, size_t offset, bool required = true) { + const struct ggml_tensor * cur = check_tensor_dims(name, ne, required); + + if (cur == NULL) { + return NULL; + } + + if (cur->type != base->type) { + throw std::runtime_error(format("%s: tensor '%s' has wrong type; expected %s, got %s", __func__, name.c_str(), ggml_type_name(base->type), ggml_type_name(cur->type))); + } + + std::array dims; + for (size_t i = 0; i < GGML_MAX_DIMS; ++i) { + dims[i] = i < ne.size() ? ne[i] : 1; + } + + struct ggml_tensor * tensor = ggml_view_4d(ctx, base, + dims[0], dims[1], dims[2], dims[3], + cur->nb[1], cur->nb[2], cur->nb[3], + offset); + + ggml_set_name(tensor, name.c_str()); + + n_created++; + + return tensor; + } + + void done_getting_tensors() const { + if (n_created != n_tensors) { + throw std::runtime_error(format("%s: wrong number of tensors; expected %d, got %d", __func__, n_tensors, n_created)); + } + } + + void init_mappings(bool prefetch = true, llama_mlocks * mlock_mmaps = nullptr) { + if (use_mmap) { + mappings.reserve(files.size()); + mmaps_used.reserve(files.size()); + for (const auto & file : files) { + std::unique_ptr mapping(new llama_mmap(file.get(), prefetch ? -1 : 0, ggml_is_numa())); + mmaps_used.emplace_back(mapping->size, 0); + if (mlock_mmaps) { + std::unique_ptr mlock_mmap(new llama_mlock()); + mlock_mmap->init(mapping->addr); + mlock_mmaps->emplace_back(std::move(mlock_mmap)); + } + mappings.emplace_back(std::move(mapping)); + } + } + + // compute the total size of all tensors for progress reporting + for (auto & w : weights) { + size_data += ggml_nbytes(w.tensor); + } + } + + void get_mapping_range(size_t * first, size_t * last, void ** addr, int idx, ggml_context * ctx) const { + GGML_ASSERT(!mappings.empty()); + const auto & mapping = mappings.at(idx); + + *first = mapping->size; + *last = 0; + *addr = mapping->addr; + for (ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor; tensor = ggml_get_next_tensor(ctx, tensor)) { + try { + const auto * weight = get_weight(ggml_get_name(tensor)); + if (!weight) { + continue; + } + if (weight->idx != idx) { + continue; + } + *first = std::min(*first, weight->offs); + *last = std::max(*last, weight->offs + ggml_nbytes(tensor)); + } catch(...) { + // the tensor is not in the model + } + } + } + + // for backwards compatibility, does not support ggml-backend + void load_data_for(struct ggml_tensor * cur) const { + const auto & w = require_weight(ggml_get_name(cur)); + + if (use_mmap) { + const auto & mapping = mappings.at(w.idx); + if (cur->data == nullptr) { + cur->data = (uint8_t *)mapping->addr + w.offs; + } else { + memcpy(cur->data, (uint8_t *)mapping->addr + w.offs, ggml_nbytes(cur)); + } + } else { + GGML_ASSERT(cur->data != nullptr); + GGML_ASSERT(w.idx < files.size()); + const auto & file = files.at(w.idx); + file->seek(w.offs, SEEK_SET); + file->read_raw(cur->data, ggml_nbytes(cur)); + } + + if (check_tensors && !ggml_validate_row_data(cur->type, cur->data, ggml_nbytes(cur))) { + throw std::runtime_error(format("tensor '%s' has invalid data", ggml_get_name(cur))); + } + } + + size_t size_done = 0; + size_t size_data = 0; + std::vector> mmaps_used; + + // Returns false if cancelled by progress_callback + bool load_all_data( + struct ggml_context * ctx, + llama_buf_map & bufs_mmap, + llama_mlocks * lmlocks, + llama_progress_callback progress_callback, + void * progress_callback_user_data) { + GGML_ASSERT(size_data != 0 && "call init_mappings() first"); + + std::vector> read_buf; + std::vector>> validation_result; + +#if defined(GGML_USE_CUDA) + // 4 staging buffers for async uploads, each sized 1MB seems to be a good default for single NVMe drives. + // NVMe raid configurations might require more / larger buffers. + constexpr size_t n_buffers = 4; + constexpr size_t buffer_size = 1 * 1024 * 1024; // 1MB + + std::vector host_buffers; + std::vector host_ptrs; + std::vector events; + size_t buffer_idx = 0; // buffer to use for async loads + + ggml_backend_t cuda_backend = nullptr; + if (!use_mmap && !check_tensors) { + // When not using mmaped io use async uploads from pinned memory to GPU memory. + // First determine if the CUDA backend is active, and if so, determine the device ID. + ggml_backend_buffer_t buf = bufs_mmap.count(0) ? bufs_mmap.at(0) : nullptr; + if (buf) { + ggml_backend_buffer_type_t buffer_type = ggml_backend_buffer_get_type(buf); + for (int i = 0; i < ggml_backend_cuda_get_device_count(); ++i) { + auto * cuda_buffer_type = ggml_backend_cuda_buffer_type(i); + if (buffer_type == cuda_buffer_type) { + cuda_backend = ggml_backend_cuda_init(i); + break; + } + } + } + + // If the cuda backend is active create pinned memory buffers and events for synchronisation. + if (cuda_backend) { + for (size_t idx = 0; idx < n_buffers; ++idx) { + host_buffers.emplace_back(ggml_backend_buft_alloc_buffer(llama_default_buffer_type_cpu(true), buffer_size)); + host_ptrs.emplace_back(ggml_backend_buffer_get_base(host_buffers[idx])); + events.emplace_back(ggml_backend_event_new(cuda_backend)); + } + } + } +#endif + + for (struct ggml_tensor * cur = ggml_get_first_tensor(ctx); cur != NULL; cur = ggml_get_next_tensor(ctx, cur)) { + const auto * weight = get_weight(ggml_get_name(cur)); + if (weight == nullptr) { + // this can happen with split experts models + continue; + } + + if (progress_callback) { + if (!progress_callback((float) size_done / size_data, progress_callback_user_data)) { + return false; + } + } + + size_t n_size = ggml_nbytes(cur); + + if (use_mmap) { + const auto & mapping = mappings.at(weight->idx); + ggml_backend_buffer_t buf_mmap = nullptr; + if (bufs_mmap.count(weight->idx)) { + buf_mmap = bufs_mmap.at(weight->idx); + } + uint8_t * data = (uint8_t *) mapping->addr + weight->offs; + + if (check_tensors) { + validation_result.emplace_back(std::async(std::launch::async, [cur, data, n_size] { + return std::make_pair(cur, ggml_validate_row_data(cur->type, data, n_size)); + })); + } + + GGML_ASSERT(buf_mmap || cur->data); // either we have a buffer to allocate the tensor in, or it is already allocated + if (buf_mmap && cur->data == nullptr) { + ggml_backend_tensor_alloc(buf_mmap, cur, data); + if (lmlocks) { + const auto & lmlock = lmlocks->at(weight->idx); + lmlock->grow_to(weight->offs + n_size); + } + + auto & mmap_used = mmaps_used[weight->idx]; + mmap_used.first = std::min(mmap_used.first, weight->offs); + mmap_used.second = std::max(mmap_used.second, weight->offs + n_size); + } else { + ggml_backend_tensor_set(cur, data, 0, n_size); + } + } else { + GGML_ASSERT(weight->idx < files.size()); + const auto & file = files.at(weight->idx); + if (ggml_backend_buffer_is_host(cur->buffer)) { + file->seek(weight->offs, SEEK_SET); + file->read_raw(cur->data, n_size); + if (check_tensors) { + validation_result.emplace_back(std::async(std::launch::async, [cur, n_size] { + return std::make_pair(cur, ggml_validate_row_data(cur->type, cur->data, n_size)); + })); + } + } else { +#if defined(GGML_USE_CUDA) + // If cuda_backend is valid load the tensor in chunks to pinned memory and upload the buffers asynchronously to the GPU. + if (cuda_backend) { + file->seek(weight->offs, SEEK_SET); + + size_t bytes_read = 0; + + while (bytes_read < n_size) { + size_t read_iteration = std::min(buffer_size, n_size - bytes_read); + + ggml_backend_event_synchronize(events[buffer_idx]); + file->read_raw(host_ptrs[buffer_idx], read_iteration); + ggml_backend_tensor_set_async(cuda_backend, cur, host_ptrs[buffer_idx], bytes_read, read_iteration); + ggml_backend_event_record(events[buffer_idx]); + + bytes_read += read_iteration; + ++buffer_idx; + buffer_idx %= n_buffers; + } + } + else +#endif + { + read_buf.resize(n_size); + file->seek(weight->offs, SEEK_SET); + file->read_raw(read_buf.data(), n_size); + ggml_backend_tensor_set(cur, read_buf.data(), 0, n_size); + if (check_tensors && !ggml_validate_row_data(cur->type, read_buf.data(), n_size)) { + throw std::runtime_error(format("tensor '%s' has invalid data", ggml_get_name(cur))); + } + } + } + } + + size_done += n_size; + } + +#if defined(GGML_USE_CUDA) + // free temporary resources used for async cuda uploads + if (cuda_backend) { + for (size_t idx = 0; idx < n_buffers;++idx) { + ggml_backend_event_synchronize(events[idx]); + ggml_backend_event_free(events[idx]); + ggml_backend_buffer_free(host_buffers[idx]); + } + ggml_backend_free(cuda_backend); + } +#endif + + // check validation results + bool validation_failed = false; + for (auto & future : validation_result) { + auto result = future.get(); + if (!result.second) { + LLAMA_LOG_ERROR("%s: tensor '%s' has invalid data\n", __func__, ggml_get_name(result.first)); + validation_failed = true; + } + } + if (validation_failed) { + throw std::runtime_error("found tensors with invalid data"); + } + + // check if this is the last call and do final cleanup + if (size_done >= size_data) { + // unmap offloaded tensors and metadata + if (use_mmap) { + for (uint32_t idx = 0; idx < mappings.size(); idx++) { + const auto & mmap_used = mmaps_used.at(idx); + auto & mapping = mappings.at(idx); + mapping->unmap_fragment(0, mmap_used.first); + if (mmap_used.second != 0) { + mapping->unmap_fragment(mmap_used.second, mapping->size); + } + } + } + if (progress_callback) { + // Even though the model is done loading, we still honor + // cancellation since we need to free allocations. + return progress_callback(1.0f, progress_callback_user_data); + } + } + + return true; + } +}; + +template<> +bool llama_model_loader::get_key(const enum llm_kv kid, enum llama_pooling_type & result, const bool required) { + uint32_t tmp; + const bool found = get_key(kid, tmp, required); + if (found) { + result = (enum llama_pooling_type) tmp; + } else { + result = LLAMA_POOLING_TYPE_UNSPECIFIED; + } + return found; +} + + +// +// load LLaMA models +// + +static const char * llama_model_arch_name(llm_arch arch) { + auto it = LLM_ARCH_NAMES.find(arch); + if (it == LLM_ARCH_NAMES.end()) { + return "unknown"; + } + return it->second; +} + +static std::string llama_model_ftype_name(llama_ftype ftype) { + if (ftype & LLAMA_FTYPE_GUESSED) { + return llama_model_ftype_name((enum llama_ftype) (ftype & ~LLAMA_FTYPE_GUESSED)) + " (guessed)"; + } + + switch (ftype) { + case LLAMA_FTYPE_ALL_F32: return "all F32"; + case LLAMA_FTYPE_MOSTLY_F16: return "F16"; + case LLAMA_FTYPE_MOSTLY_BF16: return "BF16"; + case LLAMA_FTYPE_MOSTLY_Q4_0: return "Q4_0"; + case LLAMA_FTYPE_MOSTLY_Q4_1: return "Q4_1"; + case LLAMA_FTYPE_MOSTLY_Q5_0: return "Q5_0"; + case LLAMA_FTYPE_MOSTLY_Q5_1: return "Q5_1"; + case LLAMA_FTYPE_MOSTLY_Q8_0: return "Q8_0"; + case LLAMA_FTYPE_MOSTLY_Q2_K: return "Q2_K - Medium"; + case LLAMA_FTYPE_MOSTLY_Q2_K_S: return "Q2_K - Small"; + case LLAMA_FTYPE_MOSTLY_Q3_K_S: return "Q3_K - Small"; + case LLAMA_FTYPE_MOSTLY_Q3_K_M: return "Q3_K - Medium"; + case LLAMA_FTYPE_MOSTLY_Q3_K_L: return "Q3_K - Large"; + case LLAMA_FTYPE_MOSTLY_Q4_K_S: return "Q4_K - Small"; + case LLAMA_FTYPE_MOSTLY_Q4_K_M: return "Q4_K - Medium"; + case LLAMA_FTYPE_MOSTLY_Q5_K_S: return "Q5_K - Small"; + case LLAMA_FTYPE_MOSTLY_Q5_K_M: return "Q5_K - Medium"; + case LLAMA_FTYPE_MOSTLY_Q6_K: return "Q6_K"; + case LLAMA_FTYPE_MOSTLY_IQ2_XXS: return "IQ2_XXS - 2.0625 bpw"; + case LLAMA_FTYPE_MOSTLY_IQ2_XS: return "IQ2_XS - 2.3125 bpw"; + case LLAMA_FTYPE_MOSTLY_IQ2_S: return "IQ2_S - 2.5 bpw"; + case LLAMA_FTYPE_MOSTLY_IQ2_M: return "IQ2_M - 2.7 bpw"; + case LLAMA_FTYPE_MOSTLY_IQ3_XS: return "IQ3_XS - 3.3 bpw"; + case LLAMA_FTYPE_MOSTLY_IQ3_XXS: return "IQ3_XXS - 3.0625 bpw"; + case LLAMA_FTYPE_MOSTLY_IQ1_S: return "IQ1_S - 1.5625 bpw"; + case LLAMA_FTYPE_MOSTLY_IQ1_M: return "IQ1_M - 1.75 bpw"; + case LLAMA_FTYPE_MOSTLY_IQ4_NL: return "IQ4_NL - 4.5 bpw"; + case LLAMA_FTYPE_MOSTLY_IQ4_XS: return "IQ4_XS - 4.25 bpw"; + case LLAMA_FTYPE_MOSTLY_IQ3_S: return "IQ3_S - 3.4375 bpw"; + case LLAMA_FTYPE_MOSTLY_IQ3_M: return "IQ3_S mix - 3.66 bpw"; + case LLAMA_FTYPE_MOSTLY_Q4_0_4_4: return "Q4_0_4_4"; + case LLAMA_FTYPE_MOSTLY_Q4_0_4_8: return "Q4_0_4_8"; + case LLAMA_FTYPE_MOSTLY_Q4_0_8_8: return "Q4_0_8_8"; + case LLAMA_FTYPE_MOSTLY_IQ1_BN: return "IQ1_BN - 1.625 bpw Bitnet"; + case LLAMA_FTYPE_MOSTLY_IQ2_BN: return "IQ2_BN - 2.00 bpw Bitnet"; + + default: return "unknown, may not work"; + } +} + +static const char * llama_model_type_name(e_model type) { + switch (type) { + case MODEL_14M: return "14M"; + case MODEL_17M: return "17M"; + case MODEL_22M: return "22M"; + case MODEL_33M: return "33M"; + case MODEL_60M: return "60M"; + case MODEL_70M: return "70M"; + case MODEL_80M: return "80M"; + case MODEL_109M: return "109M"; + case MODEL_137M: return "137M"; + case MODEL_160M: return "160M"; + case MODEL_220M: return "220M"; + case MODEL_250M: return "250M"; + case MODEL_270M: return "270M"; + case MODEL_335M: return "335M"; + case MODEL_410M: return "410M"; + case MODEL_450M: return "450M"; + case MODEL_770M: return "770M"; + case MODEL_780M: return "780M"; + case MODEL_0_5B: return "0.5B"; + case MODEL_1B: return "1B"; + case MODEL_1_3B: return "1.3B"; + case MODEL_1_4B: return "1.4B"; + case MODEL_2B: return "2B"; + case MODEL_2_8B: return "2.8B"; + case MODEL_3B: return "3B"; + case MODEL_4B: return "4B"; + case MODEL_6B: return "6B"; + case MODEL_6_9B: return "6.9B"; + case MODEL_7B: return "7B"; + case MODEL_8B: return "8B"; + case MODEL_9B: return "9B"; + case MODEL_11B: return "11B"; + case MODEL_12B: return "12B"; + case MODEL_13B: return "13B"; + case MODEL_14B: return "14B"; + case MODEL_15B: return "15B"; + case MODEL_16B: return "16B"; + case MODEL_20B: return "20B"; + case MODEL_30B: return "30B"; + case MODEL_34B: return "34B"; + case MODEL_35B: return "35B"; + case MODEL_40B: return "40B"; + case MODEL_65B: return "65B"; + case MODEL_70B: return "70B"; + case MODEL_236B: return "236B"; + case MODEL_314B: return "314B"; + case MODEL_SMALL: return "0.1B"; + case MODEL_MEDIUM: return "0.4B"; + case MODEL_LARGE: return "0.8B"; + case MODEL_XL: return "1.5B"; + case MODEL_A2_7B: return "A2.7B"; + case MODEL_8x7B: return "8x7B"; + case MODEL_8x22B: return "8x22B"; + case MODEL_16x12B: return "16x12B"; + case MODEL_10B_128x3_66B: return "10B+128x3.66B"; + case MODEL_57B_A14B: return "57B.A14B"; + case MODEL_27B: return "27B"; + default: return "?B"; + } +} + +static const char * llama_model_vocab_type_name(enum llama_vocab_type type){ + switch (type) { + case LLAMA_VOCAB_TYPE_NONE: return "no vocab"; + case LLAMA_VOCAB_TYPE_SPM: return "SPM"; + case LLAMA_VOCAB_TYPE_BPE: return "BPE"; + case LLAMA_VOCAB_TYPE_WPM: return "WPM"; + case LLAMA_VOCAB_TYPE_UGM: return "UGM"; + default: return "unknown"; + } +} + +static void llm_load_arch(llama_model_loader & ml, llama_model & model) { + model.arch = ml.get_arch(); + if (model.arch == LLM_ARCH_UNKNOWN) { + throw std::runtime_error("unknown model architecture: '" + ml.get_arch_name() + "'"); + } +} + +static void llm_load_hparams( + llama_model_loader & ml, + llama_model & model) { + auto & hparams = model.hparams; + const gguf_context * ctx = ml.meta; + + // get metadata as string + for (int i = 0; i < gguf_get_n_kv(ctx); i++) { + enum gguf_type type = gguf_get_kv_type(ctx, i); + if (type == GGUF_TYPE_ARRAY) { + continue; + } + const char * name = gguf_get_key(ctx, i); + const std::string value = gguf_kv_to_str(ctx, i); + model.gguf_kv.emplace(name, value); + } + + // get general kv + ml.get_key(LLM_KV_GENERAL_NAME, model.name, false); + + // get hparams kv + ml.get_key(LLM_KV_VOCAB_SIZE, hparams.n_vocab, false) || ml.get_arr_n(LLM_KV_TOKENIZER_LIST, hparams.n_vocab); + + // everything past this point is not vocab-related + if (hparams.vocab_only) { + return; + } + + ml.get_key(LLM_KV_CONTEXT_LENGTH, hparams.n_ctx_train); + ml.get_key(LLM_KV_EMBEDDING_LENGTH, hparams.n_embd); + ml.get_key(LLM_KV_BLOCK_COUNT, hparams.n_layer); + ml.get_key(LLM_KV_EXPERT_COUNT, hparams.n_expert, false); + ml.get_key(LLM_KV_EXPERT_USED_COUNT, hparams.n_expert_used, false); + + GGML_ASSERT(hparams.n_expert <= LLAMA_MAX_EXPERTS); + GGML_ASSERT(hparams.n_expert_used <= hparams.n_expert); + if (hparams.n_expert > 0) { + GGML_ASSERT(hparams.n_expert_used > 0); + } else { + GGML_ASSERT(hparams.n_expert_used == 0); + } + + // zero-out the per-layer hparams + std::fill(hparams.n_head_arr.begin(), hparams.n_head_arr.end(), 0); + std::fill(hparams.n_head_kv_arr.begin(), hparams.n_head_kv_arr.end(), 0); + std::fill(hparams.n_ff_arr.begin(), hparams.n_ff_arr.end(), 0); + + ml.get_key_or_arr(LLM_KV_FEED_FORWARD_LENGTH, hparams.n_ff_arr, hparams.n_layer); + ml.get_key_or_arr(LLM_KV_ATTENTION_HEAD_COUNT, hparams.n_head_arr, hparams.n_layer); + + // n_head_kv is optional, default to n_head + hparams.n_head_kv_arr = hparams.n_head_arr; + + ml.get_key_or_arr(LLM_KV_ATTENTION_HEAD_COUNT_KV, hparams.n_head_kv_arr, hparams.n_layer, false); + + bool rope_finetuned = false; + ml.get_key(LLM_KV_ROPE_SCALING_FINETUNED, rope_finetuned, false); + hparams.rope_finetuned = rope_finetuned; + + hparams.n_ctx_orig_yarn = hparams.n_ctx_train; + ml.get_key(LLM_KV_ROPE_SCALING_ORIG_CTX_LEN, hparams.n_ctx_orig_yarn, false); + + // rope_freq_base (optional) + hparams.rope_freq_base_train = 10000.0f; + ml.get_key(LLM_KV_ROPE_FREQ_BASE, hparams.rope_freq_base_train, false); + + std::string rope_scaling("linear"); + ml.get_key(LLM_KV_ROPE_SCALING_TYPE, rope_scaling, false); + hparams.rope_scaling_type_train = llama_rope_scaling_type_from_string(rope_scaling); + GGML_ASSERT(hparams.rope_scaling_type_train != LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED); + + // rope_freq_scale (inverse of the kv) is optional + float ropescale = 0.0f; + if (!ml.get_key(LLM_KV_ROPE_SCALING_FACTOR, ropescale, false)) { + // try the old key name + ml.get_key(LLM_KV_ROPE_SCALE_LINEAR, ropescale, false); + } + hparams.rope_freq_scale_train = ropescale == 0.0f ? 1.0f : 1.0f/ropescale; + + ml.get_key(LLM_KV_ROPE_SCALING_ATTN_FACTOR, hparams.rope_attn_factor, false); + + // non-transformer models do not have attention heads + if (hparams.n_head() > 0) { + // gpt-neox n_rot = rotary_pct * (n_embd / n_head) + // gpt-j n_rot = rotary_dim + + hparams.n_embd_head_k = hparams.n_embd / hparams.n_head(); + ml.get_key(LLM_KV_ATTENTION_KEY_LENGTH, hparams.n_embd_head_k, false); + + hparams.n_embd_head_v = hparams.n_embd / hparams.n_head(); + ml.get_key(LLM_KV_ATTENTION_VALUE_LENGTH, hparams.n_embd_head_v, false); + + // sanity check for n_rot (optional) + hparams.n_rot = hparams.n_embd_head_k; + + ml.get_key(LLM_KV_ROPE_DIMENSION_COUNT, hparams.n_rot, false); + + if (model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_FALCON) { + if (hparams.n_rot != hparams.n_embd_head_k) { + throw std::runtime_error(format("invalid n_rot: %u, expected %u", hparams.n_rot, hparams.n_embd_head_k)); + } + } + } else { + hparams.n_rot = 0; + hparams.n_embd_head_k = 0; + hparams.n_embd_head_v = 0; + } + + // arch-specific KVs + switch (model.arch) { + case LLM_ARCH_LLAMA: + { + ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); + + if (hparams.n_expert == 8) { + switch (hparams.n_layer) { + case 32: model.type = e_model::MODEL_8x7B; break; + case 56: model.type = e_model::MODEL_8x22B; break; + default: model.type = e_model::MODEL_UNKNOWN; + } + } else { + switch (hparams.n_layer) { + case 22: model.type = e_model::MODEL_1B; break; + case 26: model.type = e_model::MODEL_3B; break; + // granite uses a vocab with len 49152 + case 32: model.type = hparams.n_vocab == 49152 ? e_model::MODEL_3B : (hparams.n_vocab < 40000 ? e_model::MODEL_7B : e_model::MODEL_8B); break; + case 36: model.type = e_model::MODEL_8B; break; // granite + case 40: model.type = e_model::MODEL_13B; break; + case 48: model.type = e_model::MODEL_34B; break; + case 60: model.type = e_model::MODEL_30B; break; + case 80: model.type = hparams.n_head() == hparams.n_head_kv() ? e_model::MODEL_65B : e_model::MODEL_70B; break; + default: model.type = e_model::MODEL_UNKNOWN; + } + } + } break; + case LLM_ARCH_MINICPM: + { + ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); + + switch (hparams.n_layer) { + case 40: model.type = e_model::MODEL_2B; break; + default: model.type = e_model::MODEL_UNKNOWN; + } + } break; + case LLM_ARCH_GROK: + { + ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); + + switch (hparams.n_layer) { + case 64: model.type = e_model::MODEL_314B; break; + default: model.type = e_model::MODEL_UNKNOWN; + } + } break; + case LLM_ARCH_FALCON: + { + ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); + + switch (hparams.n_layer) { + case 32: model.type = e_model::MODEL_7B; break; + case 60: model.type = e_model::MODEL_40B; break; + default: model.type = e_model::MODEL_UNKNOWN; + } + } break; + case LLM_ARCH_BAICHUAN: + { + ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); + switch (hparams.n_layer) { + case 32: model.type = e_model::MODEL_7B; break; + case 40: model.type = e_model::MODEL_13B; break; + default: model.type = e_model::MODEL_UNKNOWN; + } + + if (model.type == e_model::MODEL_13B) { + // TODO: become GGUF KV parameter + hparams.f_max_alibi_bias = 8.0f; + } + } break; + case LLM_ARCH_STARCODER: + { + ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); + switch (hparams.n_layer) { + case 24: model.type = e_model::MODEL_1B; break; + case 36: model.type = e_model::MODEL_3B; break; + case 42: model.type = e_model::MODEL_7B; break; + case 40: model.type = e_model::MODEL_15B; break; + default: model.type = e_model::MODEL_UNKNOWN; + } + } break; + case LLM_ARCH_REFACT: + { + ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); + switch (hparams.n_layer) { + case 32: model.type = e_model::MODEL_1B; break; + default: model.type = e_model::MODEL_UNKNOWN; + } + + // TODO: become GGUF KV parameter + hparams.f_max_alibi_bias = 8.0f; + } break; + case LLM_ARCH_BERT: + { + ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); + ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn); + ml.get_key(LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, hparams.n_vocab_type); + ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type, false); + + switch (hparams.n_layer) { + case 3: + model.type = e_model::MODEL_17M; break; // bge-micro + case 6: + model.type = e_model::MODEL_22M; break; // MiniLM-L6 + case 12: + switch (hparams.n_embd) { + case 384: model.type = e_model::MODEL_33M; break; // MiniLM-L12, bge-small + case 768: model.type = e_model::MODEL_109M; break; // bge-base + } break; + case 24: + model.type = e_model::MODEL_335M; break; // bge-large + } + } break; + case LLM_ARCH_JINA_BERT_V2: + { + ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); + ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn); + ml.get_key(LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, hparams.n_vocab_type); + ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type); + hparams.f_max_alibi_bias = 8.0f; + + switch (hparams.n_layer) { + case 4: model.type = e_model::MODEL_33M; break; // jina-embeddings-small + case 12: model.type = e_model::MODEL_137M; break; // jina-embeddings-base + } + } break; + case LLM_ARCH_NOMIC_BERT: + { + ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); + ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn); + ml.get_key(LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, hparams.n_vocab_type); + ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type); + + if (hparams.n_layer == 12 && hparams.n_embd == 768) { + model.type = e_model::MODEL_137M; + } + } break; + case LLM_ARCH_BLOOM: + { + ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); + + switch (hparams.n_layer) { + case 24: model.type = e_model::MODEL_1B; break; + case 30: + switch (hparams.n_embd) { + case 2560: model.type = e_model::MODEL_3B; break; + case 4096: model.type = e_model::MODEL_7B; break; + } break; + } + + // TODO: become GGUF KV parameter + hparams.f_max_alibi_bias = 8.0f; + } break; + case LLM_ARCH_MPT: + { + ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); + ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv, false); + ml.get_key(LLM_KV_ATTENTION_MAX_ALIBI_BIAS, hparams.f_max_alibi_bias); + + switch (hparams.n_layer) { + case 32: model.type = e_model::MODEL_7B; break; + case 48: model.type = e_model::MODEL_30B; break; + default: model.type = e_model::MODEL_UNKNOWN; + } + } break; + case LLM_ARCH_STABLELM: + { + ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); + + switch (hparams.n_layer) { + case 24: model.type = e_model::MODEL_1B; break; + case 32: model.type = e_model::MODEL_3B; break; + case 40: model.type = e_model::MODEL_12B; break; + default: model.type = e_model::MODEL_UNKNOWN; + } + } break; + case LLM_ARCH_QWEN: + { + ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); + + switch (hparams.n_layer) { + case 32: model.type = e_model::MODEL_7B; break; + case 40: model.type = e_model::MODEL_13B; break; + default: model.type = e_model::MODEL_UNKNOWN; + } + } break; + case LLM_ARCH_QWEN2: + { + ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); + switch (hparams.n_layer) { + case 24: model.type = hparams.n_embd == 1024 ? e_model::MODEL_0_5B : e_model::MODEL_1B; break; + case 32: model.type = e_model::MODEL_7B; break; + case 40: model.type = hparams.n_head() == 20 ? e_model::MODEL_4B : e_model::MODEL_13B; break; + case 80: model.type = e_model::MODEL_70B; break; + default: model.type = e_model::MODEL_UNKNOWN; + } + } break; + case LLM_ARCH_QWEN2MOE: + { + ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp, false); + ml.get_key(LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, hparams.n_ff_shexp, false); + + ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); + switch (hparams.n_layer) { + case 24: model.type = e_model::MODEL_A2_7B; break; + case 28: model.type = e_model::MODEL_57B_A14B; break; + default: model.type = e_model::MODEL_UNKNOWN; + } + } break; + case LLM_ARCH_PHI2: + { + ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); + + switch (hparams.n_layer) { + case 24: model.type = e_model::MODEL_1B; break; + case 32: model.type = e_model::MODEL_3B; break; + default: model.type = e_model::MODEL_UNKNOWN; + } + } break; + case LLM_ARCH_PHI3: + { + ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa); + ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); + + switch (hparams.n_layer) { + case 24: model.type = e_model::MODEL_1B; break; + case 32: model.type = e_model::MODEL_3B; break; + case 40: model.type = e_model::MODEL_14B; break; + default: model.type = e_model::MODEL_UNKNOWN; + } + } break; + case LLM_ARCH_PLAMO: + { + ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); + + switch (hparams.n_layer) { + case 40: model.type = e_model::MODEL_13B; break; + default: model.type = e_model::MODEL_UNKNOWN; + } + } break; + case LLM_ARCH_GPT2: + { + ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); + switch (hparams.n_layer) { + case 12: model.type = e_model::MODEL_SMALL; break; + case 24: model.type = e_model::MODEL_MEDIUM; break; + case 36: model.type = e_model::MODEL_LARGE; break; + case 48: model.type = e_model::MODEL_XL; break; + default: model.type = e_model::MODEL_UNKNOWN; + } + } break; + case LLM_ARCH_CODESHELL: + { + ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); + switch (hparams.n_layer) { + case 42: model.type = e_model::MODEL_7B; break; + default: model.type = e_model::MODEL_UNKNOWN; + } + } break; + case LLM_ARCH_ORION: + { + ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); + + switch (hparams.n_layer) { + case 40: model.type = e_model::MODEL_14B; break; + default: model.type = e_model::MODEL_UNKNOWN; + } + } break; + case LLM_ARCH_INTERNLM2: + { + ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); + switch (hparams.n_layer) { + case 32: model.type = e_model::MODEL_7B; break; + case 48: model.type = e_model::MODEL_20B; break; + default: model.type = e_model::MODEL_UNKNOWN; + } + } break; + case LLM_ARCH_GEMMA: + { + ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); + + switch (hparams.n_layer) { + case 18: model.type = e_model::MODEL_2B; break; + case 28: model.type = e_model::MODEL_7B; break; + default: model.type = e_model::MODEL_UNKNOWN; + } + } break; + case LLM_ARCH_GEMMA2: + { + hparams.n_swa = 4096; // default value of gemma 2 + ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa, false); + ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); + ml.get_key(LLM_KV_ATTN_LOGIT_SOFTCAPPING, hparams.f_attn_logit_softcapping, false); + ml.get_key(LLM_KV_FINAL_LOGIT_SOFTCAPPING, hparams.f_final_logit_softcapping, false); + hparams.attn_soft_cap = true; + + switch (hparams.n_layer) { + case 42: model.type = e_model::MODEL_9B; break; + case 46: model.type = e_model::MODEL_27B; break; + default: model.type = e_model::MODEL_UNKNOWN; + } + } break; + case LLM_ARCH_STARCODER2: + { + ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); + switch (hparams.n_layer) { + case 30: model.type = e_model::MODEL_3B; break; + case 32: model.type = e_model::MODEL_7B; break; + case 40: model.type = e_model::MODEL_15B; break; + case 52: model.type = e_model::MODEL_20B; break; // granite + case 88: model.type = e_model::MODEL_34B; break; // granite + default: model.type = e_model::MODEL_UNKNOWN; + } + } break; + case LLM_ARCH_MAMBA: + { + ml.get_key(LLM_KV_SSM_CONV_KERNEL, hparams.ssm_d_conv); + ml.get_key(LLM_KV_SSM_INNER_SIZE, hparams.ssm_d_inner); + ml.get_key(LLM_KV_SSM_STATE_SIZE, hparams.ssm_d_state); + ml.get_key(LLM_KV_SSM_TIME_STEP_RANK, hparams.ssm_dt_rank); + + ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); + + switch (hparams.n_layer) { + case 24: + switch (hparams.n_embd) { + case 768: model.type = e_model::MODEL_SMALL; break; + default: model.type = e_model::MODEL_UNKNOWN; + } break; + case 48: + switch (hparams.n_embd) { + case 1024: model.type = e_model::MODEL_MEDIUM; break; + case 1536: model.type = e_model::MODEL_LARGE; break; + case 2048: model.type = e_model::MODEL_XL; break; + default: model.type = e_model::MODEL_UNKNOWN; + } break; + case 64: + switch (hparams.n_embd) { + case 2560: model.type = e_model::MODEL_3B; break; + default: model.type = e_model::MODEL_UNKNOWN; + } break; + default: model.type = e_model::MODEL_UNKNOWN; + } + } break; + case LLM_ARCH_XVERSE: + { + ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); + switch (hparams.n_layer) { + case 32: model.type = e_model::MODEL_7B; break; + case 40: model.type = e_model::MODEL_13B; break; + case 80: model.type = e_model::MODEL_65B; break; + default: model.type = e_model::MODEL_UNKNOWN; + } + } break; + case LLM_ARCH_COMMAND_R: + { + ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale); + ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); + switch (hparams.n_layer) { + case 40: model.type = e_model::MODEL_35B; break; + default: model.type = e_model::MODEL_UNKNOWN; + } + } break; + case LLM_ARCH_DBRX: + { + ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); + ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv); + + switch (hparams.n_layer) { + case 40: model.type = e_model::MODEL_16x12B; break; + default: model.type = e_model::MODEL_UNKNOWN; + } + } break; + case LLM_ARCH_OLMO: + { + ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); + ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv, false); + + switch (hparams.n_layer) { + case 22: model.type = e_model::MODEL_1B; break; + case 32: model.type = e_model::MODEL_7B; break; + case 80: model.type = e_model::MODEL_70B; break; + default: model.type = e_model::MODEL_UNKNOWN; + } + } break; + case LLM_ARCH_OPENELM: + { + ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); + + switch (hparams.n_layer) { + case 16: model.type = e_model::MODEL_270M; break; + case 20: model.type = e_model::MODEL_450M; break; + case 28: model.type = e_model::MODEL_1B; break; + case 36: model.type = e_model::MODEL_3B; break; + default: model.type = e_model::MODEL_UNKNOWN; + } + } break; + case LLM_ARCH_GPTNEOX: + { + ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); + ml.get_key(LLM_KV_USE_PARALLEL_RESIDUAL, hparams.use_par_res); + switch (hparams.n_layer) { + case 6: + switch (hparams.n_ff()) { + case 512: model.type = e_model::MODEL_14M; break; + case 2048: model.type = e_model::MODEL_70M; break; + default: model.type = e_model::MODEL_UNKNOWN; + } break; + case 12: + switch (hparams.n_ff()) { + case 3072: model.type = e_model::MODEL_160M; break; + default: model.type = e_model::MODEL_UNKNOWN; + } break; + case 16: + switch (hparams.n_ff()) { + case 8192: model.type = e_model::MODEL_1B; break; + default: model.type = e_model::MODEL_UNKNOWN; + } break; + case 24: + switch (hparams.n_ff()) { + case 4096: model.type = e_model::MODEL_410M; break; + case 8192: model.type = e_model::MODEL_1_4B; break; + default: model.type = e_model::MODEL_UNKNOWN; + } break; + case 32: + switch (hparams.n_ff()) { + case 10240: model.type = e_model::MODEL_2_8B; break; + case 16384: model.type = e_model::MODEL_6_9B; break; + default: model.type = e_model::MODEL_UNKNOWN; + } break; + case 36: + switch (hparams.n_ff()) { + case 20480: model.type = e_model::MODEL_12B; break; + default: model.type = e_model::MODEL_UNKNOWN; + } break; + case 44: + switch (hparams.n_ff()) { + case 24576: model.type = e_model::MODEL_20B; break; + default: model.type = e_model::MODEL_UNKNOWN; + } break; + default: model.type = e_model::MODEL_UNKNOWN; + } + } break; + case LLM_ARCH_ARCTIC: + { + ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); + + if (hparams.n_expert == 128) { + switch (hparams.n_layer) { + case 35: model.type = e_model::MODEL_10B_128x3_66B; break; + default: model.type = e_model::MODEL_UNKNOWN; + } + } else { + model.type = e_model::MODEL_UNKNOWN; + } + } break; + case LLM_ARCH_DEEPSEEK2: + { + bool is_lite = (hparams.n_layer == 27); + ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); + ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT, hparams.n_layer_dense_lead); + if (!is_lite) { + ml.get_key(LLM_KV_ATTENTION_Q_LORA_RANK, hparams.n_lora_q); + } + ml.get_key(LLM_KV_ATTENTION_KV_LORA_RANK, hparams.n_lora_kv); + ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp); + ml.get_key(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared); + ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale); + ml.get_key(LLM_KV_ROPE_SCALING_YARN_LOG_MUL, hparams.rope_yarn_log_mul); + + switch (hparams.n_layer) { + case 27: model.type = e_model::MODEL_16B; break; + case 60: model.type = e_model::MODEL_236B; break; + default: model.type = e_model::MODEL_UNKNOWN; + } + } break; + case LLM_ARCH_CHATGLM: + { + ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); + switch (hparams.n_layer) { + case 28: model.type = e_model::MODEL_6B; break; + case 40: model.type = e_model::MODEL_9B; break; + default: model.type = e_model::MODEL_UNKNOWN; + } + } break; + case LLM_ARCH_BITNET: + { + ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); + + switch (hparams.n_layer) { + case 26: model.type = e_model::MODEL_3B; break; + default: model.type = e_model::MODEL_UNKNOWN; + } + } break; + case LLM_ARCH_T5: + { + ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); + ml.get_key(LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT, hparams.n_rel_attn_bkts); + + uint32_t dec_start_token_id; + if (ml.get_key(LLM_KV_DECODER_START_TOKEN_ID, dec_start_token_id, false)) { + hparams.dec_start_token_id = dec_start_token_id; + } + + switch (hparams.n_layer) { + case 6: model.type = e_model::MODEL_60M; break; // t5-small + case 8: model.type = e_model::MODEL_80M; break; // flan-t5-small + case 12: + switch (hparams.n_ff()) { + case 3072: model.type = e_model::MODEL_220M; break; // t5-base + case 2048: model.type = e_model::MODEL_250M; break; // flan-t5-base + default: model.type = e_model::MODEL_UNKNOWN; + } break; + case 24: + switch (hparams.n_ff()) { + case 4096: model.type = e_model::MODEL_770M; break; // t5-large + case 2816: model.type = e_model::MODEL_780M; break; // flan-t5-large + case 16384: model.type = e_model::MODEL_3B; break; // t5-3b + case 5120: model.type = e_model::MODEL_3B; break; // flan-t5-xl + case 65536: model.type = e_model::MODEL_11B; break; // t5-11b + case 10240: model.type = e_model::MODEL_11B; break; // flan-t5-xxl + default: model.type = e_model::MODEL_UNKNOWN; + } break; + default: model.type = e_model::MODEL_UNKNOWN; + } + } break; + case LLM_ARCH_JAIS: + { + ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); + ml.get_key(LLM_KV_ATTENTION_MAX_ALIBI_BIAS, hparams.f_max_alibi_bias); + + switch (hparams.n_layer) { + case 24: model.type = e_model::MODEL_1_3B; break; + case 40: model.type = e_model::MODEL_13B; break; + /* TODO: add variants */ + default: model.type = e_model::MODEL_UNKNOWN; + } + } break; + default: (void)0; + } + + model.ftype = ml.ftype; + + if (hparams.f_max_alibi_bias > 0.0f) { + hparams.use_alibi = true; + } + + hparams.rope_type = llama_rope_type(&model); +} + +static void llm_load_vocab( + llama_model_loader & ml, + llama_model & model) { + auto & vocab = model.vocab; + + struct gguf_context * ctx = ml.meta; + + const auto kv = LLM_KV(model.arch); + + // determine vocab type + { + std::string tokenizer_model; + std::string tokenizer_pre; + + ml.get_key(LLM_KV_TOKENIZER_MODEL, tokenizer_model); + ml.get_key(LLM_KV_TOKENIZER_PRE, tokenizer_pre, false); + + if (tokenizer_model == "no_vocab") { + vocab.type = LLAMA_VOCAB_TYPE_NONE; + + // default special tokens + vocab.special_bos_id = -1; + vocab.special_eos_id = -1; + vocab.special_unk_id = -1; + vocab.special_sep_id = -1; + vocab.special_pad_id = -1; + vocab.special_cls_id = -1; + vocab.special_mask_id = -1; + vocab.linefeed_id = -1; + + return; + } else if (tokenizer_model == "llama") { + vocab.type = LLAMA_VOCAB_TYPE_SPM; + + // default special tokens + vocab.special_bos_id = 1; + vocab.special_eos_id = 2; + vocab.special_unk_id = 0; + vocab.special_sep_id = -1; + vocab.special_pad_id = -1; + vocab.special_cls_id = -1; + vocab.special_mask_id = -1; + } else if (tokenizer_model == "bert") { + vocab.type = LLAMA_VOCAB_TYPE_WPM; + + // default special tokens + vocab.special_bos_id = -1; + vocab.special_eos_id = -1; + vocab.special_unk_id = 100; + vocab.special_sep_id = 102; + vocab.special_pad_id = 0; + vocab.special_cls_id = 101; + vocab.special_mask_id = 103; + } else if (tokenizer_model == "gpt2") { + vocab.type = LLAMA_VOCAB_TYPE_BPE; + + // read bpe merges and populate bpe ranks + const int merges_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_MERGES).c_str()); + if (merges_keyidx == -1) { + throw std::runtime_error("cannot find tokenizer merges in model file\n"); + } + + const int n_merges = gguf_get_arr_n(ctx, merges_keyidx); + for (int i = 0; i < n_merges; i++) { + const std::string word = gguf_get_arr_str(ctx, merges_keyidx, i); + GGML_ASSERT(unicode_cpts_from_utf8(word).size() > 0); + + std::string first; + std::string second; + + const size_t pos = word.find(' ', 1); + + if (pos != std::string::npos) { + first = word.substr(0, pos); + second = word.substr(pos + 1); + } + + vocab.bpe_ranks.emplace(std::make_pair(first, second), i); + } + + // default special tokens + vocab.special_bos_id = 11; + vocab.special_eos_id = 11; + vocab.special_unk_id = -1; + vocab.special_sep_id = -1; + vocab.special_pad_id = -1; + vocab.special_cls_id = -1; + vocab.special_mask_id = -1; + } else if (tokenizer_model == "t5") { + vocab.type = LLAMA_VOCAB_TYPE_UGM; + + // default special tokens + vocab.special_bos_id = -1; + vocab.special_eos_id = 1; + vocab.special_unk_id = 2; + vocab.special_sep_id = -1; + vocab.special_pad_id = 0; + vocab.special_cls_id = -1; + vocab.special_mask_id = -1; + + const int precompiled_charsmap_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_PRECOMPILED_CHARSMAP).c_str()); + if (precompiled_charsmap_keyidx != -1) { + size_t n_precompiled_charsmap = gguf_get_arr_n(ctx, precompiled_charsmap_keyidx); + const char * precompiled_charsmap = (const char *) gguf_get_arr_data(ctx, precompiled_charsmap_keyidx); + vocab.precompiled_charsmap.assign(precompiled_charsmap, precompiled_charsmap + n_precompiled_charsmap); +#ifdef IS_BIG_ENDIAN + // correct endiannes of data in precompiled_charsmap binary blob + uint32_t * xcda_blob_size = (uint32_t *) &vocab.precompiled_charsmap[0]; + *xcda_blob_size = __builtin_bswap32(*xcda_blob_size); + assert(*xcda_blob_size + sizeof(uint32_t) < n_precompiled_charsmap); + size_t xcda_array_size = *xcda_blob_size / sizeof(uint32_t); + uint32_t * xcda_array = (uint32_t *) &vocab.precompiled_charsmap[sizeof(uint32_t)]; + for (size_t i = 0; i < xcda_array_size; ++i) { + xcda_array[i] = __builtin_bswap32(xcda_array[i]); + } +#endif + } + } else { + throw std::runtime_error(format("unknown tokenizer: '%s'", tokenizer_model.c_str())); + } + + // for now, only BPE models have pre-tokenizers + if (vocab.type == LLAMA_VOCAB_TYPE_BPE) { + vocab.tokenizer_add_space_prefix = false; + vocab.tokenizer_clean_spaces = true; + if (tokenizer_pre.empty()) { + //!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! + // OK - I don't feel like recreati8ng the LLaMA-v3 models. Considering that, at least for now, + // LLaMA-v3 is the only model wehere we end up here, let's just force the pre-tokanizer to be + // llama3. + tokenizer_pre = "llama3"; + vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_LLAMA3; + LLAMA_LOG_WARN("%s: missing pre-tokenizer type, using: 'llama3'\n", __func__); + LLAMA_LOG_WARN("%s: \n", __func__); + LLAMA_LOG_WARN("%s: ************************************ \n", __func__); + LLAMA_LOG_WARN("%s: GENERATION QUALITY MAY BE DEGRADED! \n", __func__); + LLAMA_LOG_WARN("%s: CONSIDER REGENERATING THE MODEL \n", __func__); + LLAMA_LOG_WARN("%s: ************************************ \n", __func__); + LLAMA_LOG_WARN("%s: \n", __func__); + //vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT; + //!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! + } else if (tokenizer_pre == "default") { + vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT; + } else if ( + tokenizer_pre == "llama3" || + tokenizer_pre == "llama-v3" || + tokenizer_pre == "llama-bpe") { + vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_LLAMA3; + vocab.tokenizer_ignore_merges = true; + vocab.tokenizer_add_bos = true; + } else if ( + tokenizer_pre == "deepseek-llm") { + vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_LLM; + vocab.tokenizer_clean_spaces = false; + } else if ( + tokenizer_pre == "deepseek-coder") { + vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_CODER; + vocab.tokenizer_clean_spaces = false; + } else if ( + tokenizer_pre == "falcon") { + vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_FALCON; + } else if ( + tokenizer_pre == "mpt") { + vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_MPT; + } else if ( + tokenizer_pre == "starcoder") { + vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_STARCODER; + } else if ( + tokenizer_pre == "gpt-2" || + tokenizer_pre == "phi-2" || + tokenizer_pre == "jina-es" || + tokenizer_pre == "jina-de" || + tokenizer_pre == "jina-v2-es" || + tokenizer_pre == "jina-v2-de" || + tokenizer_pre == "jina-v2-code") { + vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_GPT2; + } else if ( + tokenizer_pre == "refact") { + vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_REFACT; + } else if ( + tokenizer_pre == "command-r") { + vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_COMMAND_R; + vocab.tokenizer_clean_spaces = false; + } else if ( + tokenizer_pre == "qwen2") { + vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_QWEN2; + vocab.tokenizer_clean_spaces = false; + } else if ( + tokenizer_pre == "stablelm2") { + vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_STABLELM2; + } else if ( + tokenizer_pre == "olmo") { + vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_OLMO; + } else if ( + tokenizer_pre == "dbrx") { + vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DBRX; + } else if ( + tokenizer_pre == "smaug-bpe") { + vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_SMAUG; + } else if ( + tokenizer_pre == "poro-chat") { + vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_PORO; + vocab.tokenizer_clean_spaces = false; + } else if ( + tokenizer_pre == "chatglm-bpe") { + vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_CHATGLM4; + vocab.special_bos_id = -1; + } else if ( + tokenizer_pre == "viking") { + vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_VIKING; + vocab.tokenizer_clean_spaces = false; + } else if ( + tokenizer_pre == "jais") { + vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_JAIS; + } else if ( + tokenizer_pre == "tekken") { + vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_TEKKEN; + vocab.tokenizer_clean_spaces = false; + vocab.tokenizer_ignore_merges = true; + vocab.tokenizer_add_bos = true; + } else if ( + tokenizer_pre == "smollm") { + vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_SMOLLM; + vocab.tokenizer_clean_spaces = false; + } else if ( + tokenizer_pre == "codeshell") { + vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_CODESHELL; + } else { + throw std::runtime_error(format("unknown pre-tokenizer type: '%s'", tokenizer_pre.c_str())); + } + } else if (vocab.type == LLAMA_VOCAB_TYPE_SPM) { + vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT; + vocab.tokenizer_add_space_prefix = true; + vocab.tokenizer_clean_spaces = false; + vocab.tokenizer_add_bos = true; + vocab.tokenizer_add_eos = false; + } else if (vocab.type == LLAMA_VOCAB_TYPE_WPM) { + vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT; + vocab.tokenizer_add_space_prefix = false; + vocab.tokenizer_clean_spaces = true; + vocab.tokenizer_add_bos = true; + vocab.tokenizer_add_eos = false; + } else if (vocab.type == LLAMA_VOCAB_TYPE_UGM) { + vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT; + vocab.tokenizer_add_bos = false; + vocab.tokenizer_add_eos = true; + } else { + vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT; + } + + ml.get_key(LLM_KV_TOKENIZER_ADD_PREFIX, vocab.tokenizer_add_space_prefix, false); + ml.get_key(LLM_KV_TOKENIZER_REMOVE_EXTRA_WS, vocab.tokenizer_remove_extra_whitespaces, false); + } + + const int token_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_LIST).c_str()); + if (token_idx == -1) { + throw std::runtime_error("cannot find tokenizer vocab in model file\n"); + } + + const float * scores = nullptr; + const int score_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_SCORES).c_str()); + if (score_idx != -1) { + scores = (const float * ) gguf_get_arr_data(ctx, score_idx); + } + + const int * toktypes = nullptr; + const int toktype_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_TOKEN_TYPE).c_str()); + if (toktype_idx != -1) { + toktypes = (const int * ) gguf_get_arr_data(ctx, toktype_idx); + } + + const uint32_t n_vocab = gguf_get_arr_n(ctx, token_idx); + + vocab.id_to_token.resize(n_vocab); + + for (uint32_t i = 0; i < n_vocab; i++) { + std::string word = gguf_get_arr_str(ctx, token_idx, i); + GGML_ASSERT(unicode_cpts_from_utf8(word).size() > 0); + + vocab.token_to_id[word] = i; + vocab.max_token_len = std::max(vocab.max_token_len, (int) word.size()); + + auto & token_data = vocab.id_to_token[i]; + token_data.text = std::move(word); + token_data.score = scores ? scores[i] : 0.0f; + token_data.attr = LLAMA_TOKEN_ATTR_NORMAL; + + if (toktypes) { //TODO: remove, required until per token attributes are available from GGUF file + switch(toktypes[i]) { + case LLAMA_TOKEN_TYPE_UNKNOWN: token_data.attr = LLAMA_TOKEN_ATTR_UNKNOWN; break; + case LLAMA_TOKEN_TYPE_UNUSED: token_data.attr = LLAMA_TOKEN_ATTR_UNUSED; break; + case LLAMA_TOKEN_TYPE_NORMAL: token_data.attr = LLAMA_TOKEN_ATTR_NORMAL; break; + case LLAMA_TOKEN_TYPE_CONTROL: token_data.attr = LLAMA_TOKEN_ATTR_CONTROL; break; + case LLAMA_TOKEN_TYPE_USER_DEFINED: token_data.attr = LLAMA_TOKEN_ATTR_USER_DEFINED; break; + case LLAMA_TOKEN_TYPE_BYTE: token_data.attr = LLAMA_TOKEN_ATTR_BYTE; break; + case LLAMA_TOKEN_TYPE_UNDEFINED: token_data.attr = LLAMA_TOKEN_ATTR_UNDEFINED; break; + default: token_data.attr = LLAMA_TOKEN_ATTR_UNDEFINED; break; + } + } + } + GGML_ASSERT(vocab.id_to_token.size() == vocab.token_to_id.size()); + + // determine the newline token: LLaMA "<0x0A>" == 10 == '\n', Falcon 193 == '\n' + if (vocab.type == LLAMA_VOCAB_TYPE_SPM) { + // For Fill-In-the-Middle (FIM)/infill models which where converted + // prior to support of FIM special tokens in GGUF, the following + // will allow those models to continue to work. The general names + // of the known models are currently CodeLlama (LLM_ARCH_LLAMA) and + // CodeGemma (LLM_ARCH_GEMMA). This can potentially be removed once + // new versions of these models have been published. + std::string gen_name; + ml.get_key(LLM_KV_GENERAL_NAME, gen_name, false); + + std::transform(gen_name.begin(), gen_name.end(), gen_name.begin(), + [](unsigned char c){ return std::tolower(c); }); + + if (gen_name.find("code") != std::string::npos) { + if (model.arch == LLM_ARCH_LLAMA + && 32010 < vocab.id_to_token.size() + && vocab.id_to_token[32007].text.find("
") != std::string::npos
+              && vocab.id_to_token[32008].text.find("") != std::string::npos
+              && vocab.id_to_token[32009].text.find("") != std::string::npos
+              && vocab.id_to_token[32010].text.find("") != std::string::npos) {
+                vocab.special_prefix_id = 32007;
+                vocab.special_suffix_id = 32008;
+                vocab.special_middle_id = 32009;
+                vocab.special_eot_id    = 32010;
+            } else if (model.arch == LLM_ARCH_GEMMA
+              && 107 < vocab.id_to_token.size()
+              && vocab.id_to_token[67].text == "<|fim_prefix|>"
+              && vocab.id_to_token[69].text == "<|fim_suffix|>"
+              && vocab.id_to_token[68].text == "<|fim_middle|>"
+              && vocab.id_to_token[107].text == "") {
+                vocab.special_prefix_id = 67;
+                vocab.special_suffix_id = 69;
+                vocab.special_middle_id = 68;
+                // TODO: this is not EOT, it is "file separator" token, needs fix
+                //       https://huggingface.co/google/codegemma-7b-it/blob/9b1d9231388358c04d90bd003458f5070d97db44/tokenizer_config.json#L565-L572
+                //vocab.special_eot_id    = 70;
+                vocab.special_eot_id    = 107;
+            }
+        }
+        try {
+            vocab.linefeed_id = llama_byte_to_token_impl(vocab, '\n');
+        } catch (const std::exception & e) {
+            LLAMA_LOG_WARN("%s: SPM vocabulary, but newline token not found: %s! Using special_pad_id instead.", __func__, e.what());
+            vocab.linefeed_id = vocab.special_pad_id;
+        }
+    } else if (vocab.type == LLAMA_VOCAB_TYPE_WPM) {
+        vocab.linefeed_id = vocab.special_pad_id;
+    } else {
+        const std::vector ids = llama_tokenize_internal(vocab, "\xC4\x8A", false); // U+010A
+        GGML_ASSERT(!ids.empty() && "model vocab missing newline token");
+        vocab.linefeed_id = ids[0];
+    }
+
+    // special tokens
+    {
+        const std::vector> special_token_types = {
+            { LLM_KV_TOKENIZER_BOS_ID,    vocab.special_bos_id    },
+            { LLM_KV_TOKENIZER_EOS_ID,    vocab.special_eos_id    },
+            { LLM_KV_TOKENIZER_UNK_ID,    vocab.special_unk_id    },
+            { LLM_KV_TOKENIZER_SEP_ID,    vocab.special_sep_id    },
+            { LLM_KV_TOKENIZER_PAD_ID,    vocab.special_pad_id    },
+            { LLM_KV_TOKENIZER_CLS_ID,    vocab.special_cls_id    },
+            { LLM_KV_TOKENIZER_MASK_ID,   vocab.special_mask_id   },
+            { LLM_KV_TOKENIZER_PREFIX_ID, vocab.special_prefix_id },
+            { LLM_KV_TOKENIZER_SUFFIX_ID, vocab.special_suffix_id },
+            { LLM_KV_TOKENIZER_MIDDLE_ID, vocab.special_middle_id },
+            { LLM_KV_TOKENIZER_EOT_ID,    vocab.special_eot_id    },
+        };
+
+        for (const auto & it : special_token_types) {
+            const std::string & key = kv(std::get<0>(it));
+            int32_t & id = std::get<1>(it);
+
+            uint32_t new_id;
+            if (!ml.get_key(std::get<0>(it), new_id, false)) {
+                continue;
+            }
+            if (new_id >= vocab.id_to_token.size()) {
+                LLAMA_LOG_WARN("%s: bad special token: '%s' = %ud, using default id %d\n",
+                    __func__, key.c_str(), new_id, id);
+            } else {
+                id = new_id;
+            }
+        }
+
+        // Handle add_bos_token and add_eos_token
+        {
+            bool temp = true;
+
+            if (ml.get_key(LLM_KV_TOKENIZER_ADD_BOS, temp, false)) {
+                vocab.tokenizer_add_bos = temp;
+            }
+            if (ml.get_key(LLM_KV_TOKENIZER_ADD_EOS, temp, false)) {
+                vocab.tokenizer_add_eos = temp;
+            }
+        }
+
+        // find EOT token: "<|eot_id|>", "<|im_end|>", "", etc.
+        //
+        // TODO: convert scripts should provide this token through the KV metadata LLAMA_KV_TOKENIZER_EOT_ID
+        //       for now, we apply this workaround to find the EOT token based on its text
+        if (vocab.special_eot_id == -1) {
+            for (const auto & t : vocab.token_to_id) {
+                if (
+                        // TODO: gemma "" is exported as a normal token, so the following check does not work
+                        //       need to fix convert script
+                        //vocab.id_to_token[t.second].type == LLAMA_TOKEN_TYPE_CONTROL &&
+                        (t.first == "<|eot_id|>" ||
+                         t.first == "<|im_end|>" ||
+                         t.first == "<|end|>" ||
+                         t.first == "" ||
+                         t.first == "<|endoftext|>"
+                        )
+                   ) {
+                    vocab.special_eot_id = t.second;
+                    break;
+                }
+            }
+        }
+    }
+
+    // build special tokens cache
+    {
+        for (llama_vocab::id id = 0; id < (llama_vocab::id)n_vocab; ++id) {
+            if (vocab.id_to_token[id].attr & (LLAMA_TOKEN_ATTR_CONTROL | LLAMA_TOKEN_ATTR_USER_DEFINED | LLAMA_TOKEN_ATTR_UNKNOWN)) {
+                vocab.cache_special_tokens.push_back(id);
+            }
+        }
+
+        std::sort(vocab.cache_special_tokens.begin(), vocab.cache_special_tokens.end(),
+            [&] (const llama_vocab::id a, const llama_vocab::id b) {
+                return vocab.id_to_token[a].text.size() > vocab.id_to_token[b].text.size();
+            }
+        );
+
+        LLAMA_LOG_INFO("%s: special tokens cache size = %u\n", __func__, (uint32_t)vocab.cache_special_tokens.size());
+    }
+
+    // build token to piece cache
+    {
+        size_t size_cache = 0;
+
+        std::vector cache_token_to_piece(n_vocab);
+
+        for (uint32_t id = 0; id < n_vocab; ++id) {
+            cache_token_to_piece[id] = llama_token_to_piece(&model, id, true);
+
+            size_cache += cache_token_to_piece[id].size();
+        }
+
+        std::swap(vocab.cache_token_to_piece, cache_token_to_piece);
+
+        LLAMA_LOG_INFO("%s: token to piece cache size = %.4f MB\n", __func__, size_cache / 1024.0 / 1024.0);
+    }
+
+    // Handle per token attributes
+    //NOTE: Each model customizes per token attributes.
+    //NOTE: Per token attributes are missing from the GGUF file.
+    //TODO: Extract attributes from GGUF file.
+    {
+        auto _contains_any = [] (const std::string &str, const std::vector &substrs) -> bool {
+            for (auto substr : substrs) {
+                if (str.find(substr) < std::string::npos) {
+                    return true;
+                }
+            }
+            return false;
+        };
+
+        auto _set_tokenid_attr = [&] (const llama_vocab::id id, llama_token_attr attr, bool value) {
+            uint32_t current = vocab.id_to_token.at(id).attr;
+            current = value ? (current | attr) : (current & ~attr);
+            vocab.id_to_token[id].attr = (llama_token_attr) current;
+        };
+
+        auto _set_token_attr = [&] (const std::string & token, llama_token_attr attr, bool value) {
+            _set_tokenid_attr(vocab.token_to_id.at(token), attr, value);
+        };
+
+        std::string model_name;
+        std::string tokenizer_pre;
+
+        ml.get_key(LLM_KV_GENERAL_NAME, model_name, false);
+        ml.get_key(LLM_KV_TOKENIZER_PRE, tokenizer_pre, false);
+
+        // model name to lowercase
+        std::transform(model_name.begin(), model_name.end(), model_name.begin(),
+            [] (const std::string::value_type x) {
+                return std::tolower(x);
+            }
+        );
+
+        // set attributes by model/tokenizer name
+        if (_contains_any(tokenizer_pre, {"jina-v2-de", "jina-v2-es", "jina-v2-code"})) {
+            _set_token_attr("", LLAMA_TOKEN_ATTR_LSTRIP, true);
+        } else if (_contains_any(model_name, {"phi-3", "phi3"})) {
+            for (auto id : vocab.cache_special_tokens) {
+                _set_tokenid_attr(id, LLAMA_TOKEN_ATTR_RSTRIP, true);
+            }
+            for (auto token : {""}) {
+                _set_token_attr(token, LLAMA_TOKEN_ATTR_RSTRIP, true);
+            }
+            for (auto token : {"", "", "<|endoftext|>"}) {
+                _set_token_attr(token, LLAMA_TOKEN_ATTR_RSTRIP, false);
+            }
+        }
+    }
+}
+
+static void llm_load_print_meta(llama_model_loader & ml, llama_model & model) {
+    const auto & hparams = model.hparams;
+    const auto & vocab   = model.vocab;
+
+    const char * rope_scaling_type = LLAMA_ROPE_SCALING_TYPES.at(hparams.rope_scaling_type_train);
+
+    auto print_f = [](const std::function & f, uint32_t n) {
+        bool is_var = false;
+
+        std::vector v;
+        for (uint32_t i = 0; i < n; ++i) {
+            v.push_back(f(i));
+            if (v[i] != v[0]) {
+                is_var = true;
+            }
+        }
+
+        std::stringstream ss;
+
+        if (is_var) {
+            ss << "[";
+            for (uint32_t i = 0; i < n; ++i) {
+                ss << v[i];
+                if (i < n - 1) {
+                    ss << ", ";
+                }
+            }
+            ss << "]";
+        } else {
+            ss << v[0];
+        }
+
+        return ss.str();
+    };
+
+    // hparams
+    LLAMA_LOG_INFO("%s: format           = %s\n",     __func__, llama_file_version_name(ml.fver));
+    LLAMA_LOG_INFO("%s: arch             = %s\n",     __func__, LLM_ARCH_NAMES.at(model.arch));
+    LLAMA_LOG_INFO("%s: vocab type       = %s\n",     __func__, llama_model_vocab_type_name(vocab.type));
+    LLAMA_LOG_INFO("%s: n_vocab          = %u\n",     __func__, hparams.n_vocab);
+    LLAMA_LOG_INFO("%s: n_merges         = %u\n",     __func__, (int) vocab.bpe_ranks.size());
+    LLAMA_LOG_INFO("%s: vocab_only       = %d\n",     __func__, hparams.vocab_only);
+
+    if (!hparams.vocab_only) {
+        LLAMA_LOG_INFO("%s: n_ctx_train      = %u\n",     __func__, hparams.n_ctx_train);
+        LLAMA_LOG_INFO("%s: n_embd           = %u\n",     __func__, hparams.n_embd);
+        LLAMA_LOG_INFO("%s: n_layer          = %u\n",     __func__, hparams.n_layer);
+        LLAMA_LOG_INFO("%s: n_head           = %s\n",     __func__, print_f([&](uint32_t il) { return hparams.n_head(il);    }, hparams.n_layer).c_str());
+        LLAMA_LOG_INFO("%s: n_head_kv        = %s\n",     __func__, print_f([&](uint32_t il) { return hparams.n_head_kv(il); }, hparams.n_layer).c_str());
+        LLAMA_LOG_INFO("%s: n_rot            = %u\n",     __func__, hparams.n_rot);
+        LLAMA_LOG_INFO("%s: n_swa            = %u\n",     __func__, hparams.n_swa);
+        LLAMA_LOG_INFO("%s: n_embd_head_k    = %u\n",     __func__, hparams.n_embd_head_k);
+        LLAMA_LOG_INFO("%s: n_embd_head_v    = %u\n",     __func__, hparams.n_embd_head_v);
+        LLAMA_LOG_INFO("%s: n_gqa            = %s\n",     __func__, print_f([&](uint32_t il) { return hparams.n_gqa(il);        }, hparams.n_layer).c_str());
+        LLAMA_LOG_INFO("%s: n_embd_k_gqa     = %s\n",     __func__, print_f([&](uint32_t il) { return hparams.n_embd_k_gqa(il); }, hparams.n_layer).c_str());
+        LLAMA_LOG_INFO("%s: n_embd_v_gqa     = %s\n",     __func__, print_f([&](uint32_t il) { return hparams.n_embd_v_gqa(il); }, hparams.n_layer).c_str());
+        LLAMA_LOG_INFO("%s: f_norm_eps       = %.1e\n",   __func__, hparams.f_norm_eps);
+        LLAMA_LOG_INFO("%s: f_norm_rms_eps   = %.1e\n",   __func__, hparams.f_norm_rms_eps);
+        LLAMA_LOG_INFO("%s: f_clamp_kqv      = %.1e\n",   __func__, hparams.f_clamp_kqv);
+        LLAMA_LOG_INFO("%s: f_max_alibi_bias = %.1e\n",   __func__, hparams.f_max_alibi_bias);
+        LLAMA_LOG_INFO("%s: f_logit_scale    = %.1e\n",   __func__, hparams.f_logit_scale);
+        LLAMA_LOG_INFO("%s: n_ff             = %s\n",     __func__, print_f([&](uint32_t il) { return hparams.n_ff(il); }, hparams.n_layer).c_str());
+        LLAMA_LOG_INFO("%s: n_expert         = %u\n",     __func__, hparams.n_expert);
+        LLAMA_LOG_INFO("%s: n_expert_used    = %u\n",     __func__, hparams.n_expert_used);
+        LLAMA_LOG_INFO("%s: causal attn      = %d\n",     __func__, hparams.causal_attn);
+        LLAMA_LOG_INFO("%s: pooling type     = %d\n",     __func__, hparams.pooling_type);
+        LLAMA_LOG_INFO("%s: rope type        = %d\n",     __func__, hparams.rope_type);
+        LLAMA_LOG_INFO("%s: rope scaling     = %s\n",     __func__, rope_scaling_type);
+        LLAMA_LOG_INFO("%s: freq_base_train  = %.1f\n",   __func__, hparams.rope_freq_base_train);
+        LLAMA_LOG_INFO("%s: freq_scale_train = %g\n",     __func__, hparams.rope_freq_scale_train);
+        LLAMA_LOG_INFO("%s: n_ctx_orig_yarn  = %u\n",     __func__, hparams.n_ctx_orig_yarn);
+        LLAMA_LOG_INFO("%s: rope_finetuned   = %s\n",     __func__, hparams.rope_finetuned ? "yes" : "unknown");
+        LLAMA_LOG_INFO("%s: ssm_d_conv       = %u\n",     __func__, hparams.ssm_d_conv);
+        LLAMA_LOG_INFO("%s: ssm_d_inner      = %u\n",     __func__, hparams.ssm_d_inner);
+        LLAMA_LOG_INFO("%s: ssm_d_state      = %u\n",     __func__, hparams.ssm_d_state);
+        LLAMA_LOG_INFO("%s: ssm_dt_rank      = %u\n",     __func__, hparams.ssm_dt_rank);
+    }
+
+    LLAMA_LOG_INFO("%s: model type       = %s\n",     __func__, llama_model_type_name(model.type));
+    LLAMA_LOG_INFO("%s: model ftype      = %s\n",     __func__, llama_model_ftype_name(model.ftype).c_str());
+    if (ml.n_elements >= 1e12) {
+        LLAMA_LOG_INFO("%s: model params     = %.2f T\n", __func__, ml.n_elements*1e-12);
+    } else if (ml.n_elements >= 1e9) {
+        LLAMA_LOG_INFO("%s: model params     = %.2f B\n", __func__, ml.n_elements*1e-9);
+    } else if (ml.n_elements >= 1e6) {
+        LLAMA_LOG_INFO("%s: model params     = %.2f M\n", __func__, ml.n_elements*1e-6);
+    } else {
+        LLAMA_LOG_INFO("%s: model params     = %.2f K\n", __func__, ml.n_elements*1e-3);
+    }
+    if (ml.n_bytes < GiB) {
+        LLAMA_LOG_INFO("%s: model size       = %.2f MiB (%.2f BPW) \n", __func__, ml.n_bytes/1024.0/1024.0,        ml.n_bytes*8.0/ml.n_elements);
+    } else {
+        LLAMA_LOG_INFO("%s: model size       = %.2f GiB (%.2f BPW) \n", __func__, ml.n_bytes/1024.0/1024.0/1024.0, ml.n_bytes*8.0/ml.n_elements);
+    }
+
+    // general kv
+    LLAMA_LOG_INFO("%s: general.name     = %s\n",    __func__, model.name.c_str());
+
+    // special tokens
+    if (vocab.special_bos_id    != -1) { LLAMA_LOG_INFO( "%s: BOS token        = %d '%s'\n", __func__, vocab.special_bos_id,  vocab.id_to_token[vocab.special_bos_id].text.c_str() );  }
+    if (vocab.special_eos_id    != -1) { LLAMA_LOG_INFO( "%s: EOS token        = %d '%s'\n", __func__, vocab.special_eos_id,  vocab.id_to_token[vocab.special_eos_id].text.c_str() );  }
+    if (vocab.special_unk_id    != -1) { LLAMA_LOG_INFO( "%s: UNK token        = %d '%s'\n", __func__, vocab.special_unk_id,  vocab.id_to_token[vocab.special_unk_id].text.c_str() );  }
+    if (vocab.special_sep_id    != -1) { LLAMA_LOG_INFO( "%s: SEP token        = %d '%s'\n", __func__, vocab.special_sep_id,  vocab.id_to_token[vocab.special_sep_id].text.c_str() );  }
+    if (vocab.special_pad_id    != -1) { LLAMA_LOG_INFO( "%s: PAD token        = %d '%s'\n", __func__, vocab.special_pad_id,  vocab.id_to_token[vocab.special_pad_id].text.c_str() );  }
+    if (vocab.special_cls_id    != -1) { LLAMA_LOG_INFO( "%s: CLS token        = %d '%s'\n", __func__, vocab.special_cls_id,  vocab.id_to_token[vocab.special_cls_id].text.c_str() );  }
+    if (vocab.special_mask_id   != -1) { LLAMA_LOG_INFO( "%s: MASK token       = %d '%s'\n", __func__, vocab.special_mask_id, vocab.id_to_token[vocab.special_mask_id].text.c_str() ); }
+
+    if (vocab.linefeed_id       != -1) { LLAMA_LOG_INFO( "%s: LF token         = %d '%s'\n", __func__, vocab.linefeed_id,       vocab.id_to_token[vocab.linefeed_id].text.c_str() );       }
+    if (vocab.special_prefix_id != -1) { LLAMA_LOG_INFO( "%s: PRE token        = %d '%s'\n", __func__, vocab.special_prefix_id, vocab.id_to_token[vocab.special_prefix_id].text.c_str() ); }
+    if (vocab.special_suffix_id != -1) { LLAMA_LOG_INFO( "%s: SUF token        = %d '%s'\n", __func__, vocab.special_suffix_id, vocab.id_to_token[vocab.special_suffix_id].text.c_str() ); }
+    if (vocab.special_middle_id != -1) { LLAMA_LOG_INFO( "%s: MID token        = %d '%s'\n", __func__, vocab.special_middle_id, vocab.id_to_token[vocab.special_middle_id].text.c_str() ); }
+    if (vocab.special_eot_id    != -1) { LLAMA_LOG_INFO( "%s: EOT token        = %d '%s'\n", __func__, vocab.special_eot_id,    vocab.id_to_token[vocab.special_eot_id].text.c_str() );    }
+
+    LLAMA_LOG_INFO("%s: max token length = %d\n", __func__, vocab.max_token_len);
+
+    if (model.arch == LLM_ARCH_DEEPSEEK2) {
+        LLAMA_LOG_INFO("%s: n_layer_dense_lead   = %d\n",     __func__, hparams.n_layer_dense_lead);
+        LLAMA_LOG_INFO("%s: n_lora_q             = %d\n",     __func__, hparams.n_lora_q);
+        LLAMA_LOG_INFO("%s: n_lora_kv            = %d\n",     __func__, hparams.n_lora_kv);
+        LLAMA_LOG_INFO("%s: n_ff_exp             = %d\n",     __func__, hparams.n_ff_exp);
+        LLAMA_LOG_INFO("%s: n_expert_shared      = %d\n",     __func__, hparams.n_expert_shared);
+        LLAMA_LOG_INFO("%s: expert_weights_scale = %.1f\n",   __func__, hparams.expert_weights_scale);
+        LLAMA_LOG_INFO("%s: rope_yarn_log_mul    = %.4f\n",   __func__, hparams.rope_yarn_log_mul);
+    }
+
+    if (model.arch == LLM_ARCH_QWEN2MOE) {
+        LLAMA_LOG_INFO("%s: n_ff_exp         = %d\n",     __func__, hparams.n_ff_exp);
+        LLAMA_LOG_INFO("%s: n_ff_shexp       = %d\n",     __func__, hparams.n_ff_shexp);
+    }
+}
+
+// Returns false if cancelled by progress_callback
+static bool llm_load_tensors(
+        llama_model_loader & ml,
+        llama_model & model,
+        int n_gpu_layers,
+        enum llama_split_mode split_mode,
+        int main_gpu,
+        const float * tensor_split,
+        bool use_mlock,
+        llama_progress_callback progress_callback,
+        void * progress_callback_user_data) {
+    model.t_start_us = ggml_time_us();
+
+    auto & hparams = model.hparams;
+
+    model.split_mode   = split_mode;
+    model.main_gpu     = main_gpu;
+    model.n_gpu_layers = n_gpu_layers;
+
+    const int n_layer     = hparams.n_layer;
+    const int i_gpu_start = std::max((int) hparams.n_layer - n_gpu_layers, (int) 0);
+    bool use_mmap_buffer = true;
+
+    // there is very little benefit to offloading the input layer, so always keep it on the CPU
+    model.buft_input = llama_default_buffer_type_cpu(true);
+
+    model.buft_layer.resize(n_layer);
+
+    // assign cpu layers
+    for (int i = 0; i < i_gpu_start; ++i) {
+        model.buft_layer[i] = llama_default_buffer_type_cpu(true);
+    }
+
+    if (split_mode == LLAMA_SPLIT_MODE_LAYER) {
+        // calculate the split points
+        int device_count = llama_get_device_count(model);
+        bool all_zero = tensor_split == nullptr || std::all_of(tensor_split, tensor_split + device_count, [](float x) { return x == 0.0f; });
+        std::vector splits(device_count);
+        if (all_zero) {
+            // default split, by free memory
+            for (int i = 0; i < device_count; ++i) {
+                splits[i] = llama_get_device_memory(model, i);
+            }
+        } else {
+            std::copy(tensor_split, tensor_split + device_count, splits.begin());
+        }
+
+        // sum and normalize the splits to get the split points
+        float split_sum = 0.0f;
+        for (int i = 0; i < device_count; ++i) {
+            split_sum += splits[i];
+            splits[i] = split_sum;
+        }
+        for (int i = 0; i < device_count; ++i) {
+            splits[i] /= split_sum;
+        }
+
+        // assign the repeating layers to the devices according to the splits
+        int act_gpu_layers = std::min(n_gpu_layers, (int)n_layer + 1);
+        for (int i = i_gpu_start; i < n_layer; ++i) {
+            int layer_gpu = std::upper_bound(splits.begin(), splits.begin() + device_count, float(i - i_gpu_start)/act_gpu_layers) - splits.begin();
+            model.buft_layer[i] = llama_default_buffer_type_offload(model, layer_gpu);
+        }
+        // assign the output layer
+        if (n_gpu_layers > n_layer) {
+            int layer_gpu = std::upper_bound(splits.begin(), splits.begin() + device_count, float(act_gpu_layers - 1)/act_gpu_layers) - splits.begin();
+            model.buft_output = llama_default_buffer_type_offload(model, layer_gpu);
+        } else {
+            model.buft_output = llama_default_buffer_type_cpu(true);
+        }
+    } else {
+        ggml_backend_buffer_type_t split_buft;
+        if (split_mode == LLAMA_SPLIT_MODE_ROW) {
+            split_buft = llama_default_buffer_type_split(model, main_gpu, tensor_split);
+        } else {
+            // LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_LAYER in backends where it is not supported
+            split_buft = llama_default_buffer_type_offload(model, main_gpu);
+        }
+        // assign the repeating layers
+        for (int i = i_gpu_start; i < n_layer; ++i) {
+            model.buft_layer[i] = {
+                split_buft,
+                llama_default_buffer_type_offload(model, main_gpu)
+            };
+        }
+        // assign the output layer
+        if (n_gpu_layers > n_layer) {
+            model.buft_output = {
+                split_buft,
+                llama_default_buffer_type_offload(model, main_gpu)
+            };
+        } else {
+            model.buft_output = llama_default_buffer_type_cpu(true);
+        }
+    }
+
+    // count used buffer types
+    std::map buft_layer_count;
+    buft_layer_count[model.buft_input.buft]++;
+    buft_layer_count[model.buft_input.buft_matrix]++;
+    buft_layer_count[model.buft_output.buft]++;
+    buft_layer_count[model.buft_output.buft_matrix]++;
+    for (int i = 0; i < n_layer; ++i) {
+        buft_layer_count[model.buft_layer[i].buft]++;
+        buft_layer_count[model.buft_layer[i].buft_matrix]++;
+    }
+
+    // create one context per buffer type
+    size_t ctx_size = ggml_tensor_overhead()*(ml.n_tensors + 1); // +1 for models where tok_embd is duplicated as output
+
+    // for moe merged tensors
+    ctx_size += ggml_tensor_overhead()*n_layer*3;
+
+    std::map ctx_map;
+    for (auto & it : buft_layer_count) {
+        struct ggml_init_params params = {
+            /*.mem_size   =*/ ctx_size,
+            /*.mem_buffer =*/ NULL,
+            /*.no_alloc   =*/ true,
+        };
+        ggml_context * ctx = ggml_init(params);
+        if (!ctx) {
+            throw std::runtime_error(format("failed to create context"));
+        }
+        ctx_map[it.first] = ctx;
+        model.ctxs.push_back(ctx);
+    }
+
+    LLAMA_LOG_INFO("%s: ggml ctx size = %7.2f MiB\n", __func__, model.ctxs.size()*ctx_size/1024.0/1024.0);
+
+    // create tensors for the weights
+    {
+        // note: cast to int64_t since we will use these for the tensor dimensions
+        const int64_t n_head        = hparams.n_head();
+        const int64_t n_head_kv     = hparams.n_head_kv();
+        const int64_t n_embd        = hparams.n_embd;
+        const int64_t n_embd_k_gqa  = hparams.n_embd_k_gqa();
+        const int64_t n_embd_v_gqa  = hparams.n_embd_v_gqa();
+        const int64_t n_embd_head_k = hparams.n_embd_head_k;
+        const int64_t n_embd_head_v = hparams.n_embd_head_v;
+        const int64_t n_ff          = hparams.n_ff();
+        const int64_t n_embd_gqa    = n_embd_v_gqa;
+        const int64_t n_vocab       = hparams.n_vocab;
+        const int64_t n_vocab_type  = hparams.n_vocab_type;
+        const int64_t n_expert      = hparams.n_expert;
+        const int64_t n_expert_used = hparams.n_expert_used;
+        const int64_t n_ctx_train   = hparams.n_ctx_train;
+
+        if (n_expert > 0 && hparams.n_expert_used == 0) {
+            throw std::runtime_error("model has expert layers but no expert layers are used");
+        }
+
+        ggml_context * ctx_input        = ctx_map.at(model.buft_input.buft);
+        ggml_context * ctx_output       = ctx_map.at(model.buft_output.buft);
+        ggml_context * ctx_output_split = ctx_map.at(model.buft_output.buft_matrix);
+
+        auto ctx_for_layer       = [&](int i) { return ctx_map.at(model.buft_layer[i].buft); };
+        auto ctx_for_layer_split = [&](int i) { return ctx_map.at(model.buft_layer[i].buft_matrix); };
+
+        model.layers.resize(n_layer);
+
+        const auto tn = LLM_TN(model.arch);
+        switch (model.arch) {
+            case LLM_ARCH_LLAMA:
+            case LLM_ARCH_REFACT:
+            case LLM_ARCH_MINICPM:
+                {
+                    model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
+
+                    // output
+                    {
+                        model.output_norm = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
+                        model.output      = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
+
+                        // if output is NULL, init from the input tok embed
+                        if (model.output == NULL) {
+                            model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
+                        }
+                    }
+
+                    for (int i = 0; i < n_layer; ++i) {
+                        ggml_context * ctx_layer = ctx_for_layer(i);
+                        ggml_context * ctx_split = ctx_for_layer_split(i);
+
+                        auto & layer = model.layers[i];
+
+                        layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
+
+                        layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd_head_k * n_head});
+                        layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_k_gqa});
+                        layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_v_gqa});
+                        layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd});
+
+                        // optional bias tensors
+                        layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q,   "bias", i), {n_embd},     llama_model_loader::TENSOR_NOT_REQUIRED);
+                        layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K,   "bias", i), {n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
+                        layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V,   "bias", i), {n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
+                        layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd},     llama_model_loader::TENSOR_NOT_REQUIRED);
+
+                        layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
+
+                        if (n_expert == 0) {
+                            layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff});
+                            layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd});
+                            layer.ffn_up   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff});
+
+                            // optional MLP bias
+                            layer.ffn_gate_b = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "bias", i), {n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED);
+                            layer.ffn_down_b = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
+                            layer.ffn_up_b   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP,   "bias", i), {n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED);
+                        } else {
+                            layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
+
+                            layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd,   n_ff, n_expert}, llama_model_loader::TENSOR_NOT_REQUIRED);
+                            if (layer.ffn_gate_exps) {
+                                layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {  n_ff, n_embd, n_expert});
+                                layer.ffn_up_exps   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS,   "weight", i), {n_embd,   n_ff, n_expert});
+                            } else {
+                                // merge split expert into a single tensor for compatibility with older models
+                                // requires disabling mmap
+                                use_mmap_buffer = false;
+
+                                ggml_type type_gate = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, 0).c_str())->type;
+                                ggml_type type_down = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, 0).c_str())->type;
+                                ggml_type type_up   = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_UP_EXP,   "weight", i, 0).c_str())->type;
+
+                                layer.ffn_gate_exps = ggml_new_tensor_3d(ctx_split, type_gate, n_embd,   n_ff, n_expert);
+                                layer.ffn_down_exps = ggml_new_tensor_3d(ctx_split, type_down,   n_ff, n_embd, n_expert);
+                                layer.ffn_up_exps   = ggml_new_tensor_3d(ctx_split, type_up,   n_embd,   n_ff, n_expert);
+
+                                ggml_set_name(layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i).c_str());
+                                ggml_set_name(layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i).c_str());
+                                ggml_set_name(layer.ffn_up_exps,   tn(LLM_TENSOR_FFN_UP_EXPS,   "weight", i).c_str());
+
+                                for (uint32_t x = 0; x < n_expert; ++x) {
+                                    // the individual experts are loaded into a view of the merged tensor
+                                    ml.create_tensor_as_view(ctx_split, layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_gate_exps->nb[2]*x);
+                                    ml.create_tensor_as_view(ctx_split, layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, x), { n_ff, n_embd }, layer.ffn_down_exps->nb[2]*x);
+                                    ml.create_tensor_as_view(ctx_split, layer.ffn_up_exps,   tn(LLM_TENSOR_FFN_UP_EXP,   "weight", i, x), { n_embd, n_ff }, layer.ffn_up_exps->nb[2]*x);
+                                }
+                            }
+                        }
+                    }
+                } break;
+            case LLM_ARCH_GROK:
+                {
+                    if (n_expert == 0) {
+                        throw std::runtime_error("Grok model cannot have zero experts");
+                    }
+
+                    model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
+
+                    // output
+                    {
+                        model.output_norm = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
+                        model.output      = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
+
+                        // if output is NULL, init from the input tok embed
+                        if (model.output == NULL) {
+                            model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
+                        }
+                    }
+
+                    for (int i = 0; i < n_layer; ++i) {
+                        ggml_context * ctx_layer = ctx_for_layer(i);
+                        ggml_context * ctx_split = ctx_for_layer_split(i);
+
+                        auto & layer = model.layers[i];
+
+                        layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
+
+                        layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd});
+                        layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_gqa});
+                        layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_gqa});
+                        layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
+
+                        layer.attn_out_norm   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd});
+
+                        layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
+
+                        layer.ffn_gate_inp  = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP,  "weight", i), {n_embd, n_expert});
+                        layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, llama_model_loader::TENSOR_NOT_REQUIRED);
+
+                        if (layer.ffn_gate_exps) {
+                            layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {  n_ff, n_embd, n_expert});
+                            layer.ffn_up_exps   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS,   "weight", i), {n_embd,   n_ff, n_expert});
+                        } else {
+                            // merge split expert into a single tensor for compatibility with older models
+                            // requires disabling mmap
+                            use_mmap_buffer = false;
+
+                            ggml_type type_gate = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, 0).c_str())->type;
+                            ggml_type type_down = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, 0).c_str())->type;
+                            ggml_type type_up   = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_UP_EXP,   "weight", i, 0).c_str())->type;
+
+                            layer.ffn_gate_exps = ggml_new_tensor_3d(ctx_split, type_gate, n_embd,   n_ff, n_expert);
+                            layer.ffn_down_exps = ggml_new_tensor_3d(ctx_split, type_down,   n_ff, n_embd, n_expert);
+                            layer.ffn_up_exps   = ggml_new_tensor_3d(ctx_split, type_up,   n_embd,   n_ff, n_expert);
+
+                            ggml_set_name(layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i).c_str());
+                            ggml_set_name(layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i).c_str());
+                            ggml_set_name(layer.ffn_up_exps,   tn(LLM_TENSOR_FFN_UP_EXPS,   "weight", i).c_str());
+
+                            for (uint32_t x = 0; x < n_expert; ++x) {
+                                // the individual experts are loaded into a view of the merged tensor
+                                ml.create_tensor_as_view(ctx_split, layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_gate_exps->nb[2]*x);
+                                ml.create_tensor_as_view(ctx_split, layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, x), { n_ff, n_embd }, layer.ffn_down_exps->nb[2]*x);
+                                ml.create_tensor_as_view(ctx_split, layer.ffn_up_exps,   tn(LLM_TENSOR_FFN_UP_EXP,   "weight", i, x), { n_embd, n_ff }, layer.ffn_up_exps->nb[2]*x);
+                            }
+                        }
+
+                        layer.layer_out_norm   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd});
+                    }
+                } break;
+            case LLM_ARCH_DBRX:
+            {
+                if (n_expert == 0) {
+                    throw std::runtime_error("DBRX model cannot have zero experts");
+                }
+
+                model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
+
+                // output
+                {
+                    model.output_norm = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
+                    model.output      = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab});
+                }
+
+                for (int i = 0; i < n_layer; ++i) {
+                    ggml_context * ctx_layer = ctx_for_layer(i);
+                    ggml_context * ctx_split = ctx_for_layer_split(i);
+
+                    auto & layer = model.layers[i];
+
+                    layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
+
+                    layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
+                    layer.wo   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
+
+                    layer.attn_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd});
+
+                    layer.ffn_gate_inp  = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP,  "weight", i), {n_embd, n_expert});
+                    layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff,   n_expert});
+                    layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff,   n_embd, n_expert});
+                    layer.ffn_up_exps   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS,   "weight", i), {n_embd, n_ff,   n_expert});
+                }
+            } break;
+            case LLM_ARCH_BAICHUAN:
+                {
+                    model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
+                    {
+                        model.output_norm = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
+                        model.output      = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab});
+                    }
+
+                    for (int i = 0; i < n_layer; ++i) {
+                        ggml_context * ctx_layer = ctx_for_layer(i);
+                        ggml_context * ctx_split = ctx_for_layer_split(i);
+
+                        auto & layer = model.layers[i];
+
+                        layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
+
+                        layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd});
+                        layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_gqa});
+                        layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_gqa});
+                        layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
+
+                        layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
+
+                        layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff});
+                        layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd});
+                        layer.ffn_up   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff});
+                    }
+                } break;
+            case LLM_ARCH_FALCON:
+                {
+                    model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
+
+                    // output
+                    {
+                        model.output_norm   = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
+                        model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"),   {n_embd});
+
+                        model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
+                        if (!model.output) {
+                            model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); // needs to be on GPU
+                        }
+                    }
+
+                    for (int i = 0; i < n_layer; ++i) {
+                        ggml_context * ctx_layer = ctx_for_layer(i);
+                        ggml_context * ctx_split = ctx_for_layer_split(i);
+
+                        auto & layer = model.layers[i];
+
+                        layer.attn_norm   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
+                        layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i),   {n_embd});
+
+                        layer.attn_norm_2   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
+                        layer.attn_norm_2_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "bias", i),   {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
+
+                        layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
+                        layer.wo   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
+
+                        layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd});
+                        layer.ffn_up   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff});
+                    }
+                } break;
+            case LLM_ARCH_STARCODER:
+                {
+                    model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
+                    model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD,   "weight"), {n_embd, n_ctx_train});
+
+                    // output
+                    {
+                        model.output_norm   = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
+                        model.output_norm_b = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "bias"),   {n_embd});
+                        model.output        = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
+                        if (!model.output) {
+                            // needs to be on GPU
+                            model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
+                        }
+
+                    }
+
+                    for (int i = 0; i < n_layer; ++i) {
+                        ggml_context * ctx_layer = ctx_for_layer(i);
+                        ggml_context * ctx_split = ctx_for_layer_split(i);
+
+                        auto & layer = model.layers[i];
+
+                        layer.attn_norm   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
+                        layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i),   {n_embd});
+
+                        layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
+                        layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i),   {n_embd + 2*n_embd_gqa});
+
+                        layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
+                        layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i),   {n_embd});
+
+                        layer.ffn_norm   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
+                        layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i),   {n_embd});
+
+                        layer.ffn_down   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
+                        layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i),   {n_embd});
+
+                        layer.ffn_up   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i),   {n_embd, n_ff});
+                        layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i),     {n_ff});
+                    }
+                } break;
+            case LLM_ARCH_BERT:
+            case LLM_ARCH_NOMIC_BERT:
+                {
+                    model.tok_embd     = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD,  "weight"), {n_embd, n_vocab});
+                    model.type_embd    = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_TYPES, "weight"), {n_embd, n_vocab_type});
+
+                    if (model.arch == LLM_ARCH_BERT) {
+                        model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD,    "weight"), {n_embd, n_ctx_train});
+                    }
+
+                    model.tok_norm   = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd});
+                    model.tok_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"),   {n_embd});
+
+                    for (int i = 0; i < n_layer; ++i) {
+                        ggml_context * ctx_layer = ctx_for_layer(i);
+                        ggml_context * ctx_split = ctx_for_layer_split(i);
+
+                        auto & layer = model.layers[i];
+
+                        if (model.arch == LLM_ARCH_BERT) {
+                            layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd});
+                            layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q,   "bias", i),   {n_embd});
+
+                            layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_gqa});
+                            layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K,   "bias", i),   {n_embd_gqa});
+
+                            layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_gqa});
+                            layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V,   "bias", i),   {n_embd_gqa});
+                        } else {
+                            layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
+                        }
+
+                        layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT,      "weight", i), {n_embd, n_embd});
+
+                        layer.attn_out_norm   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd});
+                        layer.attn_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "bias", i),   {n_embd});
+
+                        layer.ffn_up   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP,        "weight", i), {n_embd, n_ff});
+                        layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN,      "weight", i), {n_ff, n_embd});
+
+                        if (model.arch == LLM_ARCH_BERT) {
+                            layer.bo         = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
+                            layer.ffn_up_b   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP,   "bias", i), {n_ff});
+                            layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
+                        } else {
+                            layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
+                        }
+
+                        layer.layer_out_norm   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd});
+                        layer.layer_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "bias", i),   {n_embd});
+                    }
+                } break;
+            case LLM_ARCH_JINA_BERT_V2:
+                {
+                    model.tok_embd  = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD,  "weight"), {n_embd, n_vocab}); // word_embeddings
+                    model.type_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_TYPES, "weight"), {n_embd, n_vocab_type}); // token_type_embeddings
+
+                    model.tok_norm   = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}); // LayerNorm
+                    model.tok_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"),   {n_embd}); //LayerNorm bias
+
+                    for (int i = 0; i < n_layer; ++i) {
+                        ggml_context * ctx_layer = ctx_for_layer(i);
+                        ggml_context * ctx_split = ctx_for_layer_split(i);
+
+                        auto & layer = model.layers[i]; // JinaBertLayer
+
+                        layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
+                        layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i),   {n_embd});
+
+                        layer.attn_q_norm   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
+                        layer.attn_q_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "bias",   i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
+
+                        layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
+                        layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias",   i), {n_embd_gqa});
+
+                        layer.attn_k_norm   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
+                        layer.attn_k_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "bias",   i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
+
+                        layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
+                        layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias",   i), {n_embd_gqa});
+
+                        layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); //output_dens
+                        layer.bo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "bias",   i), {n_embd}); //output_dens
+
+                        layer.attn_out_norm   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd}); //output_norm
+                        layer.attn_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "bias",   i), {n_embd});
+
+                        layer.attn_norm_2   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
+                        layer.attn_norm_2_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "bias",   i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
+
+                        layer.ffn_up   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd, n_ff});
+                        layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
+
+                        layer.ffn_down   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
+                        layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias",   i), {n_embd});
+
+                        layer.layer_out_norm   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd});
+                        layer.layer_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "bias",   i), {n_embd});
+                    }
+                } break;
+            case LLM_ARCH_BLOOM:
+                {
+                    model.tok_embd   = ml.create_tensor(ctx_input,  tn(LLM_TENSOR_TOKEN_EMBD,      "weight"), {n_embd, n_vocab});
+                    model.tok_norm   = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd});
+                    model.tok_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"),   {n_embd});
+
+                    // output
+                    {
+                        model.output_norm   = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
+                        model.output_norm_b = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "bias"),   {n_embd});
+                        model.output        = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab});
+                    }
+
+                    for (int i = 0; i < n_layer; ++i) {
+                        ggml_context * ctx_layer = ctx_for_layer(i);
+                        ggml_context * ctx_split = ctx_for_layer_split(i);
+
+                        auto & layer = model.layers[i];
+
+                        layer.attn_norm   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
+                        layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias",   i), {n_embd});
+
+                        layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
+                        layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias",   i), {n_embd + 2*n_embd_gqa});
+
+                        layer.wo   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
+                        layer.bo   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias",   i), {n_embd});
+
+                        layer.ffn_norm   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
+                        layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias",   i), {n_embd});
+
+                        layer.ffn_down   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
+                        layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias",   i), {n_embd});
+
+                        layer.ffn_up     = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
+                        layer.ffn_up_b   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias",   i), {n_ff});
+                    }
+                } break;
+            case LLM_ARCH_MPT:
+                {
+                    model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
+                    model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD,   "weight"), {n_embd, n_ctx_train}, llama_model_loader::TENSOR_NOT_REQUIRED);
+
+                    // output
+                    {
+                        model.output_norm   = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
+                        model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"),   {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
+
+                        model.output        = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
+                        if (!model.output) {
+                            model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); // needs to be on GPU
+                        }
+                    }
+
+                    for (int i = 0; i < n_layer; ++i) {
+                        ggml_context * ctx_layer = ctx_for_layer(i);
+                        ggml_context * ctx_split = ctx_for_layer_split(i);
+
+                        auto & layer = model.layers[i];
+
+                        layer.attn_norm   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
+                        layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i),   {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
+
+                        layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
+                        layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i),   {n_embd + 2*n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
+
+                        layer.wo   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
+                        layer.bo   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i),   {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
+
+                        layer.ffn_norm   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
+                        layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i),   {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
+
+                        layer.ffn_down   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
+                        layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i),   {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
+
+                        layer.ffn_up     = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff});
+                        layer.ffn_up_b   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP,   "bias", i),   {n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED);
+
+                        layer.attn_q_norm   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
+                        layer.attn_q_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "bias",   i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
+
+                        layer.attn_k_norm   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
+                        layer.attn_k_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "bias",   i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
+
+                        // AWQ ScaleActivation layer
+                        layer.ffn_act = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_ACT, "scales", i), {n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED);
+                    }
+                } break;
+            case LLM_ARCH_STABLELM:
+                {
+                    model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
+
+                    // output
+                    {
+                        model.output_norm_b = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "bias"),   {n_embd});
+                        model.output_norm   = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
+                        model.output        = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab});
+                    }
+
+                    for (int i = 0; i < n_layer; ++i) {
+                        ggml_context * ctx_layer = ctx_for_layer(i);
+                        ggml_context * ctx_split = ctx_for_layer_split(i);
+
+                        auto & layer = model.layers[i];
+
+                        layer.attn_norm =   ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
+                        layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
+
+                        layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd});
+                        layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_gqa});
+                        layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_gqa});
+                        layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
+
+                        // optional bias tensors, present in Stable LM 2 1.6B
+                        layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q,   "bias", i), {n_embd},     llama_model_loader::TENSOR_NOT_REQUIRED);
+                        layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K,   "bias", i), {n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
+                        layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V,   "bias", i), {n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
+
+                        // optional q and k layernorms, present in StableLM 2 12B
+                        layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k, n_head},    llama_model_loader::TENSOR_NOT_REQUIRED);
+                        layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k, n_head_kv}, llama_model_loader::TENSOR_NOT_REQUIRED);
+
+                        // optional FFN norm, not present in StableLM 2 12B which uses parallel residual
+                        layer.ffn_norm   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
+                        layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i),   {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
+
+                        layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff});
+                        layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd});
+                        layer.ffn_up   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff});
+                    }
+                } break;
+            case LLM_ARCH_QWEN:
+                {
+                    model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
+
+                    // output
+                    {
+                        model.output_norm = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
+                        model.output      = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab});
+                    }
+
+                    for (int i = 0; i < n_layer; ++i) {
+                        ggml_context * ctx_layer = ctx_for_layer(i);
+                        ggml_context * ctx_split = ctx_for_layer_split(i);
+
+                        auto & layer = model.layers[i];
+
+                        layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
+
+                        layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd*3});
+                        layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i),   {n_embd*3});
+                        layer.wo   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
+
+                        layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
+
+                        layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff/2});
+                        layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff/2, n_embd});
+                        layer.ffn_up   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd, n_ff/2});
+                    }
+                } break;
+            case LLM_ARCH_QWEN2:
+                {
+                    model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
+
+                    // output
+                    {
+                        model.output_norm = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
+                        model.output      = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
+                        // if output is NULL, init from the input tok embed
+                        if (model.output == NULL) {
+                            model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
+                        }
+                    }
+
+                    for (int i = 0; i < n_layer; ++i) {
+                        ggml_context * ctx_layer = ctx_for_layer(i);
+                        ggml_context * ctx_split = ctx_for_layer_split(i);
+
+                        auto & layer = model.layers[i];
+
+                        layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
+
+                        layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd});
+                        layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_gqa});
+                        layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_gqa});
+                        layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
+
+                        // optional bias tensors
+                        layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q,   "bias", i), {n_embd});
+                        layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K,   "bias", i), {n_embd_gqa});
+                        layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V,   "bias", i), {n_embd_gqa});
+
+                        layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
+
+                        layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff});
+                        layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd});
+                        layer.ffn_up   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff});
+                    }
+                } break;
+            case LLM_ARCH_QWEN2MOE:
+                {
+                    model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
+
+                    // output
+                    {
+                        model.output_norm = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
+                        model.output      = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab});
+                    }
+
+                    for (int i = 0; i < n_layer; ++i) {
+                        ggml_context * ctx_layer = ctx_for_layer(i);
+                        ggml_context * ctx_split = ctx_for_layer_split(i);
+
+                        auto & layer = model.layers[i];
+
+                        layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
+
+                        layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd});
+                        layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_gqa});
+                        layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_gqa});
+                        layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
+
+                        // optional bias tensors
+                        layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q,   "bias", i), {n_embd});
+                        layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K,   "bias", i), {n_embd_gqa});
+                        layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V,   "bias", i), {n_embd_gqa});
+
+                        layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
+
+                        layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
+
+                        GGML_ASSERT(n_expert      > 0);
+                        GGML_ASSERT(n_expert_used > 0);
+
+                        // MoE branch
+                        const int64_t n_ff_exp = hparams.n_ff_exp ? hparams.n_ff_exp : n_ff / n_expert_used;
+
+                        layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {  n_embd, n_ff_exp, n_expert});
+                        layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp,   n_embd, n_expert});
+                        layer.ffn_up_exps   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS,   "weight", i), {  n_embd, n_ff_exp, n_expert});
+
+                        // Shared expert branch
+                        const int64_t n_ff_shexp = hparams.n_ff_shexp ? hparams.n_ff_shexp : n_ff;
+
+                        layer.ffn_gate_inp_shexp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP_SHEXP, "weight", i), {n_embd});
+                        layer.ffn_gate_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {    n_embd, n_ff_shexp});
+                        layer.ffn_down_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {n_ff_shexp,     n_embd});
+                        layer.ffn_up_shexp   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_SHEXP,   "weight", i), {    n_embd, n_ff_shexp});
+                    }
+                } break;
+            case LLM_ARCH_PHI2:
+                {
+                    model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
+
+                    // output
+                    {
+                        model.output_norm   = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
+                        model.output_norm_b = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "bias"),   {n_embd});
+                        model.output        = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab});
+                        model.output_b      = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT,      "bias"),   {n_vocab});
+                    }
+
+                    for (int i = 0; i < n_layer; ++i) {
+                        ggml_context * ctx_layer = ctx_for_layer(i);
+                        ggml_context * ctx_split = ctx_for_layer_split(i);
+
+                        auto & layer = model.layers[i];
+
+                        layer.attn_norm   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
+                        layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i),   {n_embd});
+
+                        layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
+                        layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i),   {n_embd + 2*n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
+
+                        if (layer.wqkv == nullptr) {
+                            layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
+                            layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i),   {n_embd});
+
+                            layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
+                            layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i),   {n_embd_gqa});
+
+                            layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
+                            layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i),   {n_embd_gqa});
+                        }
+
+                        layer.wo   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
+                        layer.bo   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i),   {n_embd});
+
+                        layer.ffn_down   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
+                        layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i),   {n_embd});
+
+                        layer.ffn_up     = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd, n_ff});
+                        layer.ffn_up_b   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP,   "bias", i),   {n_ff});
+                    }
+                } break;
+            case LLM_ARCH_PHI3:
+                {
+                    const int64_t n_embd_head = n_embd / n_head;
+
+                    model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab });
+
+                    // output
+                    {
+                        model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd });
+                        model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), { n_embd, n_vocab });
+                    }
+
+                    for (int i = 0; i < n_layer; ++i) {
+                        ggml_context * ctx_layer = ctx_for_layer(i);
+                        ggml_context * ctx_split = ctx_for_layer_split(i);
+
+                        auto & layer = model.layers[i];
+
+                        layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd });
+
+                        layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), { n_embd, n_embd + 2 * n_embd_gqa }, llama_model_loader::TENSOR_NOT_REQUIRED);
+                        layer.wo   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd, n_embd });
+
+                        layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), { n_embd });
+
+                        layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd });
+                        layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), { n_embd, 2 * n_ff });
+
+                        layer.rope_long  = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ROPE_FACTORS_LONG,  "weight"), { n_embd_head/2 }, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
+                        layer.rope_short = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight"), { n_embd_head/2 }, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
+                    }
+                } break;
+            case LLM_ARCH_PLAMO:
+                {
+                    model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
+
+                    // output
+                    {
+                        model.output_norm = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
+                        model.output      = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab});
+                    }
+
+                    for (int i = 0; i < n_layer; ++i) {
+                        ggml_context * ctx_layer = ctx_for_layer(i);
+                        ggml_context * ctx_split = ctx_for_layer_split(i);
+
+                        auto & layer = model.layers[i];
+
+                        layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
+
+                        layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd});
+                        layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_gqa});
+                        layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_gqa});
+                        layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
+
+                        layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff});
+                        layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd});
+                        layer.ffn_up   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff});
+                    }
+                } break;
+            case LLM_ARCH_GPT2:
+                {
+                    model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
+                    model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD,   "weight"), {n_embd, n_ctx_train});
+
+                    // output
+                    {
+                        model.output_norm   = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
+                        model.output_norm_b = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "bias"),   {n_embd});
+                        model.output        = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab});
+                    }
+
+                    for (int i = 0; i < n_layer; ++i) {
+                        ggml_context * ctx_layer = ctx_for_layer(i);
+                        ggml_context * ctx_split = ctx_for_layer_split(i);
+
+                        auto & layer = model.layers[i];
+
+                        layer.attn_norm   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM,   "weight", i), {n_embd});
+                        layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM,   "bias", i),   {n_embd});
+
+                        layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
+                        layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i),   {n_embd + 2*n_embd_gqa});
+
+                        layer.wo   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
+                        layer.bo   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i),   {n_embd});
+
+                        layer.ffn_norm   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
+                        layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i),   {n_embd});
+
+                        layer.ffn_down   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
+                        layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i),   {n_embd});
+
+                        layer.ffn_up     = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd, n_ff});
+                        layer.ffn_up_b   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP,   "bias", i),   {n_ff});
+                    }
+                } break;
+            case LLM_ARCH_CODESHELL:
+                {
+                    model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
+
+                    // output
+                    {
+                        model.output_norm   = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
+                        model.output_norm_b = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "bias"),   {n_embd});
+                        model.output        = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab});
+                    }
+
+                    for (int i = 0; i < n_layer; ++i) {
+                        ggml_context * ctx_layer = ctx_for_layer(i);
+                        ggml_context * ctx_split = ctx_for_layer_split(i);
+
+                        auto & layer = model.layers[i];
+
+                        layer.attn_norm   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
+                        layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i),   {n_embd});
+
+                        layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
+                        layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i),   {n_embd + 2*n_embd_gqa});
+
+                        layer.wo   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
+                        layer.bo   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i),   {n_embd});
+
+                        layer.ffn_norm   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
+                        layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i),   {n_embd});
+
+                        layer.ffn_down   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
+                        layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i),   {n_embd});
+
+                        layer.ffn_up     = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i),   {n_embd, n_ff});
+                        layer.ffn_up_b   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i),     {n_ff});
+                    }
+                } break;
+            case LLM_ARCH_ORION:
+                {
+                    model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
+                    {
+                        model.output_norm   = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
+                        model.output_norm_b = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "bias"),   {n_embd});
+                        model.output        = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab});
+                    }
+                    for (int i = 0; i < n_layer; ++i) {
+                        ggml_context * ctx_layer = ctx_for_layer(i);
+                        ggml_context * ctx_split = ctx_for_layer_split(i);
+
+                        auto & layer = model.layers[i];
+
+                        layer.attn_norm   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
+                        layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i),   {n_embd});
+
+                        layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd});
+                        layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_gqa});
+                        layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_gqa});
+                        layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
+
+                        layer.ffn_norm   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
+                        layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i),   {n_embd});
+
+                        layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff});
+                        layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd});
+                        layer.ffn_up   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff});
+                    }
+                } break;
+            case LLM_ARCH_INTERNLM2:
+                {
+                    model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
+
+                    // output
+                    {
+                        model.output_norm = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
+                        model.output      = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab});
+                    }
+
+                    for (int i = 0; i < n_layer; ++i) {
+                        ggml_context * ctx_layer = ctx_for_layer(i);
+                        ggml_context * ctx_split = ctx_for_layer_split(i);
+
+                        auto & layer = model.layers[i];
+
+                        layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
+                        // layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
+                        layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd});
+                        layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_gqa});
+                        layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_gqa});
+
+                        layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
+                        layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
+                        layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff});
+                        layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd});
+                        layer.ffn_up   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff});
+                    }
+                } break;
+            case LLM_ARCH_GEMMA:
+                {
+                    model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
+
+                    // output
+                    model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
+                    model.output      = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD,  "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); // same as tok_embd, duplicated to allow offloading
+
+                    for (int i = 0; i < n_layer; ++i) {
+                        ggml_context * ctx_layer = ctx_for_layer(i);
+                        ggml_context * ctx_split = ctx_for_layer_split(i);
+
+                        auto & layer = model.layers[i];
+
+                        layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
+
+                        layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd_head_k * n_head});
+                        layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_k_gqa});
+                        layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_v_gqa});
+                        layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd});
+
+                        layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
+                        layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff});
+                        layer.ffn_up   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff});
+                        layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd});
+                    }
+                } break;
+            case LLM_ARCH_GEMMA2:
+                {
+                    model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
+
+                    // output
+                    model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
+                    model.output      = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD,  "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); // same as tok_embd, duplicated to allow offloading
+
+                    for (int i = 0; i < n_layer; ++i) {
+                        ggml_context * ctx_layer = ctx_for_layer(i);
+                        ggml_context * ctx_split = ctx_for_layer_split(i);
+
+                        auto & layer = model.layers[i];
+
+                        layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
+
+                        layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd_head_k * n_head});
+                        layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_k_gqa});
+                        layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_v_gqa});
+                        layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd});
+                        layer.attn_post_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd});
+
+                        layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
+                        layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff});
+                        layer.ffn_up   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff});
+                        layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd});
+                        layer.ffn_post_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd});
+                    }
+                } break;
+            case LLM_ARCH_STARCODER2:
+                {
+                    model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
+
+                    // output
+                    {
+                        model.output_norm   = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
+                        model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"),   {n_embd});
+
+                        model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
+                        // if output is NULL, init from the input tok embed
+                        if (model.output == NULL) {
+                            model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
+                        }
+
+                    }
+
+                    for (int i = 0; i < n_layer; ++i) {
+                        ggml_context * ctx_layer = ctx_for_layer(i);
+                        ggml_context * ctx_split = ctx_for_layer_split(i);
+
+                        auto & layer = model.layers[i];
+
+                        layer.attn_norm   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
+                        layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i),   {n_embd});
+
+                        layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd});
+                        layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_gqa});
+                        layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_gqa});
+                        layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
+
+                        // optional bias tensors
+                        layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q,   "bias", i), {n_embd});
+                        layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K,   "bias", i), {n_embd_gqa});
+                        layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V,   "bias", i), {n_embd_gqa});
+                        layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
+
+                        layer.ffn_norm   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
+                        layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i),   {n_embd});
+
+                        layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd});
+                        layer.ffn_up   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff});
+
+                        // optional bias tensors
+                        layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
+                        layer.ffn_up_b   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP ,  "bias", i), {  n_ff});
+                    }
+                } break;
+            case LLM_ARCH_MAMBA:
+                {
+                    const int64_t d_conv  = hparams.ssm_d_conv;
+                    const int64_t d_inner = hparams.ssm_d_inner;
+                    const int64_t d_state = hparams.ssm_d_state;
+                    const int64_t dt_rank = hparams.ssm_dt_rank;
+
+                    // only an expansion factor of 2 is supported for now
+                    GGML_ASSERT(2 * n_embd == d_inner);
+
+                    model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
+
+                    // output
+                    {
+                        model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
+
+                        model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
+                        // if output is NULL, init from the input tok embed, duplicated to allow offloading
+                        if (model.output == NULL) {
+                            model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
+                        }
+                    }
+
+                    for (int i = 0; i < n_layer; ++i) {
+                        ggml_context * ctx_layer = ctx_for_layer(i);
+                        ggml_context * ctx_split = ctx_for_layer_split(i);
+
+                        auto & layer = model.layers[i];
+
+                        // norm
+                        layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
+
+                        layer.ssm_in = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_IN, "weight", i), {n_embd, 2*d_inner});
+
+                        layer.ssm_conv1d = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_CONV1D, "weight", i), {d_conv, d_inner});
+                        layer.ssm_conv1d_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_SSM_CONV1D, "bias", i), {d_inner});
+
+                        layer.ssm_x = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_X, "weight", i), {d_inner, dt_rank + 2*d_state});
+
+                        layer.ssm_dt = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_DT, "weight", i), {dt_rank, d_inner});
+                        layer.ssm_dt_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_SSM_DT, "bias", i), {d_inner});
+
+                        // no "weight" suffix for these
+                        layer.ssm_a = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_A, i), {d_state, d_inner});
+                        layer.ssm_d = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_SSM_D, i), {d_inner});
+
+                        // out_proj
+                        layer.ssm_out = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_OUT, "weight", i), {d_inner, n_embd});
+                    }
+                } break;
+            case LLM_ARCH_XVERSE:
+                {
+                    model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
+                    {
+                        model.output_norm = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
+                        model.output      = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab});
+                    }
+
+                    for (int i = 0; i < n_layer; ++i) {
+                        ggml_context * ctx_layer = ctx_for_layer(i);
+                        ggml_context * ctx_split = ctx_for_layer_split(i);
+
+                        auto & layer = model.layers[i];
+
+                        layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
+
+                        layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd});
+                        layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_gqa});
+                        layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_gqa});
+                        layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
+
+                        layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
+                        layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff});
+                        layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd});
+                        layer.ffn_up   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff});
+                    }
+                } break;
+            case LLM_ARCH_COMMAND_R:
+                {
+                    model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
+
+                    // output
+                    {
+                        model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
+                        // init output from the input tok embed
+                        model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
+                    }
+
+                    for (int i = 0; i < n_layer; ++i) {
+                        ggml_context * ctx_layer = ctx_for_layer(i);
+                        ggml_context * ctx_split = ctx_for_layer_split(i);
+
+                        auto & layer = model.layers[i];
+
+                        layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
+
+                        if (n_layer >= 64){
+                            layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k, n_head});
+                            layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k, n_head_kv});
+                        }
+
+                        layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd});
+                        layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_gqa});
+                        layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_gqa});
+                        layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
+
+                        layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff});
+                        layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd});
+                        layer.ffn_up   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff});
+                    }
+                } break;
+            case LLM_ARCH_OLMO:  // adapted from LLM_ARCH_LLAMA with norm params removed
+                {
+                    model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
+
+                    // output
+                    {
+                        model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
+                        // if output is NULL, init from the input tok embed
+                        if (model.output == NULL) {
+                            model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
+                        }
+                    }
+
+                    for (int i = 0; i < n_layer; ++i) {
+                        ggml_context * ctx_split = ctx_for_layer_split(i);
+
+                        auto & layer = model.layers[i];
+
+                        layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd});
+                        layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_gqa});
+                        layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_gqa});
+                        layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
+
+                        layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff});
+                        layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd});
+                        layer.ffn_up   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff});
+                    }
+                } break;
+            case LLM_ARCH_OPENELM:
+                {
+                    model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
+
+                    // output
+                    {
+                        model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
+                        // init output from the input tok embed
+                        model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
+                    }
+
+                    for (int i = 0; i < n_layer; ++i) {
+                        const int64_t n_head      =   hparams.n_head(i);
+                        const int64_t n_head_qkv  = 2*hparams.n_head_kv(i) + n_head;
+                        const int64_t n_ff        =   hparams.n_ff(i);
+
+                        ggml_context * ctx_layer = ctx_for_layer(i);
+                        ggml_context * ctx_split = ctx_for_layer_split(i);
+
+                        auto & layer = model.layers[i];
+
+                        layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
+
+                        layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_head_qkv*n_embd_head_k});
+                        layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k});
+                        layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k});
+                        layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_head*n_embd_head_k, n_embd});
+
+                        layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
+                        layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
+                        layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
+                        layer.ffn_up   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd, n_ff});
+                    }
+                } break;
+            case LLM_ARCH_GPTNEOX:
+                {
+                    model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
+
+                    // output
+                    {
+                        model.output_norm   = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
+                        model.output_norm_b = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "bias"),   {n_embd});
+                        model.output        = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab});
+                    }
+
+                    for (int i = 0; i < n_layer; ++i) {
+                        ggml_context * ctx_layer = ctx_for_layer(i);
+                        ggml_context * ctx_split = ctx_for_layer_split(i);
+
+                        auto & layer = model.layers[i];
+
+                        layer.attn_norm   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
+                        layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i),   {n_embd});
+
+                        layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
+                        layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i),   {n_embd + 2*n_embd_gqa});
+
+                        layer.wo   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
+                        layer.bo   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i),   {n_embd});
+
+                        layer.ffn_norm   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
+                        layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i),   {n_embd});
+
+                        layer.ffn_down   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
+                        layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i),   {n_embd});
+
+                        layer.ffn_up     = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd, n_ff});
+                        layer.ffn_up_b   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP,   "bias", i),   {n_ff});
+                    }
+                } break;
+            case LLM_ARCH_ARCTIC:
+                {
+                    model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
+
+                    // output
+                    {
+                        model.output_norm = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
+                        model.output      = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
+
+                        // if output is NULL, init from the input tok embed
+                        if (model.output == NULL) {
+                            model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
+                        }
+                    }
+
+                    for (int i = 0; i < n_layer; ++i) {
+                        ggml_context * ctx_layer = ctx_for_layer(i);
+                        ggml_context * ctx_split = ctx_for_layer_split(i);
+
+                        auto & layer = model.layers[i];
+
+                        layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
+
+                        layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd});
+                        layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_gqa});
+                        layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_gqa});
+                        layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
+
+                        layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
+
+                        layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_embd});
+                        layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_embd, n_embd});
+                        layer.ffn_up   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd, n_embd});
+
+                        layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
+                        layer.ffn_norm_exps = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM_EXPS, "weight", i), {n_embd});
+                        layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd,   n_ff, n_expert}, false);
+                        layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {  n_ff, n_embd, n_expert});
+                        layer.ffn_up_exps   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS,   "weight", i), {n_embd,   n_ff, n_expert});
+                    }
+                } break;
+            case LLM_ARCH_DEEPSEEK2:
+                {
+                    const bool is_lite = (hparams.n_layer == 27);
+
+                    const int64_t n_embd_head_qk_rope = hparams.n_rot;
+                    const int64_t n_embd_head_qk_nope = hparams.n_embd_head_k - hparams.n_rot;
+
+                    const int64_t q_lora_rank  = hparams.n_lora_q;
+                    const int64_t kv_lora_rank = hparams.n_lora_kv;
+
+                    const int64_t n_ff_exp        = hparams.n_ff_exp;
+                    const int64_t n_expert_shared = hparams.n_expert_shared;
+
+                    model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
+
+                    // output
+                    {
+                        model.output_norm = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
+                        model.output      = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab});
+                    }
+
+                    for (int i = 0; i < n_layer; ++i) {
+                        ggml_context * ctx_layer = ctx_for_layer(i);
+                        ggml_context * ctx_split = ctx_for_layer_split(i);
+
+                        auto & layer = model.layers[i];
+
+                        layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
+                        if (!is_lite) {
+                            layer.attn_q_a_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_A_NORM, "weight", i), {q_lora_rank});
+                        }
+
+                        layer.attn_kv_a_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_KV_A_NORM, "weight", i), {kv_lora_rank});
+
+                        if (!is_lite) {
+                            layer.wq_a = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q_A, "weight", i), {n_embd, q_lora_rank});
+                            layer.wq_b = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q_B, "weight", i), {q_lora_rank, n_head * n_embd_head_k});
+                        } else {
+                            layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_k_gqa});
+                        }
+
+                        layer.wkv_a_mqa = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_KV_A_MQA, "weight", i), {n_embd, kv_lora_rank + (n_embd_head_qk_rope)});
+                        layer.wkv_b     = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_KV_B,     "weight", i), {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v)});
+                        layer.wo        = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT,      "weight", i), {              n_head * (                      n_embd_head_v), n_embd});
+
+                        layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
+
+                        if (i < (int) hparams.n_layer_dense_lead) {
+                            layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff});
+                            layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd});
+                            layer.ffn_up   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff});
+                        } else {
+                            layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
+
+                            GGML_ASSERT(n_expert      > 0);
+                            GGML_ASSERT(n_expert_used > 0);
+
+                            // MoE branch
+                            layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {  n_embd, n_ff_exp, n_expert});
+                            layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp,   n_embd, n_expert});
+                            layer.ffn_up_exps   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS,   "weight", i), {  n_embd, n_ff_exp, n_expert});
+
+                            // Shared expert branch
+                            layer.ffn_gate_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared});
+                            layer.ffn_down_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {        n_ff_exp * n_expert_shared, n_embd});
+                            layer.ffn_up_shexp   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_SHEXP,   "weight", i), {n_embd, n_ff_exp * n_expert_shared});
+                        }
+                    }
+                } break;
+            case LLM_ARCH_BITNET:
+                {
+                    model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
+
+                    // output
+                    {
+                        model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
+                        model.output      = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD,  "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); // same as tok_embd, duplicated to allow offloading
+                    }
+
+                    const uint32_t n_ff = hparams.n_ff();
+                    model.layers.resize(n_layer);
+                    for (int i = 0; i < n_layer; ++i) {
+                        ggml_context * ctx_layer = ctx_for_layer(i);
+                        ggml_context * ctx_split = ctx_for_layer_split(i);
+
+                        auto & layer = model.layers[i];
+
+                        layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
+                        layer.attn_sub_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_SUB_NORM, "weight", i), {n_embd});
+
+                        layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
+                        layer.wq_scale = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "scale", i), {1});
+                        layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
+                        layer.wk_scale = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "scale", i), {1});
+                        layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
+                        layer.wv_scale = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "scale", i), {1});
+                        layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
+                        layer.wo_scale = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "scale", i), {1});
+
+                        layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
+                        layer.ffn_sub_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_SUB_NORM, "weight", i), {n_ff});
+
+                        layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
+                        layer.ffn_gate_scale = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "scale", i), {1});
+                        layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
+                        layer.ffn_down_scale = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "scale", i), {1});
+                        layer.ffn_up   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd, n_ff});
+                        layer.ffn_up_scale = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "scale", i), {1});
+                    }
+                } break;
+            case LLM_ARCH_T5:
+                {
+                    const auto n_rel_attn_bkts = hparams.n_rel_attn_bkts;
+
+                    model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
+
+                    // output
+                    {
+                        model.output_norm_enc = ml.create_tensor(ctx_output, tn(LLM_TENSOR_ENC_OUTPUT_NORM, "weight"), {n_embd});
+                        model.output_norm     = ml.create_tensor(ctx_output, tn(LLM_TENSOR_DEC_OUTPUT_NORM, "weight"), {n_embd});
+
+                        model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
+                        // if output is NULL, init from the input tok embed
+                        if (model.output == NULL) {
+                            model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
+                        }
+                    }
+
+                    for (int i = 0; i < n_layer; ++i) {
+                        ggml_context * ctx_layer = ctx_for_layer(i);
+                        ggml_context * ctx_split = ctx_for_layer_split(i);
+
+                        auto & layer = model.layers[i];
+
+                        layer.attn_norm_enc  = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ENC_ATTN_NORM,  "weight", i), {n_embd});
+                        layer.attn_rel_b_enc = ml.create_tensor(ctx_input, tn(LLM_TENSOR_ENC_ATTN_REL_B, "weight", i), {n_head, n_rel_attn_bkts}, llama_model_loader::TENSOR_NOT_REQUIRED);
+
+                        layer.wq_enc = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ENC_ATTN_Q,   "weight", i), {n_embd, n_embd_k_gqa});
+                        layer.wk_enc = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ENC_ATTN_K,   "weight", i), {n_embd, n_embd_k_gqa});
+                        layer.wv_enc = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ENC_ATTN_V,   "weight", i), {n_embd, n_embd_v_gqa});
+                        layer.wo_enc = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ENC_ATTN_OUT, "weight", i), {n_embd_v_gqa, n_embd});
+
+                        layer.ffn_norm_enc = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ENC_FFN_NORM, "weight", i), {n_embd});
+                        layer.ffn_gate_enc = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ENC_FFN_GATE, "weight", i), {n_embd,   n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED);
+                        layer.ffn_down_enc = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ENC_FFN_DOWN, "weight", i), {  n_ff, n_embd});
+                        layer.ffn_up_enc   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ENC_FFN_UP,   "weight", i), {n_embd,   n_ff});
+
+                        layer.attn_norm  = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_DEC_ATTN_NORM,  "weight", i), {n_embd});
+                        layer.attn_rel_b = ml.create_tensor(ctx_input, tn(LLM_TENSOR_DEC_ATTN_REL_B, "weight", i), {n_head, n_rel_attn_bkts}, llama_model_loader::TENSOR_NOT_REQUIRED);
+
+                        layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_DEC_ATTN_Q,   "weight", i), {n_embd, n_embd_k_gqa});
+                        layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_DEC_ATTN_K,   "weight", i), {n_embd, n_embd_k_gqa});
+                        layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_DEC_ATTN_V,   "weight", i), {n_embd, n_embd_v_gqa});
+                        layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_DEC_ATTN_OUT, "weight", i), {n_embd_v_gqa, n_embd});
+
+                        layer.attn_norm_cross  = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_DEC_CROSS_ATTN_NORM,  "weight", i), {n_embd});
+                        // this tensor seems to be unused in HF transformers implementation
+                        layer.attn_rel_b_cross = ml.create_tensor(ctx_input, tn(LLM_TENSOR_DEC_CROSS_ATTN_REL_B, "weight", i), {n_head, n_rel_attn_bkts}, llama_model_loader::TENSOR_NOT_REQUIRED);
+
+                        layer.wq_cross = ml.create_tensor(ctx_split, tn(LLM_TENSOR_DEC_CROSS_ATTN_Q,   "weight", i), {n_embd, n_embd_k_gqa});
+                        layer.wk_cross = ml.create_tensor(ctx_split, tn(LLM_TENSOR_DEC_CROSS_ATTN_K,   "weight", i), {n_embd, n_embd_k_gqa});
+                        layer.wv_cross = ml.create_tensor(ctx_split, tn(LLM_TENSOR_DEC_CROSS_ATTN_V,   "weight", i), {n_embd, n_embd_v_gqa});
+                        layer.wo_cross = ml.create_tensor(ctx_split, tn(LLM_TENSOR_DEC_CROSS_ATTN_OUT, "weight", i), {n_embd_v_gqa, n_embd});
+
+                        layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_DEC_FFN_NORM, "weight", i), {n_embd});
+                        layer.ffn_gate = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_DEC_FFN_GATE, "weight", i), {n_embd,   n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED);
+                        layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_DEC_FFN_DOWN, "weight", i), {  n_ff, n_embd});
+                        layer.ffn_up   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_DEC_FFN_UP,   "weight", i), {n_embd,   n_ff});
+                    }
+                } break;
+            case LLM_ARCH_JAIS:
+                {
+                    model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
+
+                    // Output
+                    {
+                        model.output_norm   = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
+                        model.output_norm_b = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "bias"),   {n_embd});
+                        model.output        = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab});
+                    }
+
+                    for (int i = 0; i < n_layer; ++i) {
+                        ggml_context * ctx_layer = ctx_for_layer(i);
+                        ggml_context * ctx_split = ctx_for_layer_split(i);
+
+                        auto & layer = model.layers[i];
+
+                        layer.attn_norm   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM,   "weight", i), {n_embd});
+                        layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM,   "bias", i),   {n_embd});
+
+                        layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
+                        layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i),   {n_embd + 2*n_embd_gqa});
+
+                        layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
+                        layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i),   {n_embd});
+
+                        layer.ffn_norm   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
+                        layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i),   {n_embd});
+
+                        layer.ffn_down   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
+                        layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i),   {n_embd});
+
+                        layer.ffn_gate   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE,   "weight", i), {n_embd, n_ff});
+                        layer.ffn_gate_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE,   "bias", i),   {n_ff});
+
+                        layer.ffn_up     = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd, n_ff});
+                        layer.ffn_up_b   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP,   "bias", i),   {n_ff});
+                    }
+                } break;
+            case LLM_ARCH_CHATGLM:
+                {
+                    model.tok_embd   = ml.create_tensor(ctx_input,  tn(LLM_TENSOR_TOKEN_EMBD,      "weight"), {n_embd, n_vocab});
+
+                    // output
+                    {
+                        model.output_norm   = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
+                        model.output        = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab});
+                    }
+
+                    for (int i = 0; i < n_layer; ++i) {
+                        ggml_context * ctx_layer = ctx_for_layer(i);
+                        ggml_context * ctx_split = ctx_for_layer_split(i);
+
+                        auto & layer = model.layers[i];
+
+                        layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
+
+                        layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + (hparams.n_embd_head_k << 2)});
+                        layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i),   {n_embd + (hparams.n_embd_head_k << 2)});
+
+                        layer.wo   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
+
+                        layer.ffn_norm   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
+
+                        layer.ffn_up     = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd, n_ff * 2});
+
+                        layer.ffn_down   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
+                    }
+                } break;
+            default:
+                throw std::runtime_error("unknown architecture");
+        }
+    }
+
+    ml.done_getting_tensors();
+
+    ml.init_mappings(true, use_mlock ? &model.mlock_mmaps : nullptr);
+    model.mappings.reserve(ml.mappings.size());
+
+    // create the backend buffers
+    std::vector> ctx_bufs;
+    ctx_bufs.reserve(ctx_map.size());
+
+    // Ensure we have enough capacity for the maximum backend buffer we will potentially create
+    size_t n_max_backend_buffer = ctx_map.size() * ml.files.size();
+    model.bufs.reserve(n_max_backend_buffer);
+
+    for (auto & it : ctx_map) {
+        ggml_backend_buffer_type_t buft = it.first;
+        ggml_context * ctx              = it.second;
+
+        llama_buf_map bufs;
+        bufs.reserve(n_max_backend_buffer);
+
+        // only the mmap region containing the tensors in the model is mapped to the backend buffer
+        // this is important for metal with apple silicon: if the entire model could be mapped to a metal buffer, then we could just use metal for all layers
+        // this allows using partial offloading when the model size exceeds the metal buffer size, but not the RAM size
+        if (ml.use_mmap && use_mmap_buffer && buft == llama_default_buffer_type_cpu(true)) {
+            for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
+                void * addr = nullptr;
+                size_t first, last;
+                ml.get_mapping_range(&first, &last, &addr, idx, ctx);
+                if (first >= last) {
+                    continue;
+                }
+                ggml_backend_buffer_t buf = ggml_backend_cpu_buffer_from_ptr((char *) addr + first, last - first);
+                if (buf == nullptr) {
+                    throw std::runtime_error("unable to allocate backend CPU buffer");
+                }
+                model.bufs.push_back(buf);
+                bufs.emplace(idx, buf);
+#ifdef GGML_USE_CUDA
+                if (n_layer >= n_gpu_layers) {
+                    ggml_backend_cuda_register_host_buffer(
+                        ggml_backend_buffer_get_base(buf),
+                        ggml_backend_buffer_get_size(buf));
+                }
+#endif
+            }
+        }
+#ifdef GGML_USE_METAL
+        else if (ml.use_mmap && use_mmap_buffer && buft == ggml_backend_metal_buffer_type()) {
+            for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
+                const size_t max_size = ggml_get_max_tensor_size(ctx);
+                void * addr = nullptr;
+                size_t first, last;
+                ml.get_mapping_range(&first, &last, &addr, idx, ctx);
+                if (first >= last) {
+                    continue;
+                }
+                ggml_backend_buffer_t buf = ggml_backend_metal_buffer_from_ptr((char *) addr + first, last - first, max_size);
+                if (buf == nullptr) {
+                    throw std::runtime_error("unable to allocate backend metal buffer");
+                }
+                model.bufs.push_back(buf);
+                bufs.emplace(idx, buf);
+            }
+        }
+#endif
+        else {
+            ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
+            if (buf == nullptr) {
+                throw std::runtime_error("unable to allocate backend buffer");
+            }
+            model.bufs.push_back(buf);
+            if (use_mlock && ggml_backend_buffer_is_host(buf)) {
+                model.mlock_bufs.emplace_back(new llama_mlock);
+                auto & mlock_buf = model.mlock_bufs.back();
+                mlock_buf->init   (ggml_backend_buffer_get_base(buf));
+                mlock_buf->grow_to(ggml_backend_buffer_get_size(buf));
+            }
+            for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
+                bufs.emplace(idx, buf);
+            }
+        }
+
+        if (bufs.empty()) {
+            throw std::runtime_error("failed to allocate buffer");
+        }
+
+        for (auto & buf : bufs) {
+            // indicate that this buffer contains weights
+            // this is used by ggml_backend_sched to improve op scheduling -> ops that use a weight are preferably scheduled to the backend that contains the weight
+            ggml_backend_buffer_set_usage(buf.second, GGML_BACKEND_BUFFER_USAGE_WEIGHTS);
+        }
+
+        ctx_bufs.emplace_back(ctx, bufs);
+    }
+
+    if (llama_supports_gpu_offload()) {
+        const int n_gpu = std::min(n_gpu_layers, int(hparams.n_layer));
+
+        LLAMA_LOG_INFO("%s: offloading %d repeating layers to GPU\n", __func__, n_gpu);
+        if (n_gpu_layers > (int) hparams.n_layer) {
+            LLAMA_LOG_INFO("%s: offloading non-repeating layers to GPU\n", __func__);
+        }
+
+        const int max_backend_supported_layers = hparams.n_layer + 1;
+        const int max_offloadable_layers       = hparams.n_layer + 1;
+
+        LLAMA_LOG_INFO("%s: offloaded %d/%d layers to GPU\n", __func__, std::min(n_gpu_layers, max_offloadable_layers), max_backend_supported_layers);
+    }
+
+    // print memory requirements
+    for (ggml_backend_buffer_t buf : model.bufs) {
+        LLAMA_LOG_INFO("%s: %10s buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf) / 1024.0 / 1024.0);
+    }
+
+    // populate tensors_by_name
+    for (ggml_context * ctx : model.ctxs) {
+        for (auto * cur = ggml_get_first_tensor(ctx); cur != NULL; cur = ggml_get_next_tensor(ctx, cur)) {
+            model.tensors_by_name.emplace_back(ggml_get_name(cur), cur);
+        }
+    }
+
+    // load tensor data
+    for (auto & it : ctx_bufs) {
+        ggml_context * ctx = it.first;
+        auto & bufs = it.second;
+        if (!ml.load_all_data(ctx, bufs, use_mlock ? &model.mlock_mmaps : NULL, progress_callback, progress_callback_user_data)) {
+            return false;
+        }
+    }
+
+    if (use_mmap_buffer) {
+        for (auto & mapping : ml.mappings) {
+            model.mappings.emplace_back(std::move(mapping));
+        }
+    }
+
+    if (model.arch == LLM_ARCH_BITNET) {
+        auto set_scale = [] (ggml_tensor * w, ggml_tensor * s) {
+            float scale = 1;
+            if (ggml_backend_buffer_is_host(s->buffer)) {
+                scale = *(const float *)s->data;
+            } else {
+                ggml_backend_tensor_get(s, &scale, 0, sizeof(float));
+            }
+            std::memcpy(w->op_params, &scale, sizeof(scale));
+        };
+        for (auto& l : model.layers) {
+            set_scale(l.ffn_up, l.ffn_up_scale);
+            set_scale(l.ffn_gate, l.ffn_gate_scale);
+            set_scale(l.ffn_down, l.ffn_down_scale);
+            set_scale(l.wq, l.wq_scale);
+            set_scale(l.wk, l.wk_scale);
+            set_scale(l.wv, l.wv_scale);
+            set_scale(l.wo, l.wo_scale);
+        }
+    }
+
+    // loading time will be recalculate after the first eval, so
+    // we take page faults deferred by mmap() into consideration
+    model.t_load_us = ggml_time_us() - model.t_start_us;
+    return true;
+}
+
+// Returns 0 on success, -1 on error, and -2 on cancellation via llama_progress_callback
+static int llama_model_load(const std::string & fname, llama_model & model, llama_model_params & params) {
+    try {
+        llama_model_loader ml(fname, params.use_mmap, params.check_tensors, params.kv_overrides);
+
+        model.hparams.vocab_only = params.vocab_only;
+
+        try {
+            llm_load_arch(ml, model);
+        } catch(const std::exception & e) {
+            throw std::runtime_error("error loading model architecture: " + std::string(e.what()));
+        }
+        try {
+            llm_load_hparams(ml, model);
+        } catch(const std::exception & e) {
+            throw std::runtime_error("error loading model hyperparameters: " + std::string(e.what()));
+        }
+        try {
+            llm_load_vocab(ml, model);
+        } catch(const std::exception & e) {
+            throw std::runtime_error("error loading model vocabulary: " + std::string(e.what()));
+        }
+
+        llm_load_print_meta(ml, model);
+
+        if (model.vocab.type != LLAMA_VOCAB_TYPE_NONE &&
+            model.hparams.n_vocab != model.vocab.id_to_token.size()) {
+            throw std::runtime_error("vocab size mismatch");
+        }
+
+        if (params.vocab_only) {
+            LLAMA_LOG_INFO("%s: vocab only - skipping tensors\n", __func__);
+            return 0;
+        }
+
+#ifdef GGML_USE_KOMPUTE
+        if (params.n_gpu_layers > 0 && (
+            !(model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_FALCON)
+            || !(
+                model.ftype == LLAMA_FTYPE_ALL_F32 ||
+                model.ftype == LLAMA_FTYPE_MOSTLY_F16 ||
+                model.ftype == LLAMA_FTYPE_MOSTLY_BF16 ||
+                model.ftype == LLAMA_FTYPE_MOSTLY_Q4_0 ||
+                model.ftype == LLAMA_FTYPE_MOSTLY_Q4_1
+            )
+        )) {
+            // TODO(cebtenzzre): propagate this error outside of llama_load_model_from_file
+            LLAMA_LOG_WARN("%s: disabling Kompute due to unsupported model arch or quantization\n", __func__);
+            params.n_gpu_layers = 0;
+        }
+#endif
+
+        if (!llm_load_tensors(
+            ml, model, params.n_gpu_layers, params.split_mode,  params.main_gpu, params.tensor_split, params.use_mlock,
+            params.progress_callback, params.progress_callback_user_data
+        )) {
+            return -2;
+        }
+    } catch (const std::exception & err) {
+        LLAMA_LOG_ERROR("%s: error loading model: %s\n", __func__, err.what());
+        return -1;
+    }
+
+    return 0;
+}
+
+//
+// llm_build
+//
+
+using llm_build_cb = std::function;
+
+enum llm_ffn_op_type {
+    LLM_FFN_SILU,
+    LLM_FFN_GELU,
+    LLM_FFN_RELU,
+    LLM_FFN_RELU_SQR,
+    LLM_FFN_SWIGLU,
+};
+
+enum llm_ffn_gate_type {
+    LLM_FFN_SEQ,
+    LLM_FFN_PAR, // ffn_gate is parallel to ffn_up
+};
+
+enum llm_norm_type {
+    LLM_NORM,
+    LLM_NORM_RMS,
+};
+
+static struct ggml_tensor * llm_build_inp_embd(
+        struct ggml_context * ctx,
+       struct llama_context & lctx,
+        const llama_hparams & hparams,
+          const llama_batch & batch,
+         struct ggml_tensor * tok_embd,
+         const llm_build_cb & cb) {
+    const int64_t n_embd = hparams.n_embd;
+
+    struct ggml_tensor * inpL;
+
+    if (batch.token) {
+        lctx.inp_tokens = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, batch.n_tokens);
+        cb(lctx.inp_tokens, "inp_tokens", -1);
+        ggml_set_input(lctx.inp_tokens);
+
+        inpL = ggml_get_rows(ctx, tok_embd, lctx.inp_tokens);
+    } else {
+       lctx.inp_embd = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, batch.n_tokens);
+        inpL = lctx.inp_embd;
+        ggml_set_input(lctx.inp_embd);
+    }
+
+    cb(inpL, "inp_embd", -1);
+
+    return inpL;
+}
+
+static void llm_build_kv_store(
+        struct ggml_context * ctx,
+        const llama_hparams & hparams,
+        const llama_cparams & cparams,
+       const llama_kv_cache & kv,
+         struct ggml_cgraph * graph,
+         struct ggml_tensor * k_cur,
+         struct ggml_tensor * v_cur,
+                    int32_t   n_tokens,
+                    int32_t   kv_head,
+         const llm_build_cb & cb,
+                    int64_t   il) {
+    const int64_t n_ctx = cparams.n_ctx;
+
+    const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(il);
+    const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa(il);
+
+    GGML_ASSERT(kv.size == n_ctx);
+
+    struct ggml_tensor * k_cache_view = ggml_view_1d(ctx, kv.k_l[il], n_tokens*n_embd_k_gqa,
+            (ggml_row_size(kv.k_l[il]->type, n_embd_k_gqa))*kv_head);
+    cb(k_cache_view, "k_cache_view", il);
+
+    // note: storing RoPE-ed version of K in the KV cache
+    ggml_build_forward_expand(graph, ggml_cpy(ctx, k_cur, k_cache_view));
+
+    assert(v_cur->ne[0] == n_embd_v_gqa && v_cur->ne[1] == n_tokens);
+
+    struct ggml_tensor * v_cache_view = nullptr;
+
+    if (cparams.flash_attn) {
+        v_cache_view = ggml_view_1d(ctx, kv.v_l[il], n_tokens*n_embd_v_gqa,
+                (kv_head)*ggml_row_size(kv.v_l[il]->type, n_embd_v_gqa));
+    } else {
+        // note: the V cache is transposed when not using flash attention
+        v_cache_view = ggml_view_2d(ctx, kv.v_l[il], n_tokens, n_embd_v_gqa,
+                (  n_ctx)*ggml_element_size(kv.v_l[il]),
+                (kv_head)*ggml_element_size(kv.v_l[il]));
+
+        v_cur = ggml_transpose(ctx, v_cur);
+    }
+    cb(v_cache_view, "v_cache_view", il);
+
+    ggml_build_forward_expand(graph, ggml_cpy(ctx, v_cur, v_cache_view));
+}
+
+// do mat_mul, while optionally apply lora
+static struct ggml_tensor * llm_build_lora_mm(
+        struct llama_context & lctx,
+         struct ggml_context * ctx0,
+          struct ggml_tensor * w,
+          struct ggml_tensor * cur) {
+    struct ggml_tensor * res = ggml_mul_mat(ctx0, w, cur);
+    for (auto & it : lctx.lora_adapters) {
+        struct llama_lora_weight * lora = it.first->get_weight(w);
+        if (lora == nullptr) {
+            continue;
+        }
+        const float alpha = it.first->alpha;
+        const float rank  = (float) lora->b->ne[0];
+        const float scale = alpha ? it.second * alpha / rank : it.second;
+        struct ggml_tensor * ab_cur = ggml_mul_mat(
+            ctx0, lora->b,
+            ggml_mul_mat(ctx0, lora->a, cur)
+        );
+        ab_cur = ggml_scale(ctx0, ab_cur, scale);
+        res = ggml_add(ctx0, res, ab_cur);
+    }
+    return res;
+}
+
+// do mat_mul_id, while optionally apply lora
+static struct ggml_tensor * llm_build_lora_mm_id(
+        struct llama_context & lctx,
+         struct ggml_context * ctx0,
+          struct ggml_tensor * w,   // struct ggml_tensor * as
+          struct ggml_tensor * cur, // struct ggml_tensor * b
+          struct ggml_tensor * ids) {
+    struct ggml_tensor * res = ggml_mul_mat_id(ctx0, w, cur, ids);
+    for (auto & it : lctx.lora_adapters) {
+        struct llama_lora_weight * lora = it.first->get_weight(w);
+        if (lora == nullptr) {
+            continue;
+        }
+        const float alpha = it.first->alpha;
+        const float rank  = (float) lora->b->ne[0];
+        const float scale = alpha ? it.second * alpha / rank : it.second;
+        struct ggml_tensor * ab_cur = ggml_mul_mat_id(
+            ctx0, lora->b,
+            ggml_mul_mat_id(ctx0, lora->a, cur, ids),
+            ids
+        );
+        ab_cur = ggml_scale(ctx0, ab_cur, scale);
+        res = ggml_add(ctx0, res, ab_cur);
+    }
+    return res;
+}
+
+static struct ggml_tensor * llm_build_norm(
+        struct ggml_context * ctx,
+         struct ggml_tensor * cur,
+        const llama_hparams & hparams,
+         struct ggml_tensor * mw,
+         struct ggml_tensor * mb,
+              llm_norm_type   type,
+         const llm_build_cb & cb,
+                        int   il, float scale_eps = 1) {
+    switch (type) {
+        case LLM_NORM:     cur = ggml_norm    (ctx, cur, hparams.f_norm_eps);     break;
+        case LLM_NORM_RMS: cur = ggml_rms_norm(ctx, cur, scale_eps * hparams.f_norm_rms_eps); break;
+    }
+
+    if (mw || mb) {
+        cb(cur, "norm", il);
+    }
+
+    if (mw) {
+        cur = ggml_mul(ctx, cur, mw);
+        if (mb) {
+            cb(cur, "norm_w", il);
+        }
+    }
+
+    if (mb) {
+        cur = ggml_add(ctx, cur, mb);
+    }
+
+    return cur;
+}
+
+static struct ggml_tensor * llm_build_ffn(
+        struct ggml_context * ctx,
+       struct llama_context & lctx,
+         struct ggml_tensor * cur,
+         struct ggml_tensor * up,
+         struct ggml_tensor * up_b,
+         struct ggml_tensor * up_s,
+         struct ggml_tensor * gate,
+         struct ggml_tensor * gate_b,
+         struct ggml_tensor * gate_s,
+         struct ggml_tensor * down,
+         struct ggml_tensor * down_b,
+         struct ggml_tensor * down_s,
+         struct ggml_tensor * act_scales,
+            llm_ffn_op_type   type_op,
+          llm_ffn_gate_type   type_gate,
+         const llm_build_cb & cb,
+                        int   il) {
+    struct ggml_tensor * tmp = up ? llm_build_lora_mm(lctx, ctx, up, cur) : cur;
+    cb(tmp, "ffn_up", il);
+
+    if (up_b) {
+        tmp = ggml_add(ctx, tmp, up_b);
+        cb(tmp, "ffn_up_b", il);
+    }
+
+    if (up_s) {
+        tmp = ggml_mul(ctx, tmp, up_s);
+        cb(tmp, "ffn_up_s", il);
+    }
+
+    if (gate) {
+        switch (type_gate) {
+            case LLM_FFN_SEQ:
+                {
+                    cur = llm_build_lora_mm(lctx, ctx, gate, tmp);
+                    cb(cur, "ffn_gate", il);
+                } break;
+            case LLM_FFN_PAR:
+                {
+                    cur = llm_build_lora_mm(lctx, ctx, gate, cur);
+                    cb(cur, "ffn_gate", il);
+                } break;
+        }
+
+        if (gate_b) {
+            cur = ggml_add(ctx, cur, gate_b);
+            cb(cur, "ffn_gate_b", il);
+        }
+
+        if (gate_s) {
+            cur = ggml_mul(ctx, cur, gate_s);
+            cb(cur, "ffn_gate_s", il);
+        }
+
+    } else {
+        cur = tmp;
+    }
+
+    switch (type_op) {
+        case LLM_FFN_SILU:
+            {
+                cur = ggml_silu(ctx, cur);
+                cb(cur, "ffn_silu", il);
+            } break;
+        case LLM_FFN_GELU:
+            {
+                cur = ggml_gelu(ctx, cur);
+                cb(cur, "ffn_gelu", il);
+                if (act_scales != NULL) {
+                    cur = ggml_div(ctx, cur, act_scales);
+                    cb(cur, "ffn_act", il);
+                }
+            } break;
+        case LLM_FFN_RELU:
+            {
+                cur = ggml_relu(ctx, cur);
+                cb(cur, "ffn_relu", il);
+            } break;
+        case LLM_FFN_RELU_SQR:
+            {
+                cur = ggml_relu(ctx, cur);
+                cb(cur, "ffn_relu", il);
+
+                cur = ggml_sqr(ctx, cur);
+                cb(cur, "ffn_sqr(relu)", il);
+            } break;
+        case LLM_FFN_SWIGLU:
+            {
+                // Project to 4h. If using swiglu double the output width, see https://arxiv.org/pdf/2002.05202.pdf
+                int64_t split_point = cur->ne[0] / 2;
+                struct ggml_tensor * x0 = ggml_cont(ctx, ggml_view_2d(ctx, cur, split_point, cur->ne[1], cur->nb[1], 0));
+                struct ggml_tensor * x1 = ggml_cont(ctx, ggml_view_2d(ctx, cur, split_point, cur->ne[1], cur->nb[1], split_point * ggml_element_size(cur)));
+
+                x0 = ggml_silu(ctx, x0);
+                cb(cur, "ffn_silu", il);
+
+                cur = ggml_mul(ctx, x0, x1);
+                cb(cur, "ffn_mul", il);
+            } break;
+    }
+
+    if (type_gate == LLM_FFN_PAR) {
+        cur = ggml_mul(ctx, cur, tmp);
+        cb(cur, "ffn_gate_par", il);
+    }
+
+    if (down) {
+        cur = llm_build_lora_mm(lctx, ctx, down, cur);
+    }
+
+    if (down_b) {
+        cb(cur, "ffn_down", il);
+    }
+
+    if (down_b) {
+        cur = ggml_add(ctx, cur, down_b);
+    }
+
+    if (down_s) {
+        cur = ggml_mul(ctx, cur, down_s);
+        cb(cur, "ffn_down_s", il);
+    }
+
+    return cur;
+}
+
+static struct ggml_tensor * llm_build_moe_ffn(
+        struct ggml_context * ctx,
+       struct llama_context & lctx,
+         struct ggml_tensor * cur,
+         struct ggml_tensor * gate_inp,
+         struct ggml_tensor * up_exps,
+         struct ggml_tensor * gate_exps,
+         struct ggml_tensor * down_exps,
+                    int64_t   n_expert,
+                    int64_t   n_expert_used,
+            llm_ffn_op_type   type_op,
+                       bool   norm_w,
+                       bool   scale_w,
+                      float   w_scale,
+         const llm_build_cb & cb,
+                        int   il) {
+    int64_t n_embd = cur->ne[0];
+    int64_t n_tokens = cur->ne[1];
+
+    ggml_tensor * logits = llm_build_lora_mm(lctx, ctx, gate_inp, cur); // [n_expert, n_tokens]
+    cb(logits, "ffn_moe_logits", il);
+
+    ggml_tensor * probs = ggml_soft_max(ctx, logits); // [n_expert, n_tokens]
+    cb(probs, "ffn_moe_probs", il);
+
+    // select experts
+    ggml_tensor * selected_experts = ggml_top_k(ctx, probs, n_expert_used); // [n_expert_used, n_tokens]
+    cb(selected_experts->src[0], "ffn_moe_argsort", il);
+    cb(selected_experts, "ffn_moe_topk", il);
+
+    ggml_tensor * weights = ggml_get_rows(ctx,
+            ggml_reshape_3d(ctx, probs, 1, n_expert, n_tokens), selected_experts); // [1, n_expert_used, n_tokens]
+    cb(weights, "ffn_moe_weights", il);
+
+    if (norm_w) {
+        weights = ggml_reshape_2d(ctx, weights, n_expert_used, n_tokens);
+
+        ggml_tensor * weights_sum = ggml_sum_rows(ctx, weights); // [1, n_tokens]
+        cb(weights_sum, "ffn_moe_weights_sum", il);
+
+        weights = ggml_div(ctx, weights, weights_sum); // [n_expert_used, n_tokens]
+        cb(weights, "ffn_moe_weights_norm", il);
+
+        weights = ggml_reshape_3d(ctx, weights, 1, n_expert_used, n_tokens);
+    }
+    if (scale_w) {
+        weights = ggml_scale(ctx, weights, w_scale);
+        cb(weights, "ffn_moe_weights_scaled", il);
+    }
+
+    cur = ggml_reshape_3d(ctx, cur, n_embd, 1, n_tokens);
+    ggml_tensor * up = llm_build_lora_mm_id(lctx, ctx, up_exps, cur, selected_experts); // [n_ff, n_expert_used, n_tokens]
+    cb(up, "ffn_moe_up", il);
+
+    ggml_tensor * gate = llm_build_lora_mm_id(lctx, ctx, gate_exps, cur, selected_experts); // [n_ff, n_expert_used, n_tokens]
+    cb(gate, "ffn_moe_gate", il);
+
+    switch (type_op) {
+        case LLM_FFN_SILU:
+            {
+                gate = ggml_silu(ctx, gate);
+                cb(gate, "ffn_moe_silu", il);
+            } break;
+        case LLM_FFN_GELU:
+            {
+                gate = ggml_gelu(ctx, gate);
+                cb(gate, "ffn_moe_gelu", il);
+            } break;
+        default:
+            GGML_ASSERT(false);
+    }
+
+    ggml_tensor * par = ggml_mul(ctx, up, gate); // [n_ff, n_expert_used, n_tokens]
+    cb(par, "ffn_moe_gate_par", il);
+
+    ggml_tensor * experts = llm_build_lora_mm_id(lctx, ctx, down_exps, par, selected_experts); // [n_embd, n_expert_used, n_tokens]
+    cb(experts, "ffn_moe_down", il);
+
+    experts = ggml_mul(ctx, experts, weights);
+
+    // aggregate experts
+    ggml_tensor * moe_out = nullptr;
+    for (int i = 0; i < n_expert_used; ++i) {
+        ggml_tensor * cur_expert = ggml_view_2d(ctx, experts, n_embd, n_tokens,
+                experts->nb[2], i*experts->nb[1]);
+
+        if (i == 0) {
+            moe_out = cur_expert;
+        } else {
+            moe_out = ggml_add(ctx, moe_out, cur_expert);
+        }
+    }
+
+    if (n_expert_used == 1) {
+        // avoid returning a non-contiguous tensor
+        moe_out = ggml_cont(ctx, moe_out);
+    }
+
+    return moe_out;
+}
+
+static struct ggml_tensor * llm_build_kqv(
+        struct ggml_context * ctx,
+       struct llama_context & lctx,
+       const llama_kv_cache & kv,
+         struct ggml_cgraph * graph,
+         struct ggml_tensor * wo,
+         struct ggml_tensor * wo_b,
+         struct ggml_tensor * q_cur,
+         struct ggml_tensor * kq_mask,
+                    int32_t   n_tokens,
+                    int32_t   n_kv,
+                    float     kq_scale,
+         const llm_build_cb & cb,
+                    int       il) {
+    const llama_model   & model   = lctx.model;
+    const llama_hparams & hparams = lctx.model.hparams;
+    const llama_cparams & cparams = lctx.cparams;
+
+    const int64_t n_ctx         = cparams.n_ctx;
+    const int64_t n_head        = hparams.n_head(il);
+    const int64_t n_head_kv     = hparams.n_head_kv(il);
+    const int64_t n_embd_head_k = hparams.n_embd_head_k;
+    const int64_t n_embd_k_gqa  = hparams.n_embd_k_gqa(il);
+    const int64_t n_embd_head_v = hparams.n_embd_head_v;
+    const int64_t n_embd_v_gqa  = hparams.n_embd_v_gqa(il);
+
+    struct ggml_tensor * q = ggml_permute(ctx, q_cur, 0, 2, 1, 3);
+    cb(q, "q", il);
+
+    struct ggml_tensor * k =
+        ggml_view_3d(ctx, kv.k_l[il],
+                n_embd_head_k, n_kv, n_head_kv,
+                ggml_row_size(kv.k_l[il]->type, n_embd_k_gqa),
+                ggml_row_size(kv.k_l[il]->type, n_embd_head_k),
+                0);
+    cb(k, "k", il);
+
+    struct ggml_tensor * cur;
+
+    if (cparams.flash_attn) {
+        GGML_UNUSED(model);
+        GGML_UNUSED(n_ctx);
+
+        // split cached v into n_head heads (not transposed)
+        struct ggml_tensor * v =
+            ggml_view_3d(ctx, kv.v_l[il],
+                    n_embd_head_v, n_kv, n_head_kv,
+                    ggml_row_size(kv.v_l[il]->type, n_embd_v_gqa),
+                    ggml_row_size(kv.v_l[il]->type, n_embd_head_v),
+                    0);
+        cb(v, "v", il);
+
+        cur = ggml_flash_attn_ext(ctx, q, k, v, kq_mask, kq_scale, hparams.f_max_alibi_bias);
+
+        if (model.arch == LLM_ARCH_PHI2 || model.arch == LLM_ARCH_PHI3 || model.arch == LLM_ARCH_GPTNEOX) {
+            ggml_flash_attn_ext_set_prec(cur, GGML_PREC_F32);
+        }
+
+        cur = ggml_reshape_2d(ctx, cur, n_embd_head_v*n_head, n_tokens);
+    } else {
+        struct ggml_tensor * kq = ggml_mul_mat(ctx, k, q);
+        cb(kq, "kq", il);
+
+        if (model.arch == LLM_ARCH_PHI2 || model.arch == LLM_ARCH_PHI3 || model.arch == LLM_ARCH_GPTNEOX || model.arch == LLM_ARCH_QWEN2) {
+            // for this arch, we need to perform the KQ multiplication with F32 precision, otherwise we get NaNs
+            // ref: https://github.com/ggerganov/llama.cpp/pull/4490#issuecomment-1859055847
+            ggml_mul_mat_set_prec(kq, GGML_PREC_F32);
+        }
+
+        if (model.arch == LLM_ARCH_GROK) {
+            // need to do the following:
+            // multiply by attn_output_multiplyer of 0.08838834764831845
+            // and then :
+            // kq = 30 * tanh(kq / 30)
+            // before the softmax below
+
+            //try from phi2
+            //ggml_mul_mat_set_prec(kq, GGML_PREC_F32);
+
+            kq = ggml_tanh(ctx, ggml_scale(ctx, kq, 0.08838834764831845f/30.0f));
+            kq = ggml_scale(ctx, kq, 30);
+        }
+
+        if (hparams.attn_soft_cap) {
+            kq = ggml_scale(ctx, kq, 1.0f / hparams.f_attn_logit_softcapping);
+            kq = ggml_tanh(ctx, kq);
+            kq = ggml_scale(ctx, kq, hparams.f_attn_logit_softcapping);
+        }
+
+        kq = ggml_soft_max_ext(ctx, kq, kq_mask, kq_scale, hparams.f_max_alibi_bias);
+        cb(kq, "kq_soft_max_ext", il);
+
+        GGML_ASSERT(kv.size == n_ctx);
+
+        // split cached v into n_head heads
+        struct ggml_tensor * v =
+            ggml_view_3d(ctx, kv.v_l[il],
+                    n_kv, n_embd_head_v, n_head_kv,
+                    ggml_element_size(kv.v_l[il])*n_ctx,
+                    ggml_element_size(kv.v_l[il])*n_ctx*n_embd_head_v,
+                    0);
+        cb(v, "v", il);
+
+        struct ggml_tensor * kqv = ggml_mul_mat(ctx, v, kq);
+        cb(kqv, "kqv", il);
+
+        struct ggml_tensor * kqv_merged = ggml_permute(ctx, kqv, 0, 2, 1, 3);
+        cb(kqv_merged, "kqv_merged", il);
+
+        cur = ggml_cont_2d(ctx, kqv_merged, n_embd_head_v*n_head, n_tokens);
+        cb(cur, "kqv_merged_cont", il);
+    }
+
+    ggml_build_forward_expand(graph, cur);
+
+    if (wo) {
+        cur = llm_build_lora_mm(lctx, ctx, wo, cur);
+    }
+
+    if (wo_b) {
+        cb(cur, "kqv_wo", il);
+    }
+
+    if (wo_b) {
+        cur = ggml_add(ctx, cur, wo_b);
+    }
+
+    return cur;
+}
+
+static struct ggml_tensor * llm_build_kv(
+        struct ggml_context * ctx,
+       struct llama_context & lctx,
+       const llama_kv_cache & kv,
+         struct ggml_cgraph * graph,
+         struct ggml_tensor * wo,
+         struct ggml_tensor * wo_b,
+         struct ggml_tensor * k_cur,
+         struct ggml_tensor * v_cur,
+         struct ggml_tensor * q_cur,
+         struct ggml_tensor * kq_mask,
+                    int32_t   n_tokens,
+                    int32_t   kv_head,
+                    int32_t   n_kv,
+                    float     kq_scale,
+         const llm_build_cb & cb,
+                    int       il) {
+    const llama_hparams & hparams = lctx.model.hparams;
+    const llama_cparams & cparams = lctx.cparams;
+
+    // these nodes are added to the graph together so that they are not reordered
+    // by doing so, the number of splits in the graph is reduced
+    ggml_build_forward_expand(graph, q_cur);
+    ggml_build_forward_expand(graph, k_cur);
+    ggml_build_forward_expand(graph, v_cur);
+
+    llm_build_kv_store(ctx, hparams, cparams, kv, graph, k_cur, v_cur, n_tokens, kv_head, cb, il);
+
+    struct ggml_tensor * cur;
+
+    cur  = llm_build_kqv(ctx, lctx, kv, graph, wo, wo_b,
+            q_cur, kq_mask, n_tokens, n_kv, kq_scale, cb, il);
+    cb(cur, "kqv_out", il);
+
+    return cur;
+}
+
+struct llm_build_context {
+    const llama_model    & model;
+          llama_context  & lctx;
+    const llama_hparams  & hparams;
+    const llama_cparams  & cparams;
+    const llama_batch    & batch;
+    const llama_kv_cache & kv_self;
+
+    const int64_t n_embd;
+    const int64_t n_layer;
+    const int64_t n_rot;
+    const int64_t n_ctx;       // user-specified context size (can be different from n_ctx_train)
+    const int64_t n_head;
+    const int64_t n_head_kv;
+    const int64_t n_embd_head_k;
+    const int64_t n_embd_k_gqa;
+    const int64_t n_embd_head_v;
+    const int64_t n_embd_v_gqa;
+    const int64_t n_expert;
+    const int64_t n_expert_used;
+
+    const float freq_base;
+    const float freq_scale;
+    const float ext_factor;
+    const float attn_factor;
+    const float beta_fast;
+    const float beta_slow;
+    const float norm_eps;
+    const float norm_rms_eps;
+
+    const int32_t n_tokens;
+    const int32_t n_kv;     // size of KV cache to consider (n_kv <= kv_self.size)
+    const int32_t n_outputs;
+    const int32_t n_outputs_enc;
+    const int32_t kv_head;  // index of where we store new KV data in the cache
+    const int32_t n_ctx_orig;
+
+    const bool flash_attn;
+
+    const enum llama_pooling_type pooling_type;
+    const enum llama_rope_type    rope_type;
+
+    const llm_build_cb & cb;
+
+    std::vector & buf_compute_meta;
+
+    struct ggml_context * ctx0 = nullptr;
+
+    // TODO: consider making the entire interface noexcept
+    llm_build_context(
+        llama_context  & lctx,
+    const llama_batch  & batch,
+    const llm_build_cb & cb,
+                  bool   worst_case) :
+        model            (lctx.model),
+        lctx             (lctx),
+        hparams          (model.hparams),
+        cparams          (lctx.cparams),
+        batch            (batch),
+        kv_self          (lctx.kv_self),
+        n_embd           (hparams.n_embd),
+        n_layer          (hparams.n_layer),
+        n_rot            (hparams.n_rot),
+        n_ctx            (cparams.n_ctx),
+        n_head           (hparams.n_head()),
+        n_head_kv        (hparams.n_head_kv()),
+        n_embd_head_k    (hparams.n_embd_head_k),
+        n_embd_k_gqa     (hparams.n_embd_k_gqa()),
+        n_embd_head_v    (hparams.n_embd_head_v),
+        n_embd_v_gqa     (hparams.n_embd_v_gqa()),
+        n_expert         (hparams.n_expert),
+        n_expert_used    (hparams.n_expert_used),
+        freq_base        (cparams.rope_freq_base),
+        freq_scale       (cparams.rope_freq_scale),
+        ext_factor       (cparams.yarn_ext_factor),
+        attn_factor      (cparams.yarn_attn_factor),
+        beta_fast        (cparams.yarn_beta_fast),
+        beta_slow        (cparams.yarn_beta_slow),
+        norm_eps         (hparams.f_norm_eps),
+        norm_rms_eps     (hparams.f_norm_rms_eps),
+        n_tokens         (batch.n_tokens),
+        n_kv             (worst_case ? kv_self.size : kv_self.n),
+        n_outputs        (worst_case ? n_tokens : lctx.n_outputs),
+        n_outputs_enc    (worst_case ? n_tokens : lctx.embd_enc.size() / hparams.n_embd),
+        kv_head          (worst_case ? (kv_self.recurrent ? 0 : kv_self.size - n_tokens) : kv_self.head),
+        n_ctx_orig       (cparams.n_ctx_orig_yarn),
+        flash_attn       (cparams.flash_attn),
+        pooling_type     (cparams.pooling_type),
+        rope_type        (hparams.rope_type),
+        cb               (cb),
+        buf_compute_meta (lctx.buf_compute_meta) {
+            // all initializations should be done in init()
+        }
+
+    void init() {
+        struct ggml_init_params params = {
+            /*.mem_size   =*/ buf_compute_meta.size(),
+            /*.mem_buffer =*/ buf_compute_meta.data(),
+            /*.no_alloc   =*/ true,
+        };
+
+        ctx0 = ggml_init(params);
+
+        lctx.inp_tokens      = nullptr;
+        lctx.inp_embd        = nullptr;
+        lctx.inp_pos         = nullptr;
+        lctx.inp_out_ids     = nullptr;
+        lctx.inp_KQ_mask     = nullptr;
+        lctx.inp_KQ_mask_swa = nullptr;
+        lctx.inp_K_shift     = nullptr;
+        lctx.inp_mean        = nullptr;
+        lctx.inp_cls         = nullptr;
+        lctx.inp_s_copy      = nullptr;
+        lctx.inp_s_mask      = nullptr;
+        lctx.inp_s_seq       = nullptr;
+        lctx.inp_pos_bucket    = nullptr;
+        lctx.inp_embd_enc      = nullptr;
+        lctx.inp_KQ_mask_cross = nullptr;
+    }
+
+    void free() {
+        if (ctx0) {
+            ggml_free(ctx0);
+            ctx0 = nullptr;
+        }
+    }
+
+    struct ggml_cgraph * build_k_shift() {
+        struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
+
+        GGML_ASSERT(kv_self.size == n_ctx);
+
+        lctx.inp_K_shift = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_ctx);
+        cb(lctx.inp_K_shift, "K_shift", -1);
+        ggml_set_input(lctx.inp_K_shift);
+
+        for (int il = 0; il < n_layer; ++il) {
+            const int64_t n_head_kv = hparams.n_head_kv(il);
+            const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(il);
+            struct ggml_tensor * rope_factors = build_rope_factors(il);
+            struct ggml_tensor * tmp =
+                // we rotate only the first n_rot dimensions
+                ggml_rope_ext_inplace(ctx0,
+                        ggml_view_3d(ctx0, kv_self.k_l[il],
+                            n_embd_head_k, n_head_kv, n_ctx,
+                            ggml_row_size(kv_self.k_l[il]->type, n_embd_head_k),
+                            ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa),
+                            0),
+                        lctx.inp_K_shift, rope_factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+                        ext_factor, attn_factor, beta_fast, beta_slow);
+
+            cb(tmp, "K_shifted", il);
+            ggml_build_forward_expand(gf, tmp);
+        }
+
+        return gf;
+    }
+
+    struct ggml_cgraph * build_s_copy() {
+        struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
+
+        GGML_ASSERT(kv_self.recurrent);
+
+        struct ggml_tensor * state_copy = build_inp_s_copy();
+
+        for (int il = 0; il < n_layer; ++il) {
+            struct ggml_tensor * conv_states = ggml_reshape_2d(ctx0, kv_self.k_l[il], hparams.n_embd_k_s(), kv_self.size);
+            struct ggml_tensor * ssm_states  = ggml_reshape_2d(ctx0, kv_self.v_l[il], hparams.n_embd_v_s(), kv_self.size);
+
+            conv_states = ggml_get_rows(ctx0, conv_states, state_copy);
+            ssm_states  = ggml_get_rows(ctx0,  ssm_states, state_copy);
+
+            // TODO: name the intermediate tensors with cb()
+
+            ggml_build_forward_expand(gf, ggml_cpy(ctx0, conv_states, kv_self.k_l[il]));
+            ggml_build_forward_expand(gf, ggml_cpy(ctx0,  ssm_states, kv_self.v_l[il]));
+        }
+
+        return gf;
+    }
+
+    struct ggml_cgraph * build_defrag(const std::vector & ids) {
+        struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
+
+        for (uint32_t i = 0; i < ids.size(); ++i) {
+            const uint32_t id = ids[i];
+
+            if (i == id || id == ids.size()) {
+                continue;
+            }
+
+            uint32_t nm = 1;
+
+            while (i + nm < ids.size() && ids[i + nm] == id + nm) {
+                nm++;
+            }
+
+            for (int il = 0; il < n_layer; ++il) {
+                const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(il);
+                const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa(il);
+
+                ggml_tensor * view_k_src = ggml_view_2d(ctx0, kv_self.k_l[il],
+                        n_embd_k_gqa, nm,
+                        ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa),
+                        ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*i));
+
+                ggml_tensor * view_k_dst = ggml_view_2d(ctx0, kv_self.k_l[il],
+                        n_embd_k_gqa, nm,
+                        ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa),
+                        ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*id));
+
+                ggml_tensor * view_v_src;
+                ggml_tensor * view_v_dst;
+
+                if (flash_attn) {
+                    // NOTE: the V cache is not transposed when using flash attention
+                    view_v_src = ggml_view_2d(ctx0, kv_self.v_l[il],
+                            n_embd_v_gqa, nm,
+                            ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa),
+                            ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa*i));
+
+                    view_v_dst = ggml_view_2d(ctx0, kv_self.v_l[il],
+                            n_embd_v_gqa, nm,
+                            ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa),
+                            ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa*id));
+                } else {
+                    view_v_src = ggml_view_2d(ctx0, kv_self.v_l[il],
+                            nm, n_embd_v_gqa,
+                            ggml_row_size(kv_self.v_l[il]->type, kv_self.size),
+                            ggml_row_size(kv_self.v_l[il]->type, i));
+
+                    view_v_dst = ggml_view_2d(ctx0, kv_self.v_l[il],
+                            nm, n_embd_v_gqa,
+                            ggml_row_size(kv_self.v_l[il]->type, kv_self.size),
+                            ggml_row_size(kv_self.v_l[il]->type, id));
+                }
+
+                ggml_build_forward_expand(gf, ggml_cpy(ctx0, view_k_src, view_k_dst));
+                ggml_build_forward_expand(gf, ggml_cpy(ctx0, view_v_src, view_v_dst));
+            }
+
+            i += nm - 1;
+        }
+
+        //LLAMA_LOG_INFO("gf->n_nodes = %d\n", gf->n_nodes);
+
+        return gf;
+    }
+
+    struct ggml_tensor * build_inp_pos() {
+        lctx.inp_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
+        cb(lctx.inp_pos, "inp_pos", -1);
+        ggml_set_input(lctx.inp_pos);
+        return lctx.inp_pos;
+    }
+
+    struct ggml_tensor * build_rope_factors(int il) {
+        // choose long/short freq factors based on the context size
+        const auto n_ctx_pre_seq = cparams.n_ctx / cparams.n_seq_max;
+
+        if (n_ctx_pre_seq > hparams.n_ctx_orig_yarn) {
+            return model.layers[il].rope_long;
+        }
+
+        return model.layers[il].rope_short;
+    }
+
+    struct ggml_tensor * build_inp_out_ids() {
+        lctx.inp_out_ids = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_outputs);
+        cb(lctx.inp_out_ids, "inp_out_ids", -1);
+        ggml_set_input(lctx.inp_out_ids);
+        return lctx.inp_out_ids;
+    }
+
+    struct ggml_tensor * build_inp_KQ_mask(bool causal = true) {
+        lctx.inp_KQ_mask = causal
+            ? ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_kv,     GGML_PAD(n_tokens, GGML_KQ_MASK_PAD))
+            : ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD));
+        cb(lctx.inp_KQ_mask, "KQ_mask", -1);
+        ggml_set_input(lctx.inp_KQ_mask);
+
+        return flash_attn ? ggml_cast(ctx0, lctx.inp_KQ_mask, GGML_TYPE_F16) : lctx.inp_KQ_mask;
+    }
+
+    struct ggml_tensor * build_inp_KQ_mask_swa(bool causal = true) {
+        GGML_ASSERT(hparams.n_swa > 0);
+
+        lctx.inp_KQ_mask_swa = causal
+            ? ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_kv,     GGML_PAD(n_tokens, GGML_KQ_MASK_PAD))
+            : ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD));
+        cb(lctx.inp_KQ_mask_swa, "KQ_mask_swa", -1);
+        ggml_set_input(lctx.inp_KQ_mask_swa);
+
+        return flash_attn ? ggml_cast(ctx0, lctx.inp_KQ_mask_swa, GGML_TYPE_F16) : lctx.inp_KQ_mask_swa;
+    }
+
+    struct ggml_tensor * build_inp_mean() {
+        lctx.inp_mean = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, n_tokens);
+        cb(lctx.inp_mean, "inp_mean", -1);
+        ggml_set_input(lctx.inp_mean);
+        return lctx.inp_mean;
+    }
+
+    struct ggml_tensor * build_inp_cls() {
+        lctx.inp_cls = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
+        cb(lctx.inp_cls, "inp_cls", -1);
+        ggml_set_input(lctx.inp_cls);
+        return lctx.inp_cls;
+    }
+
+    struct ggml_tensor * build_inp_s_copy() {
+        lctx.inp_s_copy = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, kv_self.size);
+        cb(lctx.inp_s_copy, "inp_s_copy", -1);
+        ggml_set_input(lctx.inp_s_copy);
+        return lctx.inp_s_copy;
+    }
+
+    struct ggml_tensor * build_inp_s_mask() {
+        lctx.inp_s_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, 1, n_kv);
+        cb(lctx.inp_s_mask, "inp_s_mask", -1);
+        ggml_set_input(lctx.inp_s_mask);
+        return lctx.inp_s_mask;
+    }
+
+    struct ggml_tensor * build_inp_s_seq() {
+        lctx.inp_s_seq = ggml_new_tensor_2d(ctx0, GGML_TYPE_I32, n_kv, n_tokens);
+        cb(lctx.inp_s_seq, "inp_s_seq", -1);
+        ggml_set_input(lctx.inp_s_seq);
+        return lctx.inp_s_seq;
+    }
+
+    struct ggml_cgraph * append_pooling(struct ggml_cgraph * gf) {
+        // find result_norm tensor for input
+        struct ggml_tensor * inp = nullptr;
+        for (int i = gf->n_nodes - 1; i >= 0; --i) {
+            inp = gf->nodes[i];
+            if (strcmp(inp->name, "result_norm") == 0 || strcmp(inp->name, "result_embd") == 0) {
+                break;
+            } else {
+                inp = nullptr;
+            }
+        }
+        GGML_ASSERT(inp != nullptr && "missing result_norm/result_embd tensor");
+
+        struct ggml_tensor * cur;
+
+        switch (pooling_type) {
+            case LLAMA_POOLING_TYPE_MEAN:
+                {
+                    struct ggml_tensor * inp_mean = build_inp_mean();
+                    cur = ggml_mul_mat(ctx0, ggml_cont(ctx0, ggml_transpose(ctx0, inp)), inp_mean);
+                } break;
+            case LLAMA_POOLING_TYPE_CLS:
+            case LLAMA_POOLING_TYPE_LAST:
+                {
+                    struct ggml_tensor * inp_cls = build_inp_cls();
+                    cur = ggml_get_rows(ctx0, inp, inp_cls);
+                } break;
+            case LLAMA_POOLING_TYPE_NONE:
+                {
+                    cur = inp;
+                } break;
+            default:
+                {
+                    GGML_ASSERT(false && "unknown pooling type");
+                } break;
+        }
+
+        cb(cur, "result_embd_pooled", -1);
+
+        ggml_build_forward_expand(gf, cur);
+
+        return gf;
+    }
+
+    struct ggml_tensor * llm_build_pos_bucket(bool causal) {
+        if (causal) {
+            lctx.inp_pos_bucket = ggml_new_tensor_2d(ctx0, GGML_TYPE_I32, n_kv,     n_tokens);
+        } else {
+            lctx.inp_pos_bucket = ggml_new_tensor_2d(ctx0, GGML_TYPE_I32, n_tokens, n_tokens);
+        }
+
+        ggml_set_input(lctx.inp_pos_bucket);
+        cb(lctx.inp_pos_bucket, "pos_bucket", -1);
+
+        return lctx.inp_pos_bucket;
+    }
+
+    struct ggml_tensor * llm_build_pos_bias(struct ggml_tensor * pos_bucket, struct ggml_tensor * attn_rel_b) {
+        struct ggml_tensor * pos_bucket_1d = ggml_view_1d(ctx0, pos_bucket, pos_bucket->ne[0] * pos_bucket->ne[1], 0);
+        cb(pos_bucket_1d, "pos_bucket_1d", -1);
+
+        struct ggml_tensor * pos_bias = ggml_get_rows(ctx0, attn_rel_b, pos_bucket_1d);
+        cb(pos_bias, "pos_bias", -1);
+
+        pos_bias = ggml_view_3d(ctx0, pos_bias, pos_bias->ne[0], lctx.inp_pos_bucket->ne[0], lctx.inp_pos_bucket->ne[1], ggml_element_size(pos_bias) * pos_bias->ne[0], ggml_element_size(pos_bias) * pos_bias->ne[0] * lctx.inp_pos_bucket->ne[0],  0);
+        cb(pos_bias, "pos_bias", -1);
+
+        pos_bias = ggml_permute(ctx0, pos_bias, 2, 0, 1, 3);
+        cb(pos_bias, "pos_bias", -1);
+
+        pos_bias = ggml_cont(ctx0, pos_bias);
+        cb(pos_bias, "pos_bias", -1);
+
+        return pos_bias;
+    }
+
+    struct ggml_tensor * llm_build_inp_embd_enc() {
+        const int64_t n_embd = hparams.n_embd;
+        lctx.inp_embd_enc = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, n_outputs_enc);
+        ggml_set_input(lctx.inp_embd_enc);
+        cb(lctx.inp_embd_enc, "embd_enc", -1);
+        return lctx.inp_embd_enc;
+    }
+
+    struct ggml_tensor * llm_build_inp_KQ_mask_cross() {
+        lctx.inp_KQ_mask_cross = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_outputs_enc, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD));
+        ggml_set_input(lctx.inp_KQ_mask_cross);
+        cb(lctx.inp_KQ_mask_cross, "KQ_mask_cross", -1);
+        return lctx.inp_KQ_mask_cross;
+    }
+
+    struct ggml_cgraph * build_llama() {
+        struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
+
+        // mutable variable, needed during the last layer of the computation to skip unused tokens
+        int32_t n_tokens = this->n_tokens;
+
+        const int64_t n_embd_head = hparams.n_embd_head_v;
+        GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
+        GGML_ASSERT(n_embd_head == hparams.n_rot);
+
+        struct ggml_tensor * cur;
+        struct ggml_tensor * inpL;
+
+        inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
+
+        // inp_pos - contains the positions
+        struct ggml_tensor * inp_pos = build_inp_pos();
+
+        // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
+        struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
+
+        for (int il = 0; il < n_layer; ++il) {
+            struct ggml_tensor * inpSA = inpL;
+
+            // norm
+            cur = llm_build_norm(ctx0, inpL, hparams,
+                    model.layers[il].attn_norm, NULL,
+                    LLM_NORM_RMS, cb, il);
+            cb(cur, "attn_norm", il);
+
+            // self-attention
+            {
+                // compute Q and K and RoPE them
+                struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
+                cb(Qcur, "Qcur", il);
+                if (model.layers[il].bq) {
+                    Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
+                    cb(Qcur, "Qcur", il);
+                }
+
+                struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
+                cb(Kcur, "Kcur", il);
+                if (model.layers[il].bk) {
+                    Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
+                    cb(Kcur, "Kcur", il);
+                }
+
+                struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
+                cb(Vcur, "Vcur", il);
+                if (model.layers[il].bv) {
+                    Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
+                    cb(Vcur, "Vcur", il);
+                }
+
+                Qcur = ggml_rope_ext(
+                    ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
+                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+                    ext_factor, attn_factor, beta_fast, beta_slow
+                );
+                cb(Qcur, "Qcur", il);
+
+                Kcur = ggml_rope_ext(
+                    ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
+                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+                    ext_factor, attn_factor, beta_fast, beta_slow
+                );
+                cb(Kcur, "Kcur", il);
+
+                cur = llm_build_kv(ctx0, lctx, kv_self, gf,
+                        model.layers[il].wo, model.layers[il].bo,
+                        Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
+            }
+
+            if (il == n_layer - 1) {
+                // skip computing output for unused tokens
+                struct ggml_tensor * inp_out_ids = build_inp_out_ids();
+                n_tokens = n_outputs;
+                cur   = ggml_get_rows(ctx0,   cur, inp_out_ids);
+                inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
+            }
+
+            struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
+            cb(ffn_inp, "ffn_inp", il);
+
+            // feed-forward network
+            if (model.layers[il].ffn_gate_inp == nullptr) {
+                cur = llm_build_norm(ctx0, ffn_inp, hparams,
+                        model.layers[il].ffn_norm, NULL,
+                        LLM_NORM_RMS, cb, il);
+                cb(cur, "ffn_norm", il);
+
+                cur = llm_build_ffn(ctx0, lctx, cur,
+                        model.layers[il].ffn_up,   model.layers[il].ffn_up_b,   NULL,
+                        model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
+                        model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
+                        NULL,
+                        LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
+                cb(cur, "ffn_out", il);
+            } else {
+                // MoE branch
+                cur = llm_build_norm(ctx0, ffn_inp, hparams,
+                        model.layers[il].ffn_norm, NULL,
+                        LLM_NORM_RMS, cb, il);
+                cb(cur, "ffn_norm", il);
+
+                cur = llm_build_moe_ffn(ctx0, lctx, cur,
+                        model.layers[il].ffn_gate_inp,
+                        model.layers[il].ffn_up_exps,
+                        model.layers[il].ffn_gate_exps,
+                        model.layers[il].ffn_down_exps,
+                        n_expert, n_expert_used,
+                        LLM_FFN_SILU, true,
+                        false, 0.0,
+                        cb, il);
+                cb(cur, "ffn_moe_out", il);
+            }
+
+            cur = ggml_add(ctx0, cur, ffn_inp);
+            cb(cur, "ffn_out", il);
+
+            cur = lctx.cvec.apply_to(ctx0, cur, il);
+            cb(cur, "l_out", il);
+
+            // input for next layer
+            inpL = cur;
+        }
+
+        cur = inpL;
+
+        cur = llm_build_norm(ctx0, cur, hparams,
+                model.output_norm, NULL,
+                LLM_NORM_RMS, cb, -1);
+        cb(cur, "result_norm", -1);
+
+        // lm_head
+        cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
+        cb(cur, "result_output", -1);
+
+        ggml_build_forward_expand(gf, cur);
+
+        return gf;
+    }
+
+    struct ggml_cgraph * build_baichuan() {
+        struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
+
+        const int64_t n_embd_head = hparams.n_embd_head_v;
+        GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
+        GGML_ASSERT(n_embd_head == hparams.n_rot);
+
+        struct ggml_tensor * cur;
+        struct ggml_tensor * inpL;
+
+        inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
+
+        // inp_pos - contains the positions
+        struct ggml_tensor * inp_pos = model.type == MODEL_7B ? build_inp_pos() : nullptr;
+
+        // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
+        struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
+
+        for (int il = 0; il < n_layer; ++il) {
+            struct ggml_tensor * inpSA = inpL;
+
+            cur = llm_build_norm(ctx0, inpL, hparams,
+                    model.layers[il].attn_norm, NULL,
+                    LLM_NORM_RMS, cb, il);
+            cb(cur, "attn_norm", il);
+
+            // self-attention
+            {
+                struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
+                cb(Qcur, "Qcur", il);
+
+                struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
+                cb(Kcur, "Kcur", il);
+
+                struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
+                cb(Vcur, "Vcur", il);
+
+                switch (model.type) {
+                    case MODEL_7B:
+                        Qcur = ggml_rope_ext(
+                            ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
+                            n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+                            ext_factor, attn_factor, beta_fast, beta_slow
+                        );
+                        Kcur = ggml_rope_ext(
+                            ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
+                            n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+                            ext_factor, attn_factor, beta_fast, beta_slow
+                        );
+                        break;
+                    case MODEL_13B:
+                        Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd/n_head, n_head, n_tokens);
+                        Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd/n_head, n_head, n_tokens);
+                        break;
+                    default:
+                        GGML_ASSERT(false);
+                }
+                cb(Qcur, "Qcur", il);
+                cb(Kcur, "Kcur", il);
+
+                cur = llm_build_kv(ctx0, lctx, kv_self, gf,
+                        model.layers[il].wo, NULL,
+                        Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
+            }
+
+            if (il == n_layer - 1) {
+                // skip computing output for unused tokens
+                struct ggml_tensor * inp_out_ids = build_inp_out_ids();
+                cur   = ggml_get_rows(ctx0,   cur, inp_out_ids);
+                inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
+            }
+
+            struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
+            cb(ffn_inp, "ffn_inp", il);
+
+            // feed-forward network
+            {
+                cur = llm_build_norm(ctx0, ffn_inp, hparams,
+                        model.layers[il].ffn_norm, NULL,
+                        LLM_NORM_RMS, cb, il);
+                cb(cur, "ffn_norm", il);
+
+                cur = llm_build_ffn(ctx0, lctx, cur,
+                        model.layers[il].ffn_up,   NULL, NULL,
+                        model.layers[il].ffn_gate, NULL, NULL,
+                        model.layers[il].ffn_down, NULL, NULL,
+                        NULL,
+                        LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
+                cb(cur, "ffn_out", il);
+            }
+
+            cur = ggml_add(ctx0, cur, ffn_inp);
+            cur = lctx.cvec.apply_to(ctx0, cur, il);
+            cb(cur, "l_out", il);
+
+            // input for next layer
+            inpL = cur;
+        }
+
+        cur = inpL;
+
+        cur = llm_build_norm(ctx0, cur, hparams,
+                model.output_norm, NULL,
+                LLM_NORM_RMS, cb, -1);
+        cb(cur, "result_norm", -1);
+
+        // lm_head
+        cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
+        cb(cur, "result_output", -1);
+
+        ggml_build_forward_expand(gf, cur);
+
+        return gf;
+    }
+
+    struct ggml_cgraph * build_xverse() {
+        struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
+
+        const int64_t n_embd_head = hparams.n_embd_head_v;
+        GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
+        GGML_ASSERT(n_embd_head == hparams.n_rot);
+
+        struct ggml_tensor * cur;
+        struct ggml_tensor * inpL;
+
+        inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
+
+        // inp_pos - contains the positions
+        struct ggml_tensor * inp_pos = build_inp_pos();
+
+        // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
+        struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
+
+        for (int il = 0; il < n_layer; ++il) {
+            struct ggml_tensor * inpSA = inpL;
+
+            cur = llm_build_norm(ctx0, inpL, hparams,
+                    model.layers[il].attn_norm, NULL,
+                    LLM_NORM_RMS, cb, il);
+            cb(cur, "attn_norm", il);
+
+            // self-attention
+            {
+                struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
+                cb(Qcur, "Qcur", il);
+
+                struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
+                cb(Kcur, "Kcur", il);
+
+                struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
+                cb(Vcur, "Vcur", il);
+
+                Qcur = ggml_rope_ext(
+                    ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
+                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+                    ext_factor, attn_factor, beta_fast, beta_slow
+                );
+                cb(Qcur, "Qcur", il);
+
+                Kcur = ggml_rope_ext(
+                    ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
+                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+                    ext_factor, attn_factor, beta_fast, beta_slow
+                );
+                cb(Kcur, "Kcur", il);
+                cur = llm_build_kv(ctx0, lctx, kv_self, gf,
+                        model.layers[il].wo, NULL,
+                        Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
+            }
+
+            if (il == n_layer - 1) {
+                // skip computing output for unused tokens
+                struct ggml_tensor * inp_out_ids = build_inp_out_ids();
+                cur   = ggml_get_rows(ctx0,      cur, inp_out_ids);
+                inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
+            }
+
+            struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
+            cb(ffn_inp, "ffn_inp", il);
+
+            // feed-forward network
+            {
+                cur = llm_build_norm(ctx0, ffn_inp, hparams,
+                        model.layers[il].ffn_norm, NULL,
+                        LLM_NORM_RMS, cb, il);
+                cb(cur, "ffn_norm", il);
+
+                cur = llm_build_ffn(ctx0, lctx, cur,
+                        model.layers[il].ffn_up,   NULL, NULL,
+                        model.layers[il].ffn_gate, NULL, NULL,
+                        model.layers[il].ffn_down, NULL, NULL,
+                        NULL,
+                        LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
+                cb(cur, "ffn_out", il);
+            }
+
+            cur = ggml_add(ctx0, cur, ffn_inp);
+            cur = lctx.cvec.apply_to(ctx0, cur, il);
+            cb(cur, "l_out", il);
+
+            // input for next layer
+            inpL = cur;
+        }
+
+        cur = inpL;
+
+        cur = llm_build_norm(ctx0, cur, hparams, model.output_norm, NULL, LLM_NORM_RMS, cb, -1);
+        cb(cur, "result_norm", -1);
+
+        // lm_head
+        cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
+        cb(cur, "result_output", -1);
+
+        ggml_build_forward_expand(gf, cur);
+
+        return gf;
+    }
+
+    struct ggml_cgraph * build_falcon() {
+        struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
+
+        const int64_t n_embd_head = hparams.n_embd_head_v;
+        const int64_t n_embd_gqa  = hparams.n_embd_v_gqa();
+        GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
+        GGML_ASSERT(n_embd_head == hparams.n_rot);
+
+        struct ggml_tensor * cur;
+        struct ggml_tensor * inpL;
+
+        inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
+
+        // inp_pos - contains the positions
+        struct ggml_tensor * inp_pos = build_inp_pos();
+
+        // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
+        struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
+
+        for (int il = 0; il < n_layer; ++il) {
+            struct ggml_tensor * attn_norm;
+
+            attn_norm = llm_build_norm(ctx0, inpL, hparams,
+                    model.layers[il].attn_norm,
+                    model.layers[il].attn_norm_b,
+                    LLM_NORM, cb, il);
+            cb(attn_norm, "attn_norm", il);
+
+            // self-attention
+            {
+                if (model.layers[il].attn_norm_2) {
+                    // Falcon-40B
+                    cur = llm_build_norm(ctx0, inpL, hparams,
+                            model.layers[il].attn_norm_2,
+                            model.layers[il].attn_norm_2_b,
+                            LLM_NORM, cb, il);
+                    cb(cur, "attn_norm_2", il);
+                } else {
+                    cur = attn_norm;
+                }
+
+                cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wqkv, cur);
+                cb(cur, "wqkv", il);
+
+                struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd,     n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
+                struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
+                struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
+
+                cb(Qcur, "Qcur", il);
+                cb(Kcur, "Kcur", il);
+                cb(Vcur, "Vcur", il);
+
+                Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head,    n_tokens);
+                Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
+
+                // using mode = 2 for neox mode
+                Qcur = ggml_rope_ext(
+                    ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig,
+                    freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
+                );
+                cb(Qcur, "Qcur", il);
+
+                Kcur = ggml_rope_ext(
+                    ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig,
+                    freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
+                );
+                cb(Kcur, "Kcur", il);
+
+                cur = llm_build_kv(ctx0, lctx, kv_self, gf,
+                        model.layers[il].wo, NULL,
+                        Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
+            }
+
+            if (il == n_layer - 1) {
+                // skip computing output for unused tokens
+                struct ggml_tensor * inp_out_ids = build_inp_out_ids();
+                cur       = ggml_get_rows(ctx0,       cur, inp_out_ids);
+                inpL      = ggml_get_rows(ctx0,      inpL, inp_out_ids);
+                attn_norm = ggml_get_rows(ctx0, attn_norm, inp_out_ids);
+            }
+
+            struct ggml_tensor * ffn_inp = cur;
+
+            // feed forward
+            {
+                cur = llm_build_ffn(ctx0, lctx, attn_norm, // !! use the attn norm, not the result
+                        model.layers[il].ffn_up,   NULL, NULL,
+                        NULL,                      NULL, NULL,
+                        model.layers[il].ffn_down, NULL, NULL,
+                        NULL,
+                        LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
+                cb(cur, "ffn_out", il);
+            }
+
+            cur = ggml_add(ctx0, cur, ffn_inp);
+            cur = ggml_add(ctx0, cur, inpL);
+            cur = lctx.cvec.apply_to(ctx0, cur, il);
+            cb(cur, "l_out", il);
+
+            // input for next layer
+            inpL = cur;
+        }
+
+        cur = inpL;
+
+        // norm
+        cur = llm_build_norm(ctx0, cur, hparams,
+                model.output_norm,
+                model.output_norm_b,
+                LLM_NORM, cb, -1);
+        cb(cur, "result_norm", -1);
+
+        cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
+        cb(cur, "result_output", -1);
+
+        ggml_build_forward_expand(gf, cur);
+
+        return gf;
+    }
+
+    struct ggml_cgraph * build_grok() {
+        struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
+
+        // mutable variable, needed during the last layer of the computation to skip unused tokens
+        int32_t n_tokens = this->n_tokens;
+
+        const int64_t n_embd_head = hparams.n_embd_head_v;
+        GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
+        GGML_ASSERT(n_embd_head == hparams.n_rot);
+
+        struct ggml_tensor * cur;
+        struct ggml_tensor * inpL;
+
+        inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
+
+        // multiply by embedding_multiplier_scale of 78.38367176906169
+        inpL = ggml_scale(ctx0, inpL, 78.38367176906169f);
+
+        // inp_pos - contains the positions
+        struct ggml_tensor * inp_pos = build_inp_pos();
+
+        // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
+        struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
+
+        for (int il = 0; il < n_layer; ++il) {
+            struct ggml_tensor * inpSA = inpL;
+
+            // norm
+            cur = llm_build_norm(ctx0, inpL, hparams,
+                    model.layers[il].attn_norm, NULL,
+                    LLM_NORM_RMS, cb, il);
+            cb(cur, "attn_norm", il);
+
+
+            // self-attention
+            {
+                // compute Q and K and RoPE them
+                struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
+                cb(Qcur, "Qcur", il);
+                if (model.layers[il].bq) {
+                    Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
+                    cb(Qcur, "Qcur", il);
+                }
+
+                struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
+                cb(Kcur, "Kcur", il);
+                if (model.layers[il].bk) {
+                    Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
+                    cb(Kcur, "Kcur", il);
+                }
+
+                struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
+                cb(Vcur, "Vcur", il);
+                if (model.layers[il].bv) {
+                    Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
+                    cb(Vcur, "Vcur", il);
+                }
+
+                Qcur = ggml_rope_ext(
+                    ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
+                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+                    ext_factor, attn_factor, beta_fast, beta_slow
+                );
+                cb(Qcur, "Qcur", il);
+
+                Kcur = ggml_rope_ext(
+                    ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
+                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+                    ext_factor, attn_factor, beta_fast, beta_slow
+                );
+                cb(Kcur, "Kcur", il);
+
+                cur = llm_build_kv(ctx0, lctx, kv_self, gf,
+                        model.layers[il].wo, model.layers[il].bo,
+                        Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f, cb, il);
+            }
+
+            if (il == n_layer - 1) {
+                // skip computing output for unused tokens
+                struct ggml_tensor * inp_out_ids = build_inp_out_ids();
+                n_tokens = n_outputs;
+                cur   = ggml_get_rows(ctx0,   cur, inp_out_ids);
+                inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
+            }
+
+            // Grok
+            // if attn_out_norm is present then apply it before adding the input
+            if (model.layers[il].attn_out_norm) {
+                cur = llm_build_norm(ctx0, cur, hparams,
+                        model.layers[il].attn_out_norm, NULL,
+                        LLM_NORM_RMS, cb, il);
+                cb(cur, "attn_out_norm", il);
+            }
+
+            struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
+            cb(ffn_inp, "ffn_inp", il);
+
+            // feed-forward network
+            // MoE branch
+            cur = llm_build_norm(ctx0, ffn_inp, hparams,
+                    model.layers[il].ffn_norm, NULL,
+                    LLM_NORM_RMS, cb, il);
+            cb(cur, "ffn_norm", il);
+
+            cur = llm_build_moe_ffn(ctx0, lctx, cur,
+                    model.layers[il].ffn_gate_inp,
+                    model.layers[il].ffn_up_exps,
+                    model.layers[il].ffn_gate_exps,
+                    model.layers[il].ffn_down_exps,
+                    n_expert, n_expert_used,
+                    LLM_FFN_GELU, true,
+                    false, 0.0,
+                    cb, il);
+            cb(cur, "ffn_moe_out", il);
+
+            // Grok
+            // if layer_out_norm is present then apply it before adding the input
+            // Idea: maybe ffn_out_norm is a better name
+            if (model.layers[il].layer_out_norm) {
+                cur = llm_build_norm(ctx0, cur, hparams,
+                        model.layers[il].layer_out_norm, NULL,
+                        LLM_NORM_RMS, cb, il);
+                cb(cur, "layer_out_norm", il);
+            }
+
+            cur = ggml_add(ctx0, cur, ffn_inp);
+            cb(cur, "ffn_out", il);
+
+            cur = lctx.cvec.apply_to(ctx0, cur, il);
+            cb(cur, "l_out", il);
+
+            // input for next layer
+            inpL = cur;
+        }
+
+        cur = inpL;
+
+        cur = llm_build_norm(ctx0, cur, hparams,
+                model.output_norm, NULL,
+                LLM_NORM_RMS, cb, -1);
+        cb(cur, "result_norm", -1);
+
+        // lm_head
+        cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
+
+        // Grok
+        // multiply logits by output_multiplier_scale of 0.5773502691896257
+
+        cur = ggml_scale(ctx0, cur, 0.5773502691896257f);
+
+        cb(cur, "result_output", -1);
+
+        ggml_build_forward_expand(gf, cur);
+
+        return gf;
+    }
+
+    struct ggml_cgraph * build_dbrx() {
+        struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
+
+        // mutable variable, needed during the last layer of the computation to skip unused tokens
+        int32_t n_tokens = this->n_tokens;
+
+        const int64_t n_embd_head = hparams.n_embd_head_v;
+        const int64_t n_embd_gqa  = hparams.n_embd_v_gqa();
+        GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
+        GGML_ASSERT(n_embd_head == hparams.n_rot);
+
+        struct ggml_tensor * cur;
+        struct ggml_tensor * inpL;
+
+        inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
+
+        // inp_pos - contains the positions
+        struct ggml_tensor * inp_pos = build_inp_pos();
+
+        // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
+        struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
+
+        for (int il = 0; il < n_layer; ++il) {
+            struct ggml_tensor * inpSA = inpL;
+
+            // norm
+            cur = llm_build_norm(ctx0, inpL, hparams,
+                                 model.layers[il].attn_norm, NULL,
+                                 LLM_NORM, cb, il);
+            cb(cur, "attn_norm", il);
+
+            // self-attention
+            {
+                struct ggml_tensor * Qcur = nullptr;
+                struct ggml_tensor * Kcur = nullptr;
+                struct ggml_tensor * Vcur = nullptr;
+
+                cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wqkv, cur);
+                cb(cur, "wqkv", il);
+
+                cur = ggml_clamp(ctx0, cur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
+                cb(cur, "wqkv_clamped", il);
+
+                Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd,     n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
+                Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
+                Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
+
+                cb(Qcur, "Qcur", il);
+                cb(Kcur, "Kcur", il);
+                cb(Vcur, "Vcur", il);
+
+                Qcur = ggml_rope_ext(
+                    ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
+                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+                    ext_factor, attn_factor, beta_fast, beta_slow
+                );
+                cb(Qcur, "Qcur", il);
+
+                Kcur = ggml_rope_ext(
+                    ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
+                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+                    ext_factor, attn_factor, beta_fast, beta_slow
+                );
+                cb(Kcur, "Kcur", il);
+
+                cur = llm_build_kv(ctx0, lctx, kv_self, gf,
+                        model.layers[il].wo, NULL,
+                        Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
+            }
+
+            if (il == n_layer - 1) {
+                // skip computing output for unused tokens
+                struct ggml_tensor * inp_out_ids = build_inp_out_ids();
+                n_tokens = n_outputs;
+                cur   = ggml_get_rows(ctx0,   cur, inp_out_ids);
+                inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
+            }
+
+            struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
+            cb(ffn_inp, "ffn_inp", il);
+
+            // feed-forward network
+            // MoE branch
+            cur = llm_build_norm(ctx0, ffn_inp, hparams,
+                                 model.layers[il].attn_out_norm, NULL,
+                                 LLM_NORM, cb, il);
+            cb(cur, "attn_out_norm", il);
+
+            cur = llm_build_moe_ffn(ctx0, lctx, cur,
+                    model.layers[il].ffn_gate_inp,
+                    model.layers[il].ffn_up_exps,
+                    model.layers[il].ffn_gate_exps,
+                    model.layers[il].ffn_down_exps,
+                    n_expert, n_expert_used,
+                    LLM_FFN_SILU, true,
+                    false, 0.0,
+                    cb, il);
+            cb(cur, "ffn_moe_out", il);
+
+            cur = ggml_add(ctx0, cur, ffn_inp);
+            cb(cur, "ffn_out", il);
+
+            cur = lctx.cvec.apply_to(ctx0, cur, il);
+            cb(cur, "l_out", il);
+
+            // input for next layer
+            inpL = cur;
+        }
+
+        cur = inpL;
+
+        cur = llm_build_norm(ctx0, cur, hparams,
+                             model.output_norm, NULL,
+                             LLM_NORM, cb, -1);
+        cb(cur, "result_norm", -1);
+
+        // lm_head
+        cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
+
+        cb(cur, "result_output", -1);
+
+        ggml_build_forward_expand(gf, cur);
+
+        return gf;
+    }
+
+    struct ggml_cgraph * build_starcoder() {
+        struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
+
+        const int64_t n_embd_head = hparams.n_embd_head_v;
+        const int64_t n_embd_gqa  = hparams.n_embd_v_gqa();
+        GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
+
+        struct ggml_tensor * cur;
+        struct ggml_tensor * inpL;
+
+        inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
+
+        // inp_pos - contains the positions
+        struct ggml_tensor * inp_pos = build_inp_pos();
+
+        // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
+        struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
+
+        struct ggml_tensor * pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
+        cb(pos, "pos_embd", -1);
+
+        inpL = ggml_add(ctx0, inpL, pos);
+        cb(inpL, "inpL", -1);
+
+        for (int il = 0; il < n_layer; ++il) {
+            cur = llm_build_norm(ctx0, inpL, hparams,
+                    model.layers[il].attn_norm,
+                    model.layers[il].attn_norm_b,
+                    LLM_NORM, cb, il);
+            cb(cur, "attn_norm", il);
+
+            // self-attention
+            {
+                cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wqkv, cur);
+                cb(cur, "wqkv", il);
+
+                cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
+                cb(cur, "bqkv", il);
+
+                struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd,     n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
+                struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
+                struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
+
+                cb(Qcur, "Qcur", il);
+                cb(Kcur, "Kcur", il);
+                cb(Vcur, "Vcur", il);
+
+                Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
+
+                cur = llm_build_kv(ctx0, lctx, kv_self, gf,
+                        model.layers[il].wo, model.layers[il].bo,
+                        Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
+            }
+
+            if (il == n_layer - 1) {
+                // skip computing output for unused tokens
+                struct ggml_tensor * inp_out_ids = build_inp_out_ids();
+                cur  = ggml_get_rows(ctx0,  cur, inp_out_ids);
+                inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
+            }
+
+            // add the input
+            struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
+            cb(ffn_inp, "ffn_inp", il);
+
+            // FF
+            {
+                cur = llm_build_norm(ctx0, ffn_inp, hparams,
+                        model.layers[il].ffn_norm,
+                        model.layers[il].ffn_norm_b,
+                        LLM_NORM, cb, il);
+                cb(cur, "ffn_norm", il);
+
+                cur = llm_build_ffn(ctx0, lctx, cur,
+                        model.layers[il].ffn_up,   model.layers[il].ffn_up_b,   NULL,
+                        NULL,                      NULL,                        NULL,
+                        model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
+                        NULL,
+                        LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
+                cb(cur, "ffn_out", il);
+            }
+
+            cur = ggml_add(ctx0, cur, ffn_inp);
+            cur = lctx.cvec.apply_to(ctx0, cur, il);
+            cb(cur, "l_out", il);
+
+            // input for next layer
+            inpL = cur;
+        }
+
+        cur = llm_build_norm(ctx0, inpL, hparams,
+                model.output_norm,
+                model.output_norm_b,
+                LLM_NORM, cb, -1);
+        cb(cur, "result_norm", -1);
+
+        cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
+        cb(cur, "result_output", -1);
+
+        ggml_build_forward_expand(gf, cur);
+
+        return gf;
+    }
+
+    struct ggml_cgraph * build_refact() {
+        struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
+
+        const int64_t n_embd_head = hparams.n_embd_head_v;
+        GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
+
+        struct ggml_tensor * cur;
+        struct ggml_tensor * inpL;
+
+        inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
+
+        // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
+        struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
+
+        for (int il = 0; il < n_layer; ++il) {
+            struct ggml_tensor * inpSA = inpL;
+
+            cur = llm_build_norm(ctx0, inpL, hparams,
+                    model.layers[il].attn_norm, NULL,
+                    LLM_NORM_RMS, cb, il);
+            cb(cur, "attn_norm", il);
+
+            // self-attention
+            {
+                struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
+                cb(Qcur, "Qcur", il);
+
+                struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
+                cb(Kcur, "Kcur", il);
+
+                struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
+                cb(Vcur, "Vcur", il);
+
+                Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
+                cb(Kcur, "Kcur", il);
+
+                Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head,    n_tokens);
+                cb(Qcur, "Qcur", il);
+
+                cur = llm_build_kv(ctx0, lctx, kv_self, gf,
+                        model.layers[il].wo, NULL,
+                        Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
+            }
+
+            if (il == n_layer - 1) {
+                // skip computing output for unused tokens
+                struct ggml_tensor * inp_out_ids = build_inp_out_ids();
+                cur   = ggml_get_rows(ctx0,   cur, inp_out_ids);
+                inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
+            }
+
+            struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
+            cb(ffn_inp, "ffn_inp", il);
+
+            // feed-forward network
+            {
+                cur = llm_build_norm(ctx0, ffn_inp, hparams,
+                        model.layers[il].ffn_norm, NULL,
+                        LLM_NORM_RMS, cb, il);
+                cb(cur, "ffn_norm", il);
+
+                cur = llm_build_ffn(ctx0, lctx, cur,
+                        model.layers[il].ffn_up,   NULL, NULL,
+                        model.layers[il].ffn_gate, NULL, NULL,
+                        model.layers[il].ffn_down, NULL, NULL,
+                        NULL,
+                        LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
+                cb(cur, "ffn_out", il);
+            }
+
+            cur = ggml_add(ctx0, cur, ffn_inp);
+            cur = lctx.cvec.apply_to(ctx0, cur, il);
+            cb(cur, "l_out", il);
+
+            // input for next layer
+            inpL = cur;
+        }
+
+        cur = inpL;
+
+        cur = llm_build_norm(ctx0, cur, hparams,
+                model.output_norm, NULL,
+                LLM_NORM_RMS, cb, -1);
+        cb(cur, "result_norm", -1);
+
+        // lm_head
+        cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
+        cb(cur, "result_output", -1);
+
+        ggml_build_forward_expand(gf, cur);
+
+        return gf;
+    }
+
+    struct ggml_cgraph * build_bert() {
+        struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
+
+        const int64_t n_embd_head = hparams.n_embd_head_v;
+        const int64_t n_embd_gqa  = hparams.n_embd_v_gqa();
+
+        GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
+
+        struct ggml_tensor * cur;
+        struct ggml_tensor * inpL;
+        struct ggml_tensor * inp_pos = nullptr;
+
+        if (model.arch != LLM_ARCH_JINA_BERT_V2) {
+            inp_pos = build_inp_pos();
+        }
+
+        // construct input embeddings (token, type, position)
+        inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
+
+        // token types are hardcoded to zero ("Sentence A")
+        struct ggml_tensor * type_row0 = ggml_view_1d(ctx0, model.type_embd, n_embd, 0);
+        inpL = ggml_add(ctx0, inpL, type_row0);
+        if (model.arch == LLM_ARCH_BERT) {
+            inpL = ggml_add(ctx0, ggml_get_rows(ctx0, model.pos_embd, inp_pos), inpL);
+        }
+        cb(inpL, "inp_embd", -1);
+
+        // embed layer norm
+        inpL = llm_build_norm(ctx0, inpL, hparams, model.tok_norm, model.tok_norm_b, LLM_NORM, cb, -1);
+        cb(inpL, "inp_norm", -1);
+
+        // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
+        struct ggml_tensor * KQ_mask = build_inp_KQ_mask(false);
+
+        // iterate layers
+        for (int il = 0; il < n_layer; ++il) {
+            struct ggml_tensor * cur = inpL;
+
+            struct ggml_tensor * Qcur;
+            struct ggml_tensor * Kcur;
+            struct ggml_tensor * Vcur;
+
+            // self-attention
+            if (model.arch == LLM_ARCH_BERT || model.arch == LLM_ARCH_JINA_BERT_V2) {
+                Qcur = ggml_add(ctx0, llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur), model.layers[il].bq);
+                cb(Qcur, "Qcur", il);
+
+                if (model.layers[il].attn_q_norm) {
+                    Qcur = llm_build_norm(ctx0, Qcur, hparams,
+                            model.layers[il].attn_q_norm,
+                            model.layers[il].attn_q_norm_b,
+                            LLM_NORM, cb, il);
+                }
+
+                Kcur = ggml_add(ctx0, llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur), model.layers[il].bk);
+                cb(Kcur, "Kcur", il);
+
+                if (model.layers[il].attn_k_norm) {
+                    Kcur = llm_build_norm(ctx0, Kcur, hparams,
+                            model.layers[il].attn_k_norm,
+                            model.layers[il].attn_k_norm_b,
+                            LLM_NORM, cb, il);
+                }
+                Vcur = ggml_add(ctx0, llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur), model.layers[il].bv);
+                cb(Vcur, "Vcur", il);
+
+                Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head,    n_tokens);
+                Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
+            } else {
+                // compute Q and K and RoPE them
+                cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wqkv, cur);
+                cb(cur, "wqkv", il);
+
+                Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd,     n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
+                Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
+                Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
+
+                cb(Qcur, "Qcur", il);
+                cb(Kcur, "Kcur", il);
+                cb(Vcur, "Vcur", il);
+
+                Qcur = ggml_rope_ext(
+                    ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head,    n_tokens), inp_pos, nullptr,
+                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+                    ext_factor, attn_factor, beta_fast, beta_slow
+                );
+                cb(Qcur, "Qcur", il);
+
+                Kcur = ggml_rope_ext(
+                    ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
+                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+                    ext_factor, attn_factor, beta_fast, beta_slow
+                );
+                cb(Kcur, "Kcur", il);
+            }
+
+            struct ggml_tensor * q =                 ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
+            struct ggml_tensor * k = ggml_cont(ctx0, ggml_permute(ctx0, Kcur, 0, 2, 1, 3));
+
+            struct ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
+            cb(kq, "kq", il);
+
+            kq = ggml_soft_max_ext(ctx0, kq, KQ_mask, 1.0f/sqrtf(float(n_embd_head)), hparams.f_max_alibi_bias);
+            cb(kq, "kq_soft_max_ext", il);
+
+            struct ggml_tensor * v = ggml_cont(ctx0, ggml_transpose(ctx0, ggml_reshape_2d(ctx0, Vcur, n_embd_gqa, n_tokens)));
+            cb(v, "v", il);
+
+            struct ggml_tensor * kqv = ggml_mul_mat(ctx0, ggml_reshape_3d(ctx0, v, n_tokens, n_embd_head, n_head_kv), kq);
+            cb(kqv, "kqv", il);
+
+            struct ggml_tensor * kqv_merged = ggml_permute(ctx0, kqv, 0, 2, 1, 3);
+            cb(kqv_merged, "kqv_merged", il);
+
+            cur = ggml_cont_2d(ctx0, kqv_merged, n_embd_gqa, n_tokens);
+            cb(cur, "kqv_merged_cont", il);
+
+            ggml_build_forward_expand(gf, cur);
+
+            cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wo, cur);
+            if (model.layers[il].bo) {
+                cb(cur, "kqv_wo", il);
+            }
+
+            if (model.layers[il].bo) {
+                cur = ggml_add(ctx0, cur, model.layers[il].bo);
+            }
+            cb(cur, "kqv_out", il);
+
+            if (il == n_layer - 1 && pooling_type == LLAMA_POOLING_TYPE_NONE) {
+                // skip computing output for unused tokens
+                struct ggml_tensor * inp_out_ids = build_inp_out_ids();
+                cur  = ggml_get_rows(ctx0,  cur, inp_out_ids);
+                inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
+            }
+
+            // re-add the layer input
+            cur = ggml_add(ctx0, cur, inpL);
+
+            // attention layer norm
+            cur = llm_build_norm(ctx0, cur, hparams, model.layers[il].attn_out_norm, model.layers[il].attn_out_norm_b, LLM_NORM, cb, il);
+
+            if (model.layers[il].attn_norm_2 != nullptr) {
+                cur = ggml_add(ctx0, cur, inpL); // re-add the layer input
+                cur = llm_build_norm(ctx0, cur, hparams, model.layers[il].attn_norm_2, model.layers[il].attn_norm_2_b, LLM_NORM, cb, il);
+            }
+
+            struct ggml_tensor * ffn_inp = cur;
+            cb(ffn_inp, "ffn_inp", il);
+
+            // feed-forward network
+            if (model.arch == LLM_ARCH_BERT) {
+                cur = llm_build_ffn(ctx0, lctx, cur,
+                        model.layers[il].ffn_up,   model.layers[il].ffn_up_b,   NULL,
+                        NULL,                      NULL,                        NULL,
+                        model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
+                        NULL,
+                        LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
+            } else if (model.arch == LLM_ARCH_JINA_BERT_V2) {
+                cur = llm_build_ffn(ctx0, lctx, cur,
+                        model.layers[il].ffn_up,   NULL,                        NULL,
+                        model.layers[il].ffn_gate, NULL,                        NULL,
+                        model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
+                        NULL,
+                        LLM_FFN_GELU, LLM_FFN_PAR, cb, il);
+            } else {
+                cur = llm_build_ffn(ctx0, lctx, cur,
+                        model.layers[il].ffn_up,   NULL, NULL,
+                        model.layers[il].ffn_gate, NULL, NULL,
+                        model.layers[il].ffn_down, NULL, NULL,
+                        NULL,
+                        LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
+            }
+            cb(cur, "ffn_out", il);
+
+            // attentions bypass the intermediate layer
+            cur = ggml_add(ctx0, cur, ffn_inp);
+
+            // output layer norm
+            cur = llm_build_norm(ctx0, cur, hparams, model.layers[il].layer_out_norm, model.layers[il].layer_out_norm_b, LLM_NORM, cb, il);
+
+            // input for next layer
+            inpL = cur;
+        }
+
+        // final output
+        cur = inpL;
+        cb(cur, "result_embd", -1);
+
+        ggml_build_forward_expand(gf, cur);
+
+        return gf;
+    }
+
+    struct ggml_cgraph * build_bloom() {
+        struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
+
+        const int64_t n_embd_head = hparams.n_embd_head_v;
+        const int64_t n_embd_gqa  = hparams.n_embd_v_gqa();
+        GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
+
+        struct ggml_tensor * cur;
+        struct ggml_tensor * inpL;
+
+        inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
+
+        // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
+        struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
+
+        inpL = llm_build_norm(ctx0, inpL, hparams,
+                model.tok_norm,
+                model.tok_norm_b,
+                LLM_NORM, cb, -1);
+        cb(inpL, "inp_norm", -1);
+
+        for (int il = 0; il < n_layer; ++il) {
+            cur = llm_build_norm(ctx0, inpL, hparams,
+                    model.layers[il].attn_norm,
+                    model.layers[il].attn_norm_b,
+                    LLM_NORM, cb, il);
+            cb(cur, "attn_norm", il);
+
+            // self-attention
+            {
+                cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wqkv, cur);
+                cb(cur, "wqkv", il);
+
+                cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
+                cb(cur, "bqkv", il);
+
+                struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd,     n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
+                struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
+                struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
+
+                cb(Qcur, "Qcur", il);
+                cb(Kcur, "Kcur", il);
+                cb(Vcur, "Vcur", il);
+
+                Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
+
+                cur = llm_build_kv(ctx0, lctx, kv_self, gf,
+                        model.layers[il].wo, model.layers[il].bo,
+                        Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
+            }
+
+            if (il == n_layer - 1) {
+                // skip computing output for unused tokens
+                struct ggml_tensor * inp_out_ids = build_inp_out_ids();
+                cur  = ggml_get_rows(ctx0,  cur, inp_out_ids);
+                inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
+            }
+
+            // Add the input
+            struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
+            cb(ffn_inp, "ffn_inp", il);
+
+            // FF
+            {
+                cur = llm_build_norm(ctx0, ffn_inp, hparams,
+                        model.layers[il].ffn_norm,
+                        model.layers[il].ffn_norm_b,
+                        LLM_NORM, cb, il);
+                cb(cur, "ffn_norm", il);
+
+                cur = llm_build_ffn(ctx0, lctx, cur,
+                        model.layers[il].ffn_up,   model.layers[il].ffn_up_b,   NULL,
+                        NULL,                      NULL,                        NULL,
+                        model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
+                        NULL,
+                        LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
+                cb(cur, "ffn_out", il);
+            }
+
+            cur = ggml_add(ctx0, cur, ffn_inp);
+            cur = lctx.cvec.apply_to(ctx0, cur, il);
+            cb(cur, "l_out", il);
+
+            // input for next layer
+            inpL = cur;
+        }
+
+        cur = llm_build_norm(ctx0, inpL, hparams,
+                model.output_norm,
+                model.output_norm_b,
+                LLM_NORM, cb, -1);
+        cb(cur, "result_norm", -1);
+
+        cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
+        cb(cur, "result_output", -1);
+
+        ggml_build_forward_expand(gf, cur);
+
+        return gf;
+    }
+
+    struct ggml_cgraph * build_mpt() {
+        struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
+
+        const int64_t n_embd_head = hparams.n_embd_head_v;
+        const int64_t n_embd_gqa  = hparams.n_embd_v_gqa();
+        GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
+
+        struct ggml_tensor * cur;
+        struct ggml_tensor * pos;
+        struct ggml_tensor * inpL;
+
+        inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
+
+        // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
+        struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
+
+        if (model.pos_embd) {
+            // inp_pos - contains the positions
+            struct ggml_tensor * inp_pos = build_inp_pos();
+            pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
+            cb(pos, "pos_embd", -1);
+
+            inpL = ggml_add(ctx0, inpL, pos);
+            cb(inpL, "inpL", -1);
+        }
+
+        for (int il = 0; il < n_layer; ++il) {
+            struct ggml_tensor * attn_norm;
+
+            attn_norm = llm_build_norm(ctx0, inpL, hparams,
+                    model.layers[il].attn_norm,
+                    model.layers[il].attn_norm_b,
+                    LLM_NORM, cb, il);
+            cb(attn_norm, "attn_norm", il);
+
+            // self-attention
+            {
+                cur = attn_norm;
+
+                cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wqkv, cur);
+                cb(cur, "wqkv", il);
+
+                if (model.layers[il].bqkv){
+                    cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
+                    cb(cur, "bqkv", il);
+                }
+
+                if (hparams.f_clamp_kqv > 0.0f) {
+                    cur = ggml_clamp(ctx0, cur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
+                    cb(cur, "wqkv_clamped", il);
+                }
+
+                struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd,     n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
+                struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
+                struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
+
+                cb(Qcur, "Qcur", il);
+                cb(Kcur, "Kcur", il);
+                cb(Vcur, "Vcur", il);
+
+                // Q/K Layernorm
+                if (model.layers[il].attn_q_norm) {
+                    Qcur = llm_build_norm(ctx0, Qcur, hparams,
+                            model.layers[il].attn_q_norm,
+                            model.layers[il].attn_q_norm_b,
+                            LLM_NORM, cb, il);
+                    cb(Qcur, "Qcur", il);
+
+                    Kcur = llm_build_norm(ctx0, Kcur, hparams,
+                            model.layers[il].attn_k_norm,
+                            model.layers[il].attn_k_norm_b,
+                            LLM_NORM, cb, il);
+                    cb(Kcur, "Kcur", il);
+
+                    Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head,    n_tokens);
+                    Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
+
+                    cur = llm_build_kv(ctx0, lctx, kv_self, gf,
+                            model.layers[il].wo, model.layers[il].bo,
+                            Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
+                } else {
+                    Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
+
+                    cur = llm_build_kv(ctx0, lctx, kv_self, gf,
+                            model.layers[il].wo, model.layers[il].bo,
+                            Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
+                }
+            }
+
+            if (il == n_layer - 1) {
+                // skip computing output for unused tokens
+                struct ggml_tensor * inp_out_ids = build_inp_out_ids();
+                cur  = ggml_get_rows(ctx0,  cur, inp_out_ids);
+                inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
+            }
+
+            // Add the input
+            struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
+            cb(ffn_inp, "ffn_inp", il);
+
+            // feed forward
+            {
+                cur = llm_build_norm(ctx0, ffn_inp, hparams,
+                        model.layers[il].ffn_norm,
+                        model.layers[il].ffn_norm_b,
+                        LLM_NORM, cb, il);
+                cb(cur, "ffn_norm", il);
+                cur = llm_build_ffn(ctx0, lctx, cur,
+                        model.layers[il].ffn_up,   model.layers[il].ffn_up_b,   NULL,
+                        NULL,                      NULL,                        NULL,
+                        model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
+                        model.layers[il].ffn_act,
+                        LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
+                cb(cur, "ffn_out", il);
+            }
+
+            cur = ggml_add(ctx0, cur, ffn_inp);
+            cur = lctx.cvec.apply_to(ctx0, cur, il);
+            cb(cur, "l_out", il);
+
+            // input for next layer
+            inpL = cur;
+        }
+
+        cur = inpL;
+
+        cur = llm_build_norm(ctx0, cur, hparams,
+                model.output_norm,
+                model.output_norm_b,
+                LLM_NORM, cb, -1);
+        cb(cur, "result_norm", -1);
+
+        cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
+        cb(cur, "result_output", -1);
+
+        ggml_build_forward_expand(gf, cur);
+
+        return gf;
+    }
+
+    struct ggml_cgraph * build_stablelm() {
+        struct ggml_cgraph * gf = ggml_new_graph(ctx0);
+
+        const int64_t n_embd_head = hparams.n_embd_head_v;
+        GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
+
+        struct ggml_tensor * cur;
+        struct ggml_tensor * inpL;
+
+        inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
+
+        // inp_pos - contains the positions
+        struct ggml_tensor * inp_pos = build_inp_pos();
+
+        // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
+        struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
+
+        for (int il = 0; il < n_layer; ++il) {
+
+
+            // norm
+            cur = llm_build_norm(ctx0, inpL, hparams,
+                    model.layers[il].attn_norm,
+                    model.layers[il].attn_norm_b,
+                    LLM_NORM, cb, il);
+            cb(cur, "attn_norm", il);
+
+            struct ggml_tensor * inpSA = cur;
+
+            // self-attention
+            {
+                // compute Q and K and RoPE them
+                struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
+                cb(Qcur, "Qcur", il);
+                if (model.layers[il].bq) {
+                    Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
+                    cb(Qcur, "Qcur", il);
+                }
+
+                struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
+                cb(Kcur, "Kcur", il);
+                if (model.layers[il].bk) {
+                    Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
+                    cb(Kcur, "Kcur", il);
+                }
+
+                struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
+                cb(Vcur, "Vcur", il);
+                if (model.layers[il].bv) {
+                    Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
+                    cb(Vcur, "Vcur", il);
+                }
+
+                Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head,    n_tokens);
+                cb(Qcur, "Qcur", il);
+                Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
+                cb(Kcur, "Kcur", il);
+
+                if (model.layers[il].attn_q_norm) {
+                    Qcur = llm_build_norm(ctx0, Qcur, hparams,
+                            model.layers[il].attn_q_norm,
+                            NULL,
+                            LLM_NORM, cb, il);
+                    cb(Qcur, "Qcur", il);
+                }
+                if (model.layers[il].attn_k_norm) {
+                    Kcur = llm_build_norm(ctx0, Kcur, hparams,
+                            model.layers[il].attn_k_norm,
+                            NULL,
+                            LLM_NORM, cb, il);
+                    cb(Kcur, "Kcur", il);
+                }
+
+
+                Qcur = ggml_rope_ext(
+                    ctx0, Qcur, inp_pos, nullptr,
+                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+                    ext_factor, attn_factor, beta_fast, beta_slow
+                );
+                cb(Qcur, "Qcur", il);
+
+                Kcur = ggml_rope_ext(
+                    ctx0, Kcur, inp_pos, nullptr,
+                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+                    ext_factor, attn_factor, beta_fast, beta_slow
+                );
+                cb(Kcur, "Kcur", il);
+
+                cur = llm_build_kv(ctx0, lctx, kv_self, gf,
+                        model.layers[il].wo, NULL,
+                        Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
+            }
+
+            if (il == n_layer - 1) {
+                // skip computing output for unused tokens
+                struct ggml_tensor * inp_out_ids = build_inp_out_ids();
+                cur   = ggml_get_rows(ctx0,   cur, inp_out_ids);
+                inpL  = ggml_get_rows(ctx0,  inpL, inp_out_ids);
+                inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
+            }
+
+            struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
+            cb(ffn_inp, "ffn_inp", il);
+
+            // feed-forward network
+            {
+                if (model.layers[il].ffn_norm) {
+                    cur = llm_build_norm(ctx0, ffn_inp, hparams,
+                            model.layers[il].ffn_norm,
+                            model.layers[il].ffn_norm_b,
+                            LLM_NORM, cb, il);
+                    cb(cur, "ffn_norm", il);
+                } else {
+                    // parallel residual
+                    cur = inpSA;
+                }
+                cur = llm_build_ffn(ctx0, lctx, cur,
+                        model.layers[il].ffn_up,   NULL, NULL,
+                        model.layers[il].ffn_gate, NULL, NULL,
+                        model.layers[il].ffn_down, NULL, NULL,
+                        NULL,
+                        LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
+                cb(cur, "ffn_out", il);
+            }
+
+            cur = ggml_add(ctx0, cur, ffn_inp);
+            cur = lctx.cvec.apply_to(ctx0, cur, il);
+            cb(cur, "l_out", il);
+
+            // input for next layer
+            inpL = cur;
+        }
+
+        cur = inpL;
+
+        cur = llm_build_norm(ctx0, cur, hparams,
+                model.output_norm,
+                model.output_norm_b,
+                LLM_NORM, cb, -1);
+        cb(cur, "result_norm", -1);
+
+        // lm_head
+        cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
+        cb(cur, "result_output", -1);
+
+        ggml_build_forward_expand(gf, cur);
+
+        return gf;
+    }
+
+    struct ggml_cgraph * build_qwen() {
+        struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
+
+        const int64_t n_embd_head = hparams.n_embd_head_v;
+        GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
+
+        struct ggml_tensor * cur;
+        struct ggml_tensor * inpL;
+
+        inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
+
+        // inp_pos - contains the positions
+        struct ggml_tensor * inp_pos = build_inp_pos();
+
+        // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
+        struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
+
+        for (int il = 0; il < n_layer; ++il) {
+            struct ggml_tensor * inpSA = inpL;
+
+            cur = llm_build_norm(ctx0, inpL, hparams,
+                    model.layers[il].attn_norm, NULL,
+                    LLM_NORM_RMS, cb, il);
+            cb(cur, "attn_norm", il);
+
+            // self-attention
+            {
+                cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wqkv, cur);
+                cb(cur, "wqkv", il);
+
+                cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
+                cb(cur, "bqkv", il);
+
+                struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
+                struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
+                struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 2*sizeof(float)*(n_embd)));
+
+                cb(Qcur, "Qcur", il);
+                cb(Kcur, "Kcur", il);
+                cb(Vcur, "Vcur", il);
+
+                Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head,    n_tokens);
+                Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
+
+                // using mode = 2 for neox mode
+                Qcur = ggml_rope_ext(
+                    ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig,
+                    freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
+                );
+                cb(Qcur, "Qcur", il);
+
+                Kcur = ggml_rope_ext(
+                    ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig,
+                    freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
+                );
+                cb(Kcur, "Kcur", il);
+
+                cur = llm_build_kv(ctx0, lctx, kv_self, gf,
+                        model.layers[il].wo, NULL,
+                        Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
+            }
+
+            if (il == n_layer - 1) {
+                // skip computing output for unused tokens
+                struct ggml_tensor * inp_out_ids = build_inp_out_ids();
+                cur   = ggml_get_rows(ctx0,   cur, inp_out_ids);
+                inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
+            }
+
+            struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
+            cb(ffn_inp, "ffn_inp", il);
+
+            // feed-forward forward
+            {
+                cur = llm_build_norm(ctx0, ffn_inp, hparams,
+                        model.layers[il].ffn_norm, NULL,
+                        LLM_NORM_RMS, cb, il);
+                cb(cur, "ffn_norm", il);
+
+                cur = llm_build_ffn(ctx0, lctx, cur,
+                        model.layers[il].ffn_up,   NULL, NULL,
+                        model.layers[il].ffn_gate, NULL, NULL,
+                        model.layers[il].ffn_down, NULL, NULL,
+                        NULL,
+                        LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
+                cb(cur, "ffn_out", il);
+            }
+
+            cur = ggml_add(ctx0, cur, ffn_inp);
+            cur = lctx.cvec.apply_to(ctx0, cur, il);
+            cb(cur, "l_out", il);
+
+            // input for next layer
+            inpL = cur;
+        }
+
+        cur = inpL;
+
+        cur = llm_build_norm(ctx0, cur, hparams,
+                model.output_norm, NULL,
+                LLM_NORM_RMS, cb, -1);
+        cb(cur, "result_norm", -1);
+
+        // lm_head
+        cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
+        cb(cur, "result_output", -1);
+
+        ggml_build_forward_expand(gf, cur);
+
+        return gf;
+    }
+
+    struct ggml_cgraph * build_qwen2() {
+        struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
+
+        const int64_t n_embd_head = hparams.n_embd_head_v;
+        GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
+        GGML_ASSERT(n_embd_head == hparams.n_rot);
+
+        struct ggml_tensor * cur;
+        struct ggml_tensor * inpL;
+
+        inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
+
+        // inp_pos - contains the positions
+        struct ggml_tensor * inp_pos = build_inp_pos();
+
+        // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
+        struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
+
+        for (int il = 0; il < n_layer; ++il) {
+            struct ggml_tensor * inpSA = inpL;
+
+            // norm
+            cur = llm_build_norm(ctx0, inpL, hparams,
+                    model.layers[il].attn_norm, NULL,
+                    LLM_NORM_RMS, cb, il);
+            cb(cur, "attn_norm", il);
+
+            // self-attention
+            {
+                // compute Q and K and RoPE them
+                struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
+                cb(Qcur, "Qcur", il);
+                Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
+                cb(Qcur, "Qcur", il);
+
+                struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
+                cb(Kcur, "Kcur", il);
+                Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
+                cb(Kcur, "Kcur", il);
+
+                struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
+                cb(Vcur, "Vcur", il);
+                Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
+                cb(Vcur, "Vcur", il);
+
+                Qcur = ggml_rope_ext(
+                    ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head,    n_tokens), inp_pos, nullptr,
+                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+                    ext_factor, attn_factor, beta_fast, beta_slow
+                );
+                cb(Qcur, "Qcur", il);
+
+                Kcur = ggml_rope_ext(
+                    ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
+                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+                    ext_factor, attn_factor, beta_fast, beta_slow
+                );
+                cb(Kcur, "Kcur", il);
+
+                cur = llm_build_kv(ctx0, lctx, kv_self, gf,
+                        model.layers[il].wo, model.layers[il].bo,
+                        Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
+            }
+
+            if (il == n_layer - 1) {
+                // skip computing output for unused tokens
+                struct ggml_tensor * inp_out_ids = build_inp_out_ids();
+                cur   = ggml_get_rows(ctx0,   cur, inp_out_ids);
+                inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
+            }
+
+            struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
+            cb(ffn_inp, "ffn_inp", il);
+
+            // feed-forward network
+            cur = llm_build_norm(ctx0, ffn_inp, hparams,
+                    model.layers[il].ffn_norm, NULL,
+                    LLM_NORM_RMS, cb, il);
+            cb(cur, "ffn_norm", il);
+
+            cur = llm_build_ffn(ctx0, lctx, cur,
+                    model.layers[il].ffn_up,   NULL, NULL,
+                    model.layers[il].ffn_gate, NULL, NULL,
+                    model.layers[il].ffn_down, NULL, NULL,
+                    NULL,
+                    LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
+            cb(cur, "ffn_out", il);
+
+            cur = ggml_add(ctx0, cur, ffn_inp);
+            cur = lctx.cvec.apply_to(ctx0, cur, il);
+            cb(cur, "l_out", il);
+
+            // input for next layer
+            inpL = cur;
+        }
+
+        cur = inpL;
+
+        cur = llm_build_norm(ctx0, cur, hparams,
+                model.output_norm, NULL,
+                LLM_NORM_RMS, cb, -1);
+        cb(cur, "result_norm", -1);
+
+        // lm_head
+        cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
+        cb(cur, "result_output", -1);
+
+        ggml_build_forward_expand(gf, cur);
+
+        return gf;
+    }
+
+    struct ggml_cgraph * build_qwen2moe() {
+        struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
+
+        // mutable variable, needed during the last layer of the computation to skip unused tokens
+        int32_t n_tokens = this->n_tokens;
+
+        const int64_t n_embd_head = hparams.n_embd_head_v;
+        GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
+        GGML_ASSERT(n_embd_head == hparams.n_rot);
+
+        struct ggml_tensor * cur;
+        struct ggml_tensor * inpL;
+
+        inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
+
+        // inp_pos - contains the positions
+        struct ggml_tensor * inp_pos = build_inp_pos();
+
+        // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
+        struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
+
+        for (int il = 0; il < n_layer; ++il) {
+            struct ggml_tensor * inpSA = inpL;
+
+            // norm
+            cur = llm_build_norm(ctx0, inpL, hparams,
+                    model.layers[il].attn_norm, NULL,
+                    LLM_NORM_RMS, cb, il);
+            cb(cur, "attn_norm", il);
+
+            // self_attention
+            {
+                // compute Q and K and RoPE them
+                struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
+                cb(Qcur, "Qcur", il);
+                Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
+                cb(Qcur, "Qcur", il);
+
+                struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
+                cb(Kcur, "Kcur", il);
+                Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
+                cb(Kcur, "Kcur", il);
+
+                struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
+                cb(Vcur, "Vcur", il);
+                Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
+                cb(Vcur, "Vcur", il);
+
+                Qcur = ggml_rope_ext(
+                    ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
+                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+                    ext_factor, attn_factor, beta_fast, beta_slow
+                );
+                cb(Qcur, "Qcur", il);
+
+                Kcur = ggml_rope_ext(
+                    ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
+                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+                    ext_factor, attn_factor, beta_fast, beta_slow
+                );
+                cb(Kcur, "Kcur", il);
+
+                cur = llm_build_kv(ctx0, lctx, kv_self, gf,
+                        model.layers[il].wo, model.layers[il].bo,
+                        Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
+            }
+
+            if (il == n_layer - 1) {
+                // skip computing output for unused tokens
+                struct ggml_tensor * inp_out_ids = build_inp_out_ids();
+                n_tokens = n_outputs;
+                cur   = ggml_get_rows(ctx0,   cur, inp_out_ids);
+                inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
+            }
+
+            struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
+            cb(ffn_inp, "ffn_inp", il);
+
+            // MoE branch
+            cur = llm_build_norm(ctx0, ffn_inp, hparams,
+                    model.layers[il].ffn_norm, NULL,
+                    LLM_NORM_RMS, cb, il);
+            cb(cur, "ffn_norm", il);
+
+            ggml_tensor * moe_out =
+                    llm_build_moe_ffn(ctx0, lctx, cur,
+                        model.layers[il].ffn_gate_inp,
+                        model.layers[il].ffn_up_exps,
+                        model.layers[il].ffn_gate_exps,
+                        model.layers[il].ffn_down_exps,
+                        n_expert, n_expert_used,
+                        LLM_FFN_SILU, false,
+                        false, 0.0,
+                        cb, il);
+            cb(cur, "ffn_moe_out", il);
+
+            // FFN shared expert
+            {
+                ggml_tensor * cur_gate_inp = llm_build_lora_mm(lctx, ctx0, model.layers[il].ffn_gate_inp_shexp, cur);
+                cb(cur_gate_inp, "ffn_shexp_gate_inp", il);
+
+                // sigmoid
+                ggml_tensor * cur_gate = ggml_div(ctx0, ggml_silu(ctx0, cur_gate_inp), cur_gate_inp);
+                cb(cur_gate, "ffn_shexp_gate", il);
+
+                ggml_tensor * cur_ffn = llm_build_ffn(ctx0, lctx, cur,
+                        model.layers[il].ffn_up_shexp,   NULL, NULL,
+                        model.layers[il].ffn_gate_shexp, NULL, NULL,
+                        model.layers[il].ffn_down_shexp, NULL, NULL,
+                        NULL,
+                        LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
+                cb(cur_ffn, "ffn_shexp", il);
+
+                ggml_tensor * ffn_shexp_out = ggml_mul(ctx0, cur_ffn, cur_gate);
+                cb(ffn_shexp_out, "ffn_shexp_out", il);
+
+                moe_out = ggml_add(ctx0, moe_out, ffn_shexp_out);
+                cb(moe_out, "ffn_out", il);
+
+                cur = moe_out;
+            }
+
+            cur = ggml_add(ctx0, cur, ffn_inp);
+            cur = lctx.cvec.apply_to(ctx0, cur, il);
+            cb(cur, "l_out", il);
+
+            // input for next layer
+            inpL = cur;
+        }
+
+        cur = inpL;
+
+        cur = llm_build_norm(ctx0, cur, hparams,
+                model.output_norm, NULL,
+                LLM_NORM_RMS, cb, -1);
+        cb(cur, "result_norm", -1);
+
+        // lm_head
+        cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
+        cb(cur, "result_output", -1);
+
+        ggml_build_forward_expand(gf, cur);
+
+        return gf;
+    }
+
+    struct ggml_cgraph * build_phi2() {
+        struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
+
+        const int64_t n_embd_head = hparams.n_embd_head_v;
+        const int64_t n_embd_gqa  = hparams.n_embd_v_gqa();
+        GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
+
+        struct ggml_tensor * cur;
+        struct ggml_tensor * attn_norm_output;
+        struct ggml_tensor * ffn_output;
+        struct ggml_tensor * inpL;
+
+        inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
+
+        // inp_pos - contains the positions
+        struct ggml_tensor * inp_pos = build_inp_pos();
+
+        // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
+        struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
+
+        for (int il = 0; il < n_layer; ++il) {
+            attn_norm_output = llm_build_norm(ctx0, inpL, hparams,
+                    model.layers[il].attn_norm,
+                    model.layers[il].attn_norm_b,
+                    LLM_NORM, cb, il);
+            cb(attn_norm_output, "attn_norm", il);
+
+            // self-attention
+            {
+                struct ggml_tensor * Qcur = nullptr;
+                struct ggml_tensor * Kcur = nullptr;
+                struct ggml_tensor * Vcur = nullptr;
+
+                if (model.layers[il].wqkv) {
+                    cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wqkv, attn_norm_output);
+                    cb(cur, "wqkv", il);
+
+                    cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
+                    cb(cur, "bqkv", il);
+
+                    Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd,     n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
+                    Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
+                    Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
+                } else {
+                    Qcur = ggml_add(ctx0, llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, attn_norm_output), model.layers[il].bq);
+                    Kcur = ggml_add(ctx0, llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, attn_norm_output), model.layers[il].bk);
+                    Vcur = ggml_add(ctx0, llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, attn_norm_output), model.layers[il].bv);
+                }
+
+                cb(Qcur, "Qcur", il);
+                cb(Kcur, "Kcur", il);
+                cb(Vcur, "Vcur", il);
+
+                Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head,    n_tokens);
+                Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
+
+                Qcur = ggml_rope_ext(
+                    ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig,
+                    freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
+                );
+                cb(Qcur, "Qcur", il);
+
+                // with phi2, we scale the Q to avoid precision issues
+                // ref: https://github.com/ml-explore/mlx-examples/blob/08e862336ade809bc37d1035f94b359e7d1a5152/phi2/phi2.py#L64-L66
+                Qcur = ggml_scale(ctx0, Qcur, 1.0f/sqrtf(float(n_embd_head)));
+                cb(Qcur, "Qcur", il);
+
+                Kcur = ggml_rope_ext(
+                    ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig,
+                    freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
+                );
+                cb(Kcur, "Kcur", il);
+
+                cur = llm_build_kv(ctx0, lctx, kv_self, gf,
+                        model.layers[il].wo, model.layers[il].bo,
+                        Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f, cb, il);
+            }
+
+            if (il == n_layer - 1) {
+                // skip computing output for unused tokens
+                struct ggml_tensor * inp_out_ids = build_inp_out_ids();
+                cur              = ggml_get_rows(ctx0,              cur, inp_out_ids);
+                inpL             = ggml_get_rows(ctx0,             inpL, inp_out_ids);
+                attn_norm_output = ggml_get_rows(ctx0, attn_norm_output, inp_out_ids);
+            }
+
+            // FF
+            {
+                ffn_output = llm_build_ffn(ctx0, lctx, attn_norm_output,
+                        model.layers[il].ffn_up,   model.layers[il].ffn_up_b,   NULL,
+                        NULL,                      NULL,                        NULL,
+                        model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
+                        NULL,
+                        LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
+                cb(ffn_output, "ffn_out", il);
+            }
+
+            cur = ggml_add(ctx0, cur, ffn_output);
+            cur = ggml_add(ctx0, cur, inpL);
+            cur = lctx.cvec.apply_to(ctx0, cur, il);
+            cb(cur, "l_out", il);
+
+            // input for next layer
+            inpL = cur;
+        }
+
+        cur = llm_build_norm(ctx0, inpL, hparams,
+                model.output_norm,
+                model.output_norm_b,
+                LLM_NORM, cb, -1);
+        cb(cur, "result_norm", -1);
+
+        cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
+        cb(cur, "result_output_no_bias", -1);
+
+        cur = ggml_add(ctx0, cur, model.output_b);
+        cb(cur, "result_output", -1);
+        ggml_build_forward_expand(gf, cur);
+        return gf;
+    }
+
+    struct ggml_cgraph * build_phi3() {
+        struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
+
+        const int64_t n_embd_head = hparams.n_embd_head_v;
+        const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
+        GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
+
+        struct ggml_tensor * cur;
+        struct ggml_tensor * inpL;
+
+        inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
+
+        // inp_pos - contains the positions
+        struct ggml_tensor * inp_pos = build_inp_pos();
+
+        // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
+        struct ggml_tensor * KQ_mask_swa = build_inp_KQ_mask_swa();
+
+        for (int il = 0; il < n_layer; ++il) {
+            auto residual = inpL;
+
+            // self-attention
+            {
+                // rope freq factors for 128k context
+                struct ggml_tensor * rope_factors = build_rope_factors(il);
+
+                struct ggml_tensor* attn_norm_output = llm_build_norm(ctx0, inpL, hparams,
+                    model.layers[il].attn_norm,
+                    NULL,
+                    LLM_NORM_RMS, cb, il);
+                cb(attn_norm_output, "attn_norm", il);
+
+                struct ggml_tensor * Qcur = nullptr;
+                struct ggml_tensor * Kcur = nullptr;
+                struct ggml_tensor * Vcur = nullptr;
+
+                if (model.layers[il].wqkv) {
+                    cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wqkv, attn_norm_output);
+                    cb(cur, "wqkv", il);
+
+                    Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd,     n_tokens, cur->nb[1], 0 * sizeof(float) * (n_embd)));
+                    Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1 * sizeof(float) * (n_embd)));
+                    Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1 * sizeof(float) * (n_embd + n_embd_gqa)));
+                }
+                else {
+                    Qcur = ggml_add(ctx0, llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, attn_norm_output), model.layers[il].bq);
+                    Kcur = ggml_add(ctx0, llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, attn_norm_output), model.layers[il].bk);
+                    Vcur = ggml_add(ctx0, llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, attn_norm_output), model.layers[il].bv);
+                }
+
+                cb(Qcur, "Qcur", il);
+                cb(Kcur, "Kcur", il);
+                cb(Vcur, "Vcur", il);
+
+                Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head,    n_tokens);
+                Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
+
+                Qcur = ggml_rope_ext(
+                    ctx0, Qcur, inp_pos, rope_factors, n_rot, rope_type, n_ctx_orig,
+                    freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
+                );
+                cb(Qcur, "Qcur", il);
+
+                Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head)));
+                cb(Qcur, "Qcur", il);
+
+                Kcur = ggml_rope_ext(
+                    ctx0, Kcur, inp_pos, rope_factors, n_rot, rope_type, n_ctx_orig,
+                    freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
+                );
+                cb(Kcur, "Kcur", il);
+
+                cur = llm_build_kv(ctx0, lctx, kv_self, gf,
+                        model.layers[il].wo, model.layers[il].bo,
+                        Kcur, Vcur, Qcur, KQ_mask_swa, n_tokens, kv_head, n_kv, 1.0f, cb, il);
+            }
+
+            if (il == n_layer - 1) {
+                // skip computing output for unused tokens
+                struct ggml_tensor* inp_out_ids = build_inp_out_ids();
+                cur = ggml_get_rows(ctx0, cur, inp_out_ids);
+                residual = ggml_get_rows(ctx0, residual, inp_out_ids);
+            }
+
+            cur = ggml_add(ctx0, cur, residual);
+            residual = cur;
+
+            cur = llm_build_norm(ctx0, cur, hparams,
+                model.layers[il].ffn_norm, NULL,
+                LLM_NORM_RMS, cb, il);
+            cb(cur, "ffn_norm", il);
+
+            // FF
+            // special-case: the up and gate tensors are merged into a single tensor
+            // TOOD: support into llm_build_ffn
+            {
+                cur = llm_build_ffn(ctx0, lctx, cur,
+                        model.layers[il].ffn_up,   NULL, NULL,
+                        NULL,                      NULL, NULL,
+                        model.layers[il].ffn_down, NULL, NULL,
+                        NULL,
+                        LLM_FFN_SWIGLU, LLM_FFN_SEQ, cb, il);
+                cb(cur, "ffn_out", il);
+            }
+
+            cur = ggml_add(ctx0, residual, cur);
+            cur = lctx.cvec.apply_to(ctx0, cur, il);
+            cb(cur, "l_out", il);
+
+            // input for next layer
+            inpL = cur;
+        }
+
+        cur = llm_build_norm(ctx0, inpL, hparams,
+            model.output_norm,
+            NULL,
+            LLM_NORM_RMS, cb, -1);
+        cb(cur, "result_norm", -1);
+
+        cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
+        cb(cur, "result_output", -1);
+
+        ggml_build_forward_expand(gf, cur);
+
+        return gf;
+    }
+
+
+    struct ggml_cgraph * build_plamo() {
+        struct ggml_cgraph * gf = ggml_new_graph(ctx0);
+
+        const int64_t n_embd_head = hparams.n_embd_head_v;
+        GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
+        GGML_ASSERT(n_embd_head == hparams.n_rot);
+
+        struct ggml_tensor * cur;
+        struct ggml_tensor * inpL;
+
+        inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
+
+        // inp_pos - contains the positions
+        struct ggml_tensor * inp_pos = build_inp_pos();
+
+        // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
+        struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
+
+        for (int il = 0; il < n_layer; ++il) {
+
+            // norm
+            cur = llm_build_norm(ctx0, inpL, hparams,
+                    model.layers[il].attn_norm, NULL,
+                    LLM_NORM_RMS, cb, il);
+            cb(cur, "attn_norm", il);
+
+            struct ggml_tensor * attention_norm = cur;
+
+            // self-attention
+            {
+                // compute Q and K and RoPE them
+                struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
+                cb(Qcur, "Qcur", il);
+
+                struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
+                cb(Kcur, "Kcur", il);
+
+                struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
+                cb(Vcur, "Vcur", il);
+
+                Qcur = ggml_rope_ext(
+                        ctx0, ggml_reshape_3d(ctx0, Qcur, n_rot, n_head,    n_tokens), inp_pos, nullptr,
+                        n_embd_head, rope_type, n_ctx_orig, freq_base, freq_scale,
+                        ext_factor, attn_factor, beta_fast, beta_slow);
+                cb(Qcur, "Qcur", il);
+
+                Kcur = ggml_rope_ext(
+                        ctx0, ggml_reshape_3d(ctx0, Kcur, n_rot, n_head_kv, n_tokens), inp_pos, nullptr,
+                        n_embd_head, rope_type, n_ctx_orig, freq_base, freq_scale,
+                        ext_factor, attn_factor, beta_fast, beta_slow);
+                cb(Kcur, "Kcur", il);
+
+                cur = llm_build_kv(ctx0, lctx, kv_self, gf,
+                        model.layers[il].wo, NULL,
+                        Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
+            }
+            struct ggml_tensor * sa_out = cur;
+
+            cur = attention_norm;
+
+            if (il == n_layer - 1) {
+                // skip computing output for unused tokens
+                struct ggml_tensor * inp_out_ids = build_inp_out_ids();
+                cur    = ggml_get_rows(ctx0,    cur, inp_out_ids);
+                sa_out = ggml_get_rows(ctx0, sa_out, inp_out_ids);
+                inpL   = ggml_get_rows(ctx0,   inpL, inp_out_ids);
+            }
+
+            // feed-forward network
+            {
+                cur = llm_build_ffn(ctx0, lctx, cur,
+                        model.layers[il].ffn_up,   NULL, NULL,
+                        model.layers[il].ffn_gate, NULL, NULL,
+                        model.layers[il].ffn_down, NULL, NULL,
+                        NULL,
+                        LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
+                cb(cur, "ffn_out", il);
+            }
+
+            cur = ggml_add(ctx0, cur, sa_out);
+            cur = ggml_add(ctx0, cur, inpL);
+            cur = lctx.cvec.apply_to(ctx0, cur, il);
+            cb(cur, "l_out", il);
+
+            // input for next layer
+            inpL = cur;
+        }
+
+        cur = inpL;
+
+        cur = llm_build_norm(ctx0, cur, hparams,
+                model.output_norm, NULL,
+                LLM_NORM_RMS, cb, -1);
+        cb(cur, "result_norm", -1);
+
+        // lm_head
+        cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
+        cb(cur, "result_output", -1);
+
+        ggml_build_forward_expand(gf, cur);
+
+        return gf;
+    }
+
+    struct ggml_cgraph * build_gpt2() {
+        struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
+
+        const int64_t n_embd_head = hparams.n_embd_head_v;
+        const int64_t n_embd_gqa  = hparams.n_embd_v_gqa();
+        GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
+
+        struct ggml_tensor * cur;
+        struct ggml_tensor * pos;
+        struct ggml_tensor * inpL;
+
+        inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
+
+        // inp_pos - contains the positions
+        struct ggml_tensor * inp_pos = build_inp_pos();
+
+        // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
+        struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
+
+        pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
+        cb(pos, "pos_embd", -1);
+
+        inpL = ggml_add(ctx0, inpL, pos);
+        cb(inpL, "inpL", -1);
+
+        for (int il = 0; il < n_layer; ++il) {
+            cur = llm_build_norm(ctx0, inpL, hparams,
+                    model.layers[il].attn_norm,
+                    model.layers[il].attn_norm_b,
+                    LLM_NORM, cb, il);
+            cb(cur, "attn_norm", il);
+
+            // self-attention
+            {
+                cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wqkv, cur);
+                cb(cur, "wqkv", il);
+
+                cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
+                cb(cur, "bqkv", il);
+
+                struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd,     n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
+                struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
+                struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
+
+                cb(Qcur, "Qcur", il);
+                cb(Kcur, "Kcur", il);
+                cb(Vcur, "Vcur", il);
+
+                Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
+
+                cur = llm_build_kv(ctx0, lctx, kv_self, gf,
+                        model.layers[il].wo, model.layers[il].bo,
+                        Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
+            }
+
+            if (il == n_layer - 1) {
+                // skip computing output for unused tokens
+                struct ggml_tensor * inp_out_ids = build_inp_out_ids();
+                cur  = ggml_get_rows(ctx0,  cur, inp_out_ids);
+                inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
+            }
+
+            // add the input
+            struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
+            cb(ffn_inp, "ffn_inp", il);
+
+            // FF
+            {
+                cur = llm_build_norm(ctx0, ffn_inp, hparams,
+                        model.layers[il].ffn_norm,
+                        model.layers[il].ffn_norm_b,
+                        LLM_NORM, cb, il);
+                cb(cur, "ffn_norm", il);
+
+                cur = llm_build_ffn(ctx0, lctx, cur,
+                        model.layers[il].ffn_up,   model.layers[il].ffn_up_b,   NULL,
+                        NULL,                      NULL,                        NULL,
+                        model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
+                        NULL,
+                        LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
+                cb(cur, "ffn_out", il);
+            }
+
+            cur = ggml_add(ctx0, cur, ffn_inp);
+            cur = lctx.cvec.apply_to(ctx0, cur, il);
+            cb(cur, "l_out", il);
+
+            // input for next layer
+            inpL = cur;
+        }
+
+        cur = llm_build_norm(ctx0, inpL, hparams,
+                model.output_norm,
+                model.output_norm_b,
+                LLM_NORM, cb, -1);
+        cb(cur, "result_norm", -1);
+
+        cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
+        cb(cur, "result_output", -1);
+
+        ggml_build_forward_expand(gf, cur);
+
+        return gf;
+    }
+
+    struct ggml_cgraph * build_codeshell() {
+        struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
+
+        const int64_t n_embd_head = hparams.n_embd_head_v;
+        const int64_t n_embd_gqa  = hparams.n_embd_v_gqa();
+        GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
+        GGML_ASSERT(n_embd_head == hparams.n_rot);
+
+        struct ggml_tensor * cur;
+        struct ggml_tensor * inpL;
+
+        inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
+
+        // inp_pos - contains the positions
+        struct ggml_tensor * inp_pos = build_inp_pos();
+
+        // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
+        struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
+
+        for (int il = 0; il < n_layer; ++il) {
+            cur = llm_build_norm(ctx0, inpL, hparams,
+                    model.layers[il].attn_norm,
+                    model.layers[il].attn_norm_b,
+                    LLM_NORM, cb, il);
+            cb(cur, "attn_norm", il);
+
+            // self-attention
+            {
+                cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wqkv, cur);
+                cb(cur, "wqkv", il);
+
+                cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
+                cb(cur, "bqkv", il);
+
+                struct ggml_tensor * tmpq = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd,     n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
+                struct ggml_tensor * tmpk = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
+                struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
+
+                cb(tmpq, "tmpq", il);
+                cb(tmpk, "tmpk", il);
+                cb(Vcur, "Vcur", il);
+
+                struct ggml_tensor * Qcur = ggml_rope_ext(
+                    ctx0, ggml_reshape_3d(ctx0, tmpq, n_embd_head, n_head,    n_tokens), inp_pos, nullptr,
+                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+                    ext_factor, attn_factor, beta_fast, beta_slow
+                );
+                cb(Qcur, "Qcur", il);
+
+                struct ggml_tensor * Kcur = ggml_rope_ext(
+                    ctx0, ggml_reshape_3d(ctx0, tmpk, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
+                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+                    ext_factor, attn_factor, beta_fast, beta_slow
+                );
+                cb(Kcur, "Kcur", il);
+
+                cur = llm_build_kv(ctx0, lctx, kv_self, gf,
+                        model.layers[il].wo, model.layers[il].bo,
+                        Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
+            }
+
+            if (il == n_layer - 1) {
+                // skip computing output for unused tokens
+                struct ggml_tensor * inp_out_ids = build_inp_out_ids();
+                cur  = ggml_get_rows(ctx0,  cur, inp_out_ids);
+                inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
+            }
+
+            // add the input
+            struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
+            cb(ffn_inp, "ffn_inp", il);
+
+            // FF
+            {
+                cur = llm_build_norm(ctx0, ffn_inp, hparams,
+                        model.layers[il].ffn_norm,
+                        model.layers[il].ffn_norm_b,
+                        LLM_NORM, cb, il);
+                cb(cur, "ffn_norm", il);
+
+                cur = llm_build_ffn(ctx0, lctx, cur,
+                        model.layers[il].ffn_up,   model.layers[il].ffn_up_b,   NULL,
+                        NULL,                      NULL,                        NULL,
+                        model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
+                        NULL,
+                        LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
+                cb(cur, "ffn_out", il);
+            }
+
+            cur = ggml_add(ctx0, cur, ffn_inp);
+            cur = lctx.cvec.apply_to(ctx0, cur, il);
+            cb(cur, "l_out", il);
+
+            // input for next layer
+            inpL = cur;
+        }
+
+        cur = llm_build_norm(ctx0, inpL, hparams,
+                model.output_norm,
+                model.output_norm_b,
+                LLM_NORM, cb, -1);
+        cb(cur, "result_norm", -1);
+
+        cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
+        cb(cur, "result_output", -1);
+
+        ggml_build_forward_expand(gf, cur);
+
+        return gf;
+    }
+
+    struct ggml_cgraph * build_orion() {
+        struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
+
+        const int64_t n_embd_head = hparams.n_embd_head_v;
+        GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
+        GGML_ASSERT(n_embd_head == hparams.n_rot);
+
+        struct ggml_tensor * cur;
+        struct ggml_tensor * inpL;
+
+        inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
+
+        // inp_pos - contains the positions
+        struct ggml_tensor * inp_pos = build_inp_pos();
+
+        // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
+        struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
+
+        for (int il = 0; il < n_layer; ++il) {
+            struct ggml_tensor * inpSA = inpL;
+
+            // norm
+            cur = llm_build_norm(ctx0, inpL, hparams,
+                    model.layers[il].attn_norm, model.layers[il].attn_norm_b,
+                    LLM_NORM, cb, il);
+            cb(cur, "attn_norm", il);
+
+            // self-attention
+            {
+                // compute Q and K and RoPE them
+                struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
+                cb(Qcur, "Qcur", il);
+                // if (model.layers[il].bq) {
+                //     Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
+                //     cb(Qcur, "Qcur", il);
+                // }
+
+                struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
+                cb(Kcur, "Kcur", il);
+                // if (model.layers[il].bk) {
+                //     Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
+                //     cb(Kcur, "Kcur", il);
+                // }
+
+                struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
+                cb(Vcur, "Vcur", il);
+                // if (model.layers[il].bv) {
+                //     Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
+                //     cb(Vcur, "Vcur", il);
+                // }
+
+                Qcur = ggml_rope_ext(
+                    ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head,    n_tokens), inp_pos, nullptr,
+                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+                    ext_factor, attn_factor, beta_fast, beta_slow
+                );
+                cb(Qcur, "Qcur", il);
+
+                Kcur = ggml_rope_ext(
+                    ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
+                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+                    ext_factor, attn_factor, beta_fast, beta_slow
+                );
+                cb(Kcur, "Kcur", il);
+
+                cur = llm_build_kv(ctx0, lctx, kv_self, gf,
+                        model.layers[il].wo, NULL,
+                        Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
+            }
+
+            if (il == n_layer - 1) {
+                // skip computing output for unused tokens
+                struct ggml_tensor * inp_out_ids = build_inp_out_ids();
+                cur   = ggml_get_rows(ctx0,   cur, inp_out_ids);
+                inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
+            }
+
+            struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
+            cb(ffn_inp, "ffn_inp", il);
+
+            // feed-forward network
+            cur = llm_build_norm(ctx0, ffn_inp, hparams,
+                    model.layers[il].ffn_norm, model.layers[il].ffn_norm_b,
+                    LLM_NORM, cb, il);
+            cb(cur, "ffn_norm", il);
+
+            cur = llm_build_ffn(ctx0, lctx, cur,
+                    model.layers[il].ffn_up,   NULL, NULL,
+                    model.layers[il].ffn_gate, NULL, NULL,
+                    model.layers[il].ffn_down, NULL, NULL,
+                    NULL,
+                    LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
+            cb(cur, "ffn_out", il);
+
+            cur = ggml_add(ctx0, cur, ffn_inp);
+            cur = lctx.cvec.apply_to(ctx0, cur, il);
+            cb(cur, "l_out", il);
+
+            // input for next layer
+            inpL = cur;
+        }
+
+        cur = inpL;
+
+        cur = llm_build_norm(ctx0, cur, hparams,
+                model.output_norm, model.output_norm_b,
+                LLM_NORM, cb, -1);
+        cb(cur, "result_norm", -1);
+
+        // lm_head
+        cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
+        cb(cur, "result_output", -1);
+
+        ggml_build_forward_expand(gf, cur);
+
+        return gf;
+    }
+
+    struct ggml_cgraph * build_internlm2() {
+        struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
+
+        const int64_t n_embd_head = hparams.n_embd_head_v;
+        GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
+        GGML_ASSERT(n_embd_head == hparams.n_rot);
+
+        struct ggml_tensor * cur;
+        struct ggml_tensor * inpL;
+
+        inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
+
+        // inp_pos - contains the positions
+        struct ggml_tensor * inp_pos = build_inp_pos();
+
+        // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
+        struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
+
+        for (int il = 0; il < n_layer; ++il) {
+            struct ggml_tensor * inpSA = inpL;
+
+            // norm
+            cur = llm_build_norm(ctx0, inpL, hparams,
+                    model.layers[il].attn_norm, NULL,
+                    LLM_NORM_RMS, cb, il);
+            cb(cur, "attn_norm", il);
+
+            // self-attention
+            {
+                // compute Q and K and RoPE them
+                struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
+                cb(Qcur, "Qcur", il);
+                if (model.layers[il].bq) {
+                    Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
+                    cb(Qcur, "Qcur", il);
+                }
+
+                struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
+                cb(Kcur, "Kcur", il);
+                if (model.layers[il].bk) {
+                    Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
+                    cb(Kcur, "Kcur", il);
+                }
+
+                struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
+                cb(Vcur, "Vcur", il);
+                if (model.layers[il].bv) {
+                    Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
+                    cb(Vcur, "Vcur", il);
+                }
+
+                Qcur = ggml_rope_ext(
+                    ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head,    n_tokens), inp_pos, nullptr,
+                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+                    ext_factor, attn_factor, beta_fast, beta_slow
+                );
+                cb(Qcur, "Qcur", il);
+
+                Kcur = ggml_rope_ext(
+                    ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
+                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+                    ext_factor, attn_factor, beta_fast, beta_slow
+                );
+                cb(Kcur, "Kcur", il);
+
+                cur = llm_build_kv(ctx0, lctx, kv_self, gf,
+                        model.layers[il].wo, model.layers[il].bo,
+                        Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
+            }
+
+            if (il == n_layer - 1) {
+                // skip computing output for unused tokens
+                struct ggml_tensor * inp_out_ids = build_inp_out_ids();
+                cur   = ggml_get_rows(ctx0,   cur, inp_out_ids);
+                inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
+            }
+
+            struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
+            cb(ffn_inp, "ffn_inp", il);
+
+            // feed-forward network
+            cur = llm_build_norm(ctx0, ffn_inp, hparams,
+                    model.layers[il].ffn_norm, NULL,
+                    LLM_NORM_RMS, cb, il);
+            cb(cur, "ffn_norm", il);
+
+            cur = llm_build_ffn(ctx0, lctx, cur,
+                    model.layers[il].ffn_up,   NULL, NULL,
+                    model.layers[il].ffn_gate, NULL, NULL,
+                    model.layers[il].ffn_down, NULL, NULL,
+                    NULL,
+                    LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
+            cb(cur, "ffn_out", il);
+
+            cur = ggml_add(ctx0, cur, ffn_inp);
+            cur = lctx.cvec.apply_to(ctx0, cur, il);
+            cb(cur, "l_out", il);
+
+            // input for next layer
+            inpL = cur;
+        }
+
+        cur = inpL;
+
+        cur = llm_build_norm(ctx0, cur, hparams,
+                model.output_norm, NULL,
+                LLM_NORM_RMS, cb, -1);
+        cb(cur, "result_norm", -1);
+
+        // lm_head
+        cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
+        cb(cur, "result_output", -1);
+
+        ggml_build_forward_expand(gf, cur);
+
+        return gf;
+    }
+
+    // ref: https://arxiv.org/abs/2203.03466
+    //      https://github.com/ggerganov/llama.cpp/issues/5276#issuecomment-1925774738
+    // based on the original build_llama() function
+    struct ggml_cgraph * build_minicpm() {
+        struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
+
+        const int64_t n_embd_head = hparams.n_embd_head_v;
+        GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
+        GGML_ASSERT(n_embd_head == hparams.n_rot);
+
+        const int64_t n_embd = hparams.n_embd;
+        //TODO: if the model varies, these parameters need to be read from the model
+        const int64_t n_embd_base = 256;
+        const float scale_embd  = 12.0f;
+        const float scale_depth = 1.4f;
+
+        struct ggml_tensor * cur;
+        struct ggml_tensor * inpL;
+
+        inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
+
+        // scale the input embeddings
+        inpL = ggml_scale(ctx0, inpL, scale_embd);
+        cb(inpL, "inp_scaled", -1);
+
+        // inp_pos - contains the positions
+        struct ggml_tensor * inp_pos = build_inp_pos();
+
+        // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
+        struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
+
+        for (int il = 0; il < n_layer; ++il) {
+            struct ggml_tensor * inpSA = inpL;
+
+            // norm
+            cur = llm_build_norm(ctx0, inpL, hparams,
+                    model.layers[il].attn_norm, NULL,
+                    LLM_NORM_RMS, cb, il);
+            cb(cur, "attn_norm", il);
+
+            // self-attention
+            {
+                // compute Q and K and RoPE them
+                struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
+                cb(Qcur, "Qcur", il);
+                if (model.layers[il].bq) {
+                    Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
+                    cb(Qcur, "Qcur", il);
+                }
+
+                struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
+                cb(Kcur, "Kcur", il);
+                if (model.layers[il].bk) {
+                    Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
+                    cb(Kcur, "Kcur", il);
+                }
+
+                struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
+                cb(Vcur, "Vcur", il);
+                if (model.layers[il].bv) {
+                    Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
+                    cb(Vcur, "Vcur", il);
+                }
+
+                Qcur = ggml_rope_ext(
+                    ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head,    n_tokens), inp_pos, nullptr,
+                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+                    ext_factor, attn_factor, beta_fast, beta_slow
+                );
+                cb(Qcur, "Qcur", il);
+
+                Kcur = ggml_rope_ext(
+                    ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
+                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+                    ext_factor, attn_factor, beta_fast, beta_slow
+                );
+                cb(Kcur, "Kcur", il);
+
+                cur = llm_build_kv(ctx0, lctx, kv_self, gf,
+                        model.layers[il].wo, model.layers[il].bo,
+                        Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
+            }
+
+            if (il == n_layer - 1) {
+                // skip computing output for unused tokens
+                struct ggml_tensor * inp_out_ids = build_inp_out_ids();
+                cur   = ggml_get_rows(ctx0,   cur, inp_out_ids);
+                inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
+            }
+
+            // scale_res - scale the hidden states for residual connection
+            const float scale_res = scale_depth/sqrtf(float(n_layer));
+            cur = ggml_scale(ctx0, cur, scale_res);
+            cb(cur, "hidden_scaled", -1);
+
+            struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
+            cb(ffn_inp, "ffn_inp", il);
+
+            // feed-forward network
+            {
+                cur = llm_build_norm(ctx0, ffn_inp, hparams,
+                        model.layers[il].ffn_norm, NULL,
+                        LLM_NORM_RMS, cb, il);
+                cb(cur, "ffn_norm", il);
+
+                cur = llm_build_ffn(ctx0, lctx, cur,
+                        model.layers[il].ffn_up,   NULL, NULL,
+                        model.layers[il].ffn_gate, NULL, NULL,
+                        model.layers[il].ffn_down, NULL, NULL,
+                        NULL,
+                        LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
+                cb(cur, "ffn_out", il);
+            }
+
+            // scale the hidden states for residual connection
+            cur = ggml_scale(ctx0, cur, scale_res);
+            cb(cur, "hidden_scaled_ffn", -1);
+
+            cur = ggml_add(ctx0, cur, ffn_inp);
+            cur = lctx.cvec.apply_to(ctx0, cur, il);
+            cb(cur, "l_out", il);
+
+            // input for next layer
+            inpL = cur;
+        }
+
+        cur = inpL;
+
+        cur = llm_build_norm(ctx0, cur, hparams,
+                model.output_norm, NULL,
+                LLM_NORM_RMS, cb, -1);
+        cb(cur, "result_norm", -1);
+
+        // lm_head scaling
+        const float scale_lmhead = float(n_embd_base)/float(n_embd);
+        cur = ggml_scale(ctx0, cur, scale_lmhead);
+        cb(cur, "lmhead_scaling", -1);
+
+        // lm_head
+        cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
+        cb(cur, "result_output", -1);
+
+        ggml_build_forward_expand(gf, cur);
+
+        return gf;
+    }
+
+    struct ggml_cgraph * build_gemma() {
+        struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
+
+        const int64_t n_embd_head_k = hparams.n_embd_head_k;
+
+        struct ggml_tensor * cur;
+        struct ggml_tensor * inpL;
+
+        inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
+
+        inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
+        cb(inpL, "inp_scaled", -1);
+
+        // inp_pos - contains the positions
+        struct ggml_tensor * inp_pos = build_inp_pos();
+
+        // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
+        struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
+
+        for (int il = 0; il < n_layer; ++il) {
+            // norm
+            cur = llm_build_norm(ctx0, inpL, hparams,
+                    model.layers[il].attn_norm, NULL,
+                    LLM_NORM_RMS, cb, il);
+            cb(cur, "attn_norm", il);
+
+            // self-attention
+            {
+                // compute Q and K and RoPE them
+                struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
+                cb(Qcur, "Qcur", il);
+
+                struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
+                cb(Kcur, "Kcur", il);
+
+                struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
+                cb(Vcur, "Vcur", il);
+
+                Qcur = ggml_rope_ext(
+                        ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head_k, n_head,    n_tokens), inp_pos, nullptr,
+                        n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+                        ext_factor, attn_factor, beta_fast, beta_slow);
+                cb(Qcur, "Qcur", il);
+
+                Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head_k)));
+                cb(Qcur, "Qcur_scaled", il);
+
+                Kcur = ggml_rope_ext(
+                        ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head_k, n_head_kv, n_tokens), inp_pos, nullptr,
+                        n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+                        ext_factor, attn_factor, beta_fast, beta_slow);
+                cb(Kcur, "Kcur", il);
+
+                cur = llm_build_kv(ctx0, lctx, kv_self, gf,
+                        model.layers[il].wo, NULL,
+                        Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f, cb, il);
+            }
+
+            if (il == n_layer - 1) {
+                // skip computing output for unused tokens
+                struct ggml_tensor * inp_out_ids = build_inp_out_ids();
+                cur  = ggml_get_rows(ctx0,  cur, inp_out_ids);
+                inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
+            }
+
+            struct ggml_tensor * sa_out = ggml_add(ctx0, cur, inpL);
+            cb(sa_out, "sa_out", il);
+
+            cur = llm_build_norm(ctx0, sa_out, hparams,
+                    model.layers[il].ffn_norm, NULL,
+                    LLM_NORM_RMS, cb, il);
+            cb(cur, "ffn_norm", il);
+
+            // feed-forward network
+            {
+                cur = llm_build_ffn(ctx0, lctx, cur,
+                        model.layers[il].ffn_up,   NULL, NULL,
+                        model.layers[il].ffn_gate, NULL, NULL,
+                        model.layers[il].ffn_down, NULL, NULL,
+                        NULL,
+                        LLM_FFN_GELU, LLM_FFN_PAR, cb, il);
+                cb(cur, "ffn_out", il);
+            }
+
+            cur = ggml_add(ctx0, cur, sa_out);
+            cur = lctx.cvec.apply_to(ctx0, cur, il);
+            cb(cur, "l_out", il);
+
+            // input for next layer
+            inpL = cur;
+        }
+
+        cur = inpL;
+
+        cur = llm_build_norm(ctx0, cur, hparams,
+                model.output_norm, NULL,
+                LLM_NORM_RMS, cb, -1);
+        cb(cur, "result_norm", -1);
+
+        // lm_head
+        cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
+        cb(cur, "result_output", -1);
+
+        ggml_build_forward_expand(gf, cur);
+
+        return gf;
+    }
+
+    struct ggml_cgraph * build_gemma2() {
+        struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
+
+        const int64_t n_embd_head_k = hparams.n_embd_head_k;
+
+        struct ggml_tensor * cur;
+        struct ggml_tensor * inpL;
+
+        inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
+
+        inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
+        cb(inpL, "inp_scaled", -1);
+
+        // inp_pos - contains the positions
+        struct ggml_tensor * inp_pos = build_inp_pos();
+
+        // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
+        // gemma 2 requires different mask for layers using sliding window (SWA)
+        struct ggml_tensor * KQ_mask     = build_inp_KQ_mask(true);
+        struct ggml_tensor * KQ_mask_swa = build_inp_KQ_mask_swa(true);
+
+        for (int il = 0; il < n_layer; ++il) {
+            // (il % 2) layers use SWA
+            struct ggml_tensor * KQ_mask_l = (il % 2 == 0) ? KQ_mask_swa : KQ_mask;
+
+            // norm
+            cur = llm_build_norm(ctx0, inpL, hparams,
+                    model.layers[il].attn_norm, NULL,
+                    LLM_NORM_RMS, cb, il);
+            cb(cur, "attn_norm", il);
+
+            // self-attention
+            {
+                // compute Q and K and RoPE them
+                struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
+                cb(Qcur, "Qcur", il);
+
+                struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
+                cb(Kcur, "Kcur", il);
+
+                struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
+                cb(Vcur, "Vcur", il);
+
+                Qcur = ggml_rope_ext(
+                        ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head_k, n_head,    n_tokens), inp_pos, nullptr,
+                        n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+                        ext_factor, attn_factor, beta_fast, beta_slow);
+                cb(Qcur, "Qcur", il);
+
+                // ref: https://github.com/google/gemma_pytorch/commit/03e657582d17cb5a8617ebf333c1c16f3694670e
+                switch (model.type) {
+                    case e_model::MODEL_9B:  Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head_k)));   break;
+                    case e_model::MODEL_27B: Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd / n_head))); break;
+                    default: GGML_ASSERT(false);
+                };
+                cb(Qcur, "Qcur_scaled", il);
+
+                Kcur = ggml_rope_ext(
+                        ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head_k, n_head_kv, n_tokens), inp_pos, nullptr,
+                        n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+                        ext_factor, attn_factor, beta_fast, beta_slow);
+                cb(Kcur, "Kcur", il);
+
+                cur = llm_build_kv(ctx0, lctx, kv_self, gf,
+                        model.layers[il].wo, NULL,
+                        Kcur, Vcur, Qcur, KQ_mask_l, n_tokens, kv_head, n_kv, 1.0f, cb, il);
+            }
+
+            cur = llm_build_norm(ctx0, cur, hparams,
+                    model.layers[il].attn_post_norm, NULL,
+                    LLM_NORM_RMS, cb, il);
+            cb(cur, "attn_post_norm", il);
+
+            if (il == n_layer - 1) {
+                // skip computing output for unused tokens
+                struct ggml_tensor * inp_out_ids = build_inp_out_ids();
+                cur  = ggml_get_rows(ctx0,  cur, inp_out_ids);
+                inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
+            }
+
+            struct ggml_tensor * sa_out = ggml_add(ctx0, cur, inpL);
+            cb(sa_out, "sa_out", il);
+
+            cur = llm_build_norm(ctx0, sa_out, hparams,
+                    model.layers[il].ffn_norm, NULL,
+                    LLM_NORM_RMS, cb, il);
+            cb(cur, "ffn_norm", il);
+
+            // feed-forward network
+            {
+                cur = llm_build_ffn(ctx0, lctx, cur,
+                        model.layers[il].ffn_up,   NULL, NULL,
+                        model.layers[il].ffn_gate, NULL, NULL,
+                        model.layers[il].ffn_down, NULL, NULL,
+                        NULL,
+                        LLM_FFN_GELU, LLM_FFN_PAR, cb, il);
+                cb(cur, "ffn_out", il);
+            }
+
+            cur = llm_build_norm(ctx0, cur, hparams,
+                model.layers[il].ffn_post_norm, NULL,
+                LLM_NORM_RMS, cb, -1);
+            cb(cur, "ffn_post_norm", -1);
+
+            cur = ggml_add(ctx0, cur, sa_out);
+            cur = lctx.cvec.apply_to(ctx0, cur, il);
+            cb(cur, "l_out", il);
+
+            // input for next layer
+            inpL = cur;
+        }
+
+        cur = inpL;
+
+        cur = llm_build_norm(ctx0, cur, hparams,
+                model.output_norm, NULL,
+                LLM_NORM_RMS, cb, -1);
+        cb(cur, "result_norm", -1);
+
+        // lm_head
+        cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
+
+        // final logit soft-capping
+        cur = ggml_scale(ctx0, cur, 1.0f / hparams.f_final_logit_softcapping);
+        cur = ggml_tanh(ctx0, cur);
+        cur = ggml_scale(ctx0, cur, hparams.f_final_logit_softcapping);
+
+        cb(cur, "result_output", -1);
+
+        ggml_build_forward_expand(gf, cur);
+
+        return gf;
+    }
+
+
+    struct ggml_cgraph * build_starcoder2() {
+        struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
+
+        const int64_t n_embd_head = hparams.n_embd_head_v;
+        GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
+        GGML_ASSERT(n_embd_head == hparams.n_rot);
+
+        struct ggml_tensor * cur;
+        struct ggml_tensor * inpL;
+
+        inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
+
+        // inp_pos - contains the positions
+        struct ggml_tensor * inp_pos = build_inp_pos();
+
+        // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
+        struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
+
+        for (int il = 0; il < n_layer; ++il) {
+            struct ggml_tensor * inpSA = inpL;
+
+            // norm
+            cur = llm_build_norm(ctx0, inpL, hparams,
+                    model.layers[il].attn_norm, model.layers[il].attn_norm_b,
+                    LLM_NORM, cb, il);
+            cb(cur, "attn_norm", il);
+
+            // self-attention
+            {
+                // compute Q and K and RoPE them
+                struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
+                cb(Qcur, "Qcur", il);
+                if (model.layers[il].bq) {
+                    Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
+                    cb(Qcur, "Qcur", il);
+                }
+
+                struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
+                cb(Kcur, "Kcur", il);
+                if (model.layers[il].bk) {
+                    Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
+                    cb(Kcur, "Kcur", il);
+                }
+
+                struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
+                cb(Vcur, "Vcur", il);
+                if (model.layers[il].bv) {
+                    Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
+                    cb(Vcur, "Vcur", il);
+                }
+
+                Qcur = ggml_rope_ext(
+                    ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
+                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+                    ext_factor, attn_factor, beta_fast, beta_slow
+                );
+                cb(Qcur, "Qcur", il);
+
+                Kcur = ggml_rope_ext(
+                    ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
+                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+                    ext_factor, attn_factor, beta_fast, beta_slow
+                );
+                cb(Kcur, "Kcur", il);
+
+                cur = llm_build_kv(ctx0, lctx, kv_self, gf,
+                        model.layers[il].wo, model.layers[il].bo,
+                        Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
+            }
+
+            if (il == n_layer - 1) {
+                // skip computing output for unused tokens
+                struct ggml_tensor * inp_out_ids = build_inp_out_ids();
+                cur   = ggml_get_rows(ctx0,   cur, inp_out_ids);
+                inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
+            }
+
+            struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
+            cb(ffn_inp, "ffn_inp", il);
+
+            // feed-forward network
+
+            cur = llm_build_norm(ctx0, ffn_inp, hparams,
+                    model.layers[il].ffn_norm, model.layers[il].ffn_norm_b,
+                    LLM_NORM, cb, il);
+            cb(cur, "ffn_norm", il);
+
+            cur = llm_build_ffn(ctx0, lctx, cur,
+                        model.layers[il].ffn_up,   model.layers[il].ffn_up_b,   NULL,
+                        NULL,                      NULL,                        NULL,
+                        model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
+                        NULL,
+                        LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
+            cb(cur, "ffn_out", il);
+
+            cur = ggml_add(ctx0, cur, ffn_inp);
+            cur = lctx.cvec.apply_to(ctx0, cur, il);
+            cb(cur, "l_out", il);
+
+            // input for next layer
+            inpL = cur;
+        }
+
+        cur = inpL;
+
+        cur = llm_build_norm(ctx0, cur, hparams,
+                model.output_norm, model.output_norm_b,
+                LLM_NORM, cb, -1);
+        cb(cur, "result_norm", -1);
+
+        // lm_head
+        cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
+        cb(cur, "result_output", -1);
+
+        ggml_build_forward_expand(gf, cur);
+
+        return gf;
+    }
+
+    struct ggml_cgraph * build_mamba() {
+        struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
+
+        const int64_t d_model = n_embd;
+        const int64_t d_conv  = hparams.ssm_d_conv;
+        const int64_t d_inner = hparams.ssm_d_inner;
+        GGML_ASSERT(2 * d_model == d_inner);
+        const int64_t d_state = hparams.ssm_d_state;
+        const int64_t dt_rank = hparams.ssm_dt_rank;
+
+        struct ggml_tensor * cur;
+        struct ggml_tensor * inpL;
+
+        // {n_embd, n_tokens}
+        inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
+
+        struct ggml_tensor * state_mask = build_inp_s_mask();
+        struct ggml_tensor * state_seq  = build_inp_s_seq();
+
+        for (int il = 0; il < n_layer; ++il) {
+            // (ab)using the KV cache to store the states
+            struct ggml_tensor * conv_states = ggml_reshape_2d(ctx0, kv_self.k_l[il], hparams.n_embd_k_s(), kv_self.size);
+            struct ggml_tensor * ssm_states  = ggml_reshape_2d(ctx0, kv_self.v_l[il], hparams.n_embd_v_s(), kv_self.size);
+
+            // clear states of sequences which are starting at the beginning of this batch
+            {
+                conv_states = ggml_mul(ctx0,
+                    ggml_view_2d(ctx0, conv_states, conv_states->ne[0], n_kv, conv_states->nb[1], kv_head*conv_states->nb[1]),
+                    state_mask);
+                ssm_states  = ggml_mul(ctx0,
+                    ggml_view_2d(ctx0, ssm_states, ssm_states->ne[0], n_kv, ssm_states->nb[1], kv_head*ssm_states->nb[1]),
+                    state_mask);
+            }
+
+            conv_states = ggml_reshape_3d(ctx0, conv_states, d_conv - 1, d_inner, n_kv);
+            ssm_states  = ggml_reshape_3d(ctx0,  ssm_states,    d_state, d_inner, n_kv);
+
+            // norm
+            cur = llm_build_norm(ctx0, inpL, hparams,
+                    model.layers[il].attn_norm, NULL,
+                    LLM_NORM_RMS, cb, il);
+            cb(cur, "attn_norm", il);
+
+            // {n_embd, 2*d_inner} * {n_embd, n_tokens} => {2*d_inner, n_tokens}
+            struct ggml_tensor * xz = llm_build_lora_mm(lctx, ctx0, model.layers[il].ssm_in, cur);
+            // split the above in two
+            // => {d_inner, n_tokens}
+            struct ggml_tensor * x = ggml_view_2d(ctx0, xz, d_inner, xz->ne[1], xz->nb[1], 0);
+            struct ggml_tensor * z = ggml_view_2d(ctx0, xz, d_inner, xz->ne[1], xz->nb[1], ggml_element_size(xz)*d_inner);
+
+            // conv
+            {
+                // Custom operator which is needed only to ease simultaneous sequence processing.
+                // For a single sequence, the equivalent is to concatenate the columns of conv_states and x,
+                // then make a self-overlapping view of that over d_conv columns at each stride in the 3rd dimension,
+                // then element-wise multiply that with the conv1d weigth,
+                // then sum the elements of each row,
+                // (the last two steps are a dot product over rows (also doable with mul_mat))
+                // then permute away the ne[0] dimension,
+                // and then you're left with the resulting x tensor.
+                // The new conv_states is the last (d_conv - 1) columns
+                // of the last 3rd dimensional "layer" of the self-overlapping view.
+                // For simultaneous sequences, it's more complicated.
+                struct ggml_tensor * x_conv = ggml_ssm_conv(ctx0, conv_states, x, model.layers[il].ssm_conv1d, state_seq);
+
+                // store last (d_conv - 1) columns of the conv_state part of x_conv back into the KV cache
+                ggml_build_forward_expand(gf,
+                    ggml_cpy(ctx0,
+                        ggml_view_2d(ctx0, x_conv, d_conv - 1, d_inner*n_kv, d_conv*ggml_element_size(x_conv), (1+d_inner*n_tokens)*ggml_element_size(x_conv)),
+                        ggml_view_1d(ctx0, kv_self.k_l[il], (d_conv - 1)*(d_inner)*(n_kv), kv_head*(d_conv - 1)*(d_inner)*ggml_element_size(x_conv))));
+
+                // extract x from x_conv
+                x = ggml_view_2d(ctx0, x_conv, d_inner, n_tokens, d_inner*ggml_element_size(x_conv), 0);
+
+                // bias
+                x = ggml_add(ctx0, x, model.layers[il].ssm_conv1d_b);
+
+                x = ggml_silu(ctx0, x);
+            }
+
+            // ssm
+            {
+                // {d_inner, dt_rank + 2*d_state} * {d_inner, n_tokens} => {dt_rank + 2*d_state, n_tokens}
+                struct ggml_tensor * x_db = llm_build_lora_mm(lctx, ctx0, model.layers[il].ssm_x, x);
+                // split
+                struct ggml_tensor * dt = ggml_view_2d(ctx0, x_db, dt_rank, n_tokens, x_db->nb[1], 0);
+                struct ggml_tensor * B  = ggml_view_2d(ctx0, x_db, d_state, n_tokens, x_db->nb[1], ggml_element_size(x_db)*dt_rank);
+                struct ggml_tensor * C  = ggml_view_2d(ctx0, x_db, d_state, n_tokens, x_db->nb[1], ggml_element_size(x_db)*(dt_rank+d_state));
+
+                // {dt_rank, d_inner} * {dt_rank, n_tokens} => {d_inner, n_tokens}
+                dt = llm_build_lora_mm(lctx, ctx0, model.layers[il].ssm_dt, dt);
+                dt = ggml_add(ctx0, dt, model.layers[il].ssm_dt_b);
+
+                // Custom operator to optimize the parallel associative scan
+                // as described in the Annex D of the Mamba paper.
+                // => {d_inner, n_tokens} and {d_state, d_inner, n_kv} combined,
+                // because only a single tensor can be returned.
+                struct ggml_tensor * y_ssm_states = ggml_ssm_scan(ctx0, ssm_states, x, dt, model.layers[il].ssm_a, B, C, state_seq);
+
+                // store last states (the second part of y_ssm_states)
+                ggml_build_forward_expand(gf,
+                    ggml_cpy(ctx0,
+                        ggml_view_1d(ctx0, y_ssm_states, d_state*d_inner*n_kv, d_inner*n_tokens*ggml_element_size(y_ssm_states)),
+                        ggml_view_1d(ctx0, kv_self.v_l[il], d_state*d_inner*n_kv, kv_head*d_state*d_inner*ggml_element_size(ssm_states))));
+
+                struct ggml_tensor * y = ggml_view_2d(ctx0, y_ssm_states, d_inner, n_tokens, d_inner*ggml_element_size(y_ssm_states), 0);
+
+                if (il == n_layer - 1) {
+                    // skip computing output for unused tokens
+                    struct ggml_tensor * inp_out_ids = build_inp_out_ids();
+                    x    = ggml_get_rows(ctx0,    x, inp_out_ids);
+                    y    = ggml_get_rows(ctx0,    y, inp_out_ids);
+                    z    = ggml_get_rows(ctx0,    z, inp_out_ids);
+                    inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
+                }
+
+                // {d_inner, n_tokens} * {d_inner} => {d_inner, n_tokens}
+                y = ggml_add(ctx0, y, ggml_mul(ctx0, x, model.layers[il].ssm_d));
+                y = ggml_mul(ctx0, y, ggml_silu(ctx0, z));
+
+                // {d_inner, n_embd} * {d_inner, n_tokens} => {n_embd, n_tokens}
+                cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].ssm_out, y);
+            }
+
+            // residual
+            cur = ggml_add(ctx0, cur, inpL);
+            cur = lctx.cvec.apply_to(ctx0, cur, il);
+            cb(cur, "l_out", il);
+
+            // input for next layer
+            inpL = cur;
+        }
+
+        // final rmsnorm
+        cur = llm_build_norm(ctx0, inpL, hparams,
+                model.output_norm, NULL,
+                LLM_NORM_RMS, cb, -1);
+        cb(cur, "result_norm", -1);
+
+        // lm_head
+        cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
+        cb(cur, "result_output", -1);
+
+        ggml_build_forward_expand(gf, cur);
+
+        return gf;
+    }
+
+    struct ggml_cgraph * build_command_r() {
+
+        struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
+
+        const int64_t n_embd_head = hparams.n_embd_head_v;
+        GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
+        const float f_logit_scale = hparams.f_logit_scale;
+
+        struct ggml_tensor * cur;
+        struct ggml_tensor * inpL;
+
+        inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
+
+        // inp_pos - contains the positions
+        struct ggml_tensor * inp_pos = build_inp_pos();
+
+        // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
+        struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
+
+        for (int il = 0; il < n_layer; ++il) {
+
+            // norm
+            cur = llm_build_norm(ctx0, inpL, hparams,
+                    model.layers[il].attn_norm, NULL,
+                    LLM_NORM, cb, il);
+            cb(cur, "attn_norm", il);
+            struct ggml_tensor * ffn_inp = cur;
+
+            // self-attention
+            {
+                // compute Q and K and RoPE them
+                struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
+                cb(Qcur, "Qcur", il);
+                if (model.layers[il].bq) {
+                    Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
+                    cb(Qcur, "Qcur", il);
+                }
+
+                struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
+                cb(Kcur, "Kcur", il);
+                if (model.layers[il].bk) {
+                    Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
+                    cb(Kcur, "Kcur", il);
+                }
+
+                struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
+                cb(Vcur, "Vcur", il);
+                if (model.layers[il].bv) {
+                    Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
+                    cb(Vcur, "Vcur", il);
+                }
+
+                if (model.layers[il].attn_q_norm) {
+                    Qcur = ggml_view_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens,
+                                ggml_element_size(Qcur) * n_embd_head,
+                                ggml_element_size(Qcur) * n_embd_head * n_head,
+                                0);
+                    cb(Qcur, "Qcur", il);
+                    Kcur = ggml_view_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens,
+                                ggml_element_size(Kcur) * n_embd_head,
+                                ggml_element_size(Kcur) * n_embd_head * n_head_kv,
+                                0);
+                    cb(Kcur, "Kcur", il);
+
+                    Qcur = llm_build_norm(ctx0, Qcur, hparams,
+                                model.layers[il].attn_q_norm,
+                                NULL,
+                                LLM_NORM, cb, il);
+                    cb(Qcur, "Qcur", il);
+
+                    Kcur = llm_build_norm(ctx0, Kcur, hparams,
+                            model.layers[il].attn_k_norm,
+                            NULL,
+                            LLM_NORM, cb, il);
+                    cb(Kcur, "Kcur", il);
+                }
+
+                Qcur = ggml_rope_ext(
+                    ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
+                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+                    ext_factor, attn_factor, beta_fast, beta_slow
+                );
+                cb(Qcur, "Qcur", il);
+
+                Kcur = ggml_rope_ext(
+                    ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
+                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+                    ext_factor, attn_factor, beta_fast, beta_slow
+                );
+                cb(Kcur, "Kcur", il);
+
+                cur = llm_build_kv(ctx0, lctx, kv_self, gf,
+                        model.layers[il].wo, model.layers[il].bo,
+                        Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
+            }
+
+            if (il == n_layer - 1) {
+                // skip computing output for unused tokens
+                struct ggml_tensor * inp_out_ids = build_inp_out_ids();
+                cur     = ggml_get_rows(ctx0,     cur, inp_out_ids);
+                inpL    = ggml_get_rows(ctx0,    inpL, inp_out_ids);
+                ffn_inp = ggml_get_rows(ctx0, ffn_inp, inp_out_ids);
+            }
+
+            struct ggml_tensor * attn_out = cur;
+
+            // feed-forward network
+            {
+                cur = llm_build_ffn(ctx0, lctx, ffn_inp,
+                        model.layers[il].ffn_up,   NULL, NULL,
+                        model.layers[il].ffn_gate, NULL, NULL,
+                        model.layers[il].ffn_down, NULL, NULL,
+                        NULL,
+                        LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
+                cb(cur, "ffn_out", il);
+            }
+
+            // add together residual + FFN + self-attention
+            cur = ggml_add(ctx0, cur, inpL);
+            cur = ggml_add(ctx0, cur, attn_out);
+            cur = lctx.cvec.apply_to(ctx0, cur, il);
+            cb(cur, "l_out", il);
+
+            // input for next layer
+            inpL = cur;
+        }
+
+        cur = inpL;
+
+        cur = llm_build_norm(ctx0, cur, hparams,
+                model.output_norm, NULL,
+                LLM_NORM, cb, -1);
+        cb(cur, "result_norm", -1);
+
+        // lm_head
+        cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
+
+        if (f_logit_scale) {
+            cur = ggml_scale(ctx0, cur, f_logit_scale);
+        }
+
+        cb(cur, "result_output", -1);
+
+        ggml_build_forward_expand(gf, cur);
+
+        return gf;
+
+    }
+
+    // ref: https://allenai.org/olmo
+    // based on the original build_llama() function, changes:
+    //   * non-parametric layer norm
+    //   * clamp qkv
+    //   * removed bias
+    //   * removed MoE
+    struct ggml_cgraph * build_olmo() {
+        struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
+
+        // mutable variable, needed during the last layer of the computation to skip unused tokens
+        int32_t n_tokens = this->n_tokens;
+
+        const int64_t n_embd_head = hparams.n_embd_head_v;
+        GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
+        GGML_ASSERT(n_embd_head == hparams.n_rot);
+
+        struct ggml_tensor * cur;
+        struct ggml_tensor * inpL;
+
+        inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
+
+        // inp_pos - contains the positions
+        struct ggml_tensor * inp_pos = build_inp_pos();
+
+        // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
+        struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
+
+        for (int il = 0; il < n_layer; ++il) {
+            struct ggml_tensor * inpSA = inpL;
+
+            // norm
+            cur = llm_build_norm(ctx0, inpL, hparams,
+                    NULL, NULL,
+                    LLM_NORM, cb, il);
+            cb(cur, "attn_norm", il);
+
+            // self-attention
+            {
+                // compute Q and K and RoPE them
+                struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
+                cb(Qcur, "Qcur", il);
+                if (hparams.f_clamp_kqv > 0.0f) {
+                    Qcur = ggml_clamp(ctx0, Qcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
+                    cb(Qcur, "Qcur", il);
+                }
+
+                struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
+                cb(Kcur, "Kcur", il);
+                if (hparams.f_clamp_kqv > 0.0f) {
+                    Kcur = ggml_clamp(ctx0, Kcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
+                    cb(Kcur, "Kcur", il);
+                }
+
+                struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
+                cb(Vcur, "Vcur", il);
+                if (hparams.f_clamp_kqv > 0.0f) {
+                    Vcur = ggml_clamp(ctx0, Vcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
+                    cb(Vcur, "Vcur", il);
+                }
+
+                Qcur = ggml_rope_ext(
+                    ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
+                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+                    ext_factor, attn_factor, beta_fast, beta_slow
+                );
+                cb(Qcur, "Qcur", il);
+
+                Kcur = ggml_rope_ext(
+                    ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
+                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+                    ext_factor, attn_factor, beta_fast, beta_slow
+                );
+                cb(Kcur, "Kcur", il);
+
+                cur = llm_build_kv(ctx0, lctx, kv_self, gf,
+                        model.layers[il].wo, nullptr,
+                        Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
+            }
+
+            if (il == n_layer - 1) {
+                // skip computing output for unused tokens
+                struct ggml_tensor * inp_out_ids = build_inp_out_ids();
+                n_tokens = n_outputs;
+                cur   = ggml_get_rows(ctx0,   cur, inp_out_ids);
+                inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
+            }
+
+            struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
+            cb(ffn_inp, "ffn_inp", il);
+
+            // feed-forward network
+            cur = llm_build_norm(ctx0, ffn_inp, hparams,
+                    NULL, NULL,
+                    LLM_NORM, cb, il);
+            cb(cur, "ffn_norm", il);
+
+            cur = llm_build_ffn(ctx0, lctx, cur,
+                    model.layers[il].ffn_up,   NULL, NULL,
+                    model.layers[il].ffn_gate, NULL, NULL,
+                    model.layers[il].ffn_down, NULL, NULL,
+                    NULL,
+                    LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
+            cb(cur, "ffn_out", il);
+
+            cur = ggml_add(ctx0, cur, ffn_inp);
+            cb(cur, "ffn_out", il);
+
+            cur = lctx.cvec.apply_to(ctx0, cur, il);
+            cb(cur, "l_out", il);
+
+            // input for next layer
+            inpL = cur;
+        }
+
+        cur = inpL;
+
+        cur = llm_build_norm(ctx0, cur, hparams,
+                NULL, NULL,
+                LLM_NORM, cb, -1);
+        cb(cur, "result_norm", -1);
+
+        // lm_head
+        cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
+        cb(cur, "result_output", -1);
+
+        ggml_build_forward_expand(gf, cur);
+
+        return gf;
+    }
+
+    struct ggml_cgraph * build_openelm() {
+        struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
+
+        const int64_t n_embd_head = hparams.n_embd_head_v;
+        GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
+
+        struct ggml_tensor * cur;
+        struct ggml_tensor * inpL;
+        inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
+
+        // inp_pos - contains the positions
+        struct ggml_tensor * inp_pos = build_inp_pos();
+
+        // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
+        struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
+
+        for (int il = 0; il < n_layer; ++il) {
+            const int64_t n_head    = hparams.n_head(il);
+            const int64_t n_head_kv = hparams.n_head_kv(il);
+            const int64_t n_head_qkv = 2*n_head_kv + n_head;
+
+            cur = inpL;
+            struct ggml_tensor * residual = cur;
+
+            // norm
+            cur = llm_build_norm(ctx0, inpL, hparams,
+                    model.layers[il].attn_norm, NULL,
+                    LLM_NORM_RMS, cb, il);
+            cb(cur, "attn_norm", il);
+
+            // self-attention
+            {
+                cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wqkv, cur);
+                cb(cur, "wqkv", il);
+
+                cur = ggml_reshape_3d(ctx0, cur, n_embd_head_k, n_head_qkv, n_tokens);
+
+                struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_3d(ctx0, cur, n_embd_head, n_head, n_tokens, cur->nb[1], cur->nb[2], 0));
+                cb(Qcur, "Qcur", il);
+
+                struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, cur->nb[1], cur->nb[2], cur->nb[1]*n_head));
+                cb(Kcur, "Kcur", il);
+
+                struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, cur->nb[1], cur->nb[2], cur->nb[1]*(n_head+n_head_kv)));
+                cb(Vcur, "Vcur", il);
+
+                Qcur = llm_build_norm(ctx0, Qcur, hparams,
+                        model.layers[il].attn_q_norm, NULL,
+                        LLM_NORM_RMS, cb, il);
+                cb(Qcur, "Qcur", il);
+
+                Kcur = llm_build_norm(ctx0, Kcur, hparams,
+                        model.layers[il].attn_k_norm, NULL,
+                        LLM_NORM_RMS, cb, il);
+                cb(Kcur, "Kcur", il);
+
+                Qcur = ggml_rope_ext(
+                    ctx0, Qcur, inp_pos, NULL, n_rot, rope_type, n_ctx_orig,
+                    freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
+                );
+                cb(Qcur, "Qcur", il);
+
+                Kcur = ggml_rope_ext(
+                    ctx0, Kcur, inp_pos, NULL, n_rot, rope_type, n_ctx_orig,
+                    freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
+                );
+                cb(Kcur, "Kcur", il);
+
+                Vcur = ggml_reshape_2d(ctx0, Vcur, n_embd_head * n_head_kv, n_tokens);
+                cb(Qcur, "Vcur", il);
+
+                cur = llm_build_kv(ctx0, lctx, kv_self, gf,
+                        model.layers[il].wo, NULL,
+                        Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
+            }
+
+            if (il == n_layer - 1) {
+                // skip computing output for unused tokens
+                struct ggml_tensor * inp_out_ids = build_inp_out_ids();
+                residual = ggml_get_rows(ctx0, residual, inp_out_ids);
+                cur = ggml_get_rows(ctx0, cur, inp_out_ids);
+            }
+
+            struct ggml_tensor * ffn_inp = ggml_add(ctx0, residual, cur);
+            cb(ffn_inp, "ffn_inp", il);
+
+            // feed-forward network
+            {
+                cur = llm_build_norm(ctx0, ffn_inp, hparams,
+                        model.layers[il].ffn_norm, NULL,
+                        LLM_NORM_RMS, cb, il);
+                cb(cur, "ffn_norm", il);
+
+                cur = llm_build_ffn(ctx0, lctx, cur,
+                        model.layers[il].ffn_up,   NULL, NULL,
+                        model.layers[il].ffn_gate, NULL, NULL,
+                        model.layers[il].ffn_down, NULL, NULL,
+                        NULL,
+                        LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
+                cb(cur, "ffn_out", il);
+            }
+
+            cur = ggml_add(ctx0, cur, ffn_inp);
+            cur = lctx.cvec.apply_to(ctx0, cur, il);
+            cb(cur, "l_out", il);
+
+            inpL = cur;
+        }
+
+        cur = inpL;
+
+        // norm
+        cur = llm_build_norm(ctx0, cur, hparams,
+                model.output_norm, NULL,
+                LLM_NORM_RMS, cb, -1);
+        cb(cur, "result_norm", -1);
+
+        cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
+        cb(cur, "result_output", -1);
+
+        ggml_build_forward_expand(gf, cur);
+
+        return gf;
+    }
+
+    struct ggml_cgraph * build_gptneox() {
+        struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
+
+        const int64_t n_embd_head = hparams.n_embd_head_v;
+        const int64_t n_embd_gqa  = hparams.n_embd_v_gqa();
+        GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
+
+        struct ggml_tensor * cur;
+        struct ggml_tensor * inpL;
+
+        inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
+
+        // inp_pos - contains the positions
+        struct ggml_tensor * inp_pos = build_inp_pos();
+
+        // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
+        struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
+
+        for (int il = 0; il < n_layer; ++il) {
+            cur = llm_build_norm(ctx0, inpL, hparams,
+                    model.layers[il].attn_norm,
+                    model.layers[il].attn_norm_b,
+                    LLM_NORM, cb, il);
+            cb(cur, "attn_norm", il);
+
+            // self-attention
+            {
+                cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wqkv, cur);
+                cb(cur, "wqkv", il);
+
+                cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
+                cb(cur, "bqkv", il);
+
+                struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd,     n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
+                struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
+                struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
+
+                cb(Qcur, "Qcur", il);
+                cb(Kcur, "Kcur", il);
+                cb(Vcur, "Vcur", il);
+
+                Qcur = ggml_rope_ext(
+                    ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
+                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+                    ext_factor, attn_factor, beta_fast, beta_slow
+                );
+                cb(Qcur, "Qcur", il);
+
+                Kcur = ggml_rope_ext(
+                    ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
+                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+                    ext_factor, attn_factor, beta_fast, beta_slow
+                );
+                cb(Kcur, "Kcur", il);
+
+                cur = llm_build_kv(ctx0, lctx, kv_self, gf,
+                        model.layers[il].wo, model.layers[il].bo,
+                        Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
+            }
+
+            if (il == n_layer - 1) {
+                // skip computing output for unused tokens
+                struct ggml_tensor * inp_out_ids = build_inp_out_ids();
+                cur  = ggml_get_rows(ctx0,  cur, inp_out_ids);
+                inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
+            }
+
+            // ffn
+            if (hparams.use_par_res) {
+                // attention and ffn are computed in parallel
+                // x = x + attn(ln1(x)) + ffn(ln2(x))
+
+                struct ggml_tensor * attn_out = cur;
+
+                cur = llm_build_norm(ctx0, inpL, hparams,
+                        model.layers[il].ffn_norm,
+                        model.layers[il].ffn_norm_b,
+                        LLM_NORM, cb, il);
+                cb(cur, "ffn_norm", il);
+
+                cur = llm_build_ffn(ctx0, lctx, cur,
+                        model.layers[il].ffn_up,   model.layers[il].ffn_up_b,   NULL,
+                        NULL,                      NULL,                        NULL,
+                        model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
+                        NULL,
+                        LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
+                cb(cur, "ffn_out", il);
+
+                cur = ggml_add(ctx0, cur, inpL);
+                cb(cur, "ffn_out", il);
+
+                cur = ggml_add(ctx0, cur, attn_out);
+                cur = lctx.cvec.apply_to(ctx0, cur, il);
+                cb(cur, "l_out", il);
+
+                // input for next layer
+                inpL = cur;
+            } else {
+                // attention and ffn are computed sequentially
+                // x = x + attn(ln1(x))
+                // x = x + ffn(ln2(x))
+
+                struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
+                cb(ffn_inp, "ffn_inp", il);
+
+                cur = llm_build_norm(ctx0, ffn_inp, hparams,
+                        model.layers[il].ffn_norm,
+                        model.layers[il].ffn_norm_b,
+                        LLM_NORM, cb, il);
+                cb(cur, "ffn_norm", il);
+
+                cur = llm_build_ffn(ctx0, lctx, cur,
+                        model.layers[il].ffn_up,   model.layers[il].ffn_up_b,   NULL,
+                        NULL,                      NULL,                        NULL,
+                        model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
+                        NULL,
+                        LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
+                cb(cur, "ffn_out", il);
+
+                cur = ggml_add(ctx0, cur, ffn_inp);
+                cur = lctx.cvec.apply_to(ctx0, cur, il);
+                cb(cur, "l_out", il);
+
+                // input for next layer
+                inpL = cur;
+            }
+        }
+
+        cur = llm_build_norm(ctx0, inpL, hparams,
+                model.output_norm,
+                model.output_norm_b,
+                LLM_NORM, cb, -1);
+        cb(cur, "result_norm", -1);
+
+        cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
+        cb(cur, "result_output", -1);
+
+        ggml_build_forward_expand(gf, cur);
+
+        return gf;
+    }
+
+    struct ggml_cgraph * build_arctic() {
+        struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
+
+        // mutable variable, needed during the last layer of the computation to skip unused tokens
+        int32_t n_tokens = this->n_tokens;
+
+        const int64_t n_embd_head = hparams.n_embd_head_v;
+        GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
+        GGML_ASSERT(n_embd_head == hparams.n_rot);
+
+        struct ggml_tensor * cur;
+        struct ggml_tensor * inpL;
+
+        inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
+
+        // inp_pos - contains the positions
+        struct ggml_tensor * inp_pos = build_inp_pos();
+
+        // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
+        struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
+
+        for (int il = 0; il < n_layer; ++il) {
+            struct ggml_tensor * inpSA = inpL;
+
+            // norm
+            cur = llm_build_norm(ctx0, inpL, hparams,
+                    model.layers[il].attn_norm, NULL,
+                    LLM_NORM_RMS, cb, il);
+            cb(cur, "attn_norm", il);
+
+            // self-attention
+            {
+                // compute Q and K and RoPE them
+                struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
+                cb(Qcur, "Qcur", il);
+
+                struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
+                cb(Kcur, "Kcur", il);
+
+                struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
+                cb(Vcur, "Vcur", il);
+
+                Qcur = ggml_rope_ext(
+                    ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
+                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+                    ext_factor, attn_factor, beta_fast, beta_slow
+                );
+                cb(Qcur, "Qcur", il);
+
+                Kcur = ggml_rope_ext(
+                    ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
+                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+                    ext_factor, attn_factor, beta_fast, beta_slow
+                );
+                cb(Kcur, "Kcur", il);
+
+                cur = llm_build_kv(ctx0, lctx, kv_self, gf,
+                        model.layers[il].wo, NULL,
+                        Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
+            }
+
+            if (il == n_layer - 1) {
+                // skip computing output for unused tokens
+                struct ggml_tensor * inp_out_ids = build_inp_out_ids();
+                n_tokens = n_outputs;
+                cur   = ggml_get_rows(ctx0,   cur, inp_out_ids);
+                inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
+            }
+
+            struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
+            cb(ffn_inp, "ffn_inp", il);
+
+            // feed-forward network
+            cur = llm_build_norm(ctx0, ffn_inp, hparams,
+                    model.layers[il].ffn_norm, NULL,
+                    LLM_NORM_RMS, cb, il);
+            cb(cur, "ffn_norm", il);
+
+            cur = llm_build_ffn(ctx0, lctx, cur,
+                    model.layers[il].ffn_up,   NULL, NULL,
+                    model.layers[il].ffn_gate, NULL, NULL,
+                    model.layers[il].ffn_down, NULL, NULL,
+                    NULL,
+                    LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
+            cb(cur, "ffn_out", il);
+
+            struct ggml_tensor * ffn_out = ggml_add(ctx0, cur, ffn_inp);
+            cb(ffn_out, "ffn_out", il);
+
+            // MoE
+            cur = llm_build_norm(ctx0, inpSA, hparams,
+                    model.layers[il].ffn_norm_exps, NULL,
+                    LLM_NORM_RMS, cb, il);
+            cb(cur, "ffn_norm_exps", il);
+
+            cur = llm_build_moe_ffn(ctx0, lctx, cur,
+                    model.layers[il].ffn_gate_inp,
+                    model.layers[il].ffn_up_exps,
+                    model.layers[il].ffn_gate_exps,
+                    model.layers[il].ffn_down_exps,
+                    n_expert, n_expert_used,
+                    LLM_FFN_SILU, true,
+                    false, 0.0,
+                    cb, il);
+            cb(cur, "ffn_moe_out", il);
+
+            cur = ggml_add(ctx0, cur, ffn_out);
+            cb(cur, "ffn_out", il);
+
+            cur = lctx.cvec.apply_to(ctx0, cur, il);
+            cb(cur, "l_out", il);
+
+            // input for next layer
+            inpL = cur;
+        }
+
+        cur = inpL;
+
+        cur = llm_build_norm(ctx0, cur, hparams,
+                model.output_norm, NULL,
+                LLM_NORM_RMS, cb, -1);
+        cb(cur, "result_norm", -1);
+
+        // lm_head
+        cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
+        cb(cur, "result_output", -1);
+
+        ggml_build_forward_expand(gf, cur);
+
+        return gf;
+    }
+
+    struct ggml_cgraph * build_deepseek2() {
+        struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
+
+        // mutable variable, needed during the last layer of the computation to skip unused tokens
+        int32_t n_tokens = this->n_tokens;
+
+        bool is_lite = (hparams.n_layer == 27);
+
+        // We have to pre-scale kq_scale and attn_factor to make the YaRN RoPE work correctly.
+        // See https://github.com/ggerganov/llama.cpp/discussions/7416 for detailed explanation.
+        const float mscale = attn_factor * (1.0f + hparams.rope_yarn_log_mul * logf(1.0f / freq_scale));
+        const float kq_scale = 1.0f*mscale*mscale/sqrtf(float(hparams.n_embd_head_k));
+        const float attn_factor_scaled = 1.0f / (1.0f + 0.1f * logf(1.0f / freq_scale));
+
+        const uint32_t n_embd_head_qk_rope = hparams.n_rot;
+        const uint32_t n_embd_head_qk_nope = hparams.n_embd_head_k - hparams.n_rot;
+        const uint32_t kv_lora_rank = hparams.n_lora_kv;
+
+        struct ggml_tensor * cur;
+        struct ggml_tensor * inpL;
+
+        // {n_embd, n_tokens}
+        inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
+
+        // inp_pos - contains the positions
+        struct ggml_tensor * inp_pos = build_inp_pos();
+
+        // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
+        struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
+
+        for (int il = 0; il < n_layer; ++il) {
+            struct ggml_tensor * inpSA = inpL;
+
+            // norm
+            cur = llm_build_norm(ctx0, inpL, hparams,
+                    model.layers[il].attn_norm, NULL,
+                    LLM_NORM_RMS, cb, il);
+            cb(cur, "attn_norm", il);
+
+            // self_attention
+            {
+                struct ggml_tensor * q = NULL;
+                if (!is_lite) {
+                    // {n_embd, q_lora_rank} * {n_embd, n_tokens} -> {q_lora_rank, n_tokens}
+                    q = ggml_mul_mat(ctx0, model.layers[il].wq_a, cur);
+                    cb(q, "q", il);
+
+                    q = llm_build_norm(ctx0, q, hparams,
+                            model.layers[il].attn_q_a_norm, NULL,
+                            LLM_NORM_RMS, cb, il);
+                    cb(q, "q", il);
+
+                    // {q_lora_rank, n_head * hparams.n_embd_head_k} * {q_lora_rank, n_tokens} -> {n_head * hparams.n_embd_head_k, n_tokens}
+                    q = ggml_mul_mat(ctx0, model.layers[il].wq_b, q);
+                    cb(q, "q", il);
+                } else {
+                    q = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
+                    cb(q, "q", il);
+                }
+
+                // split into {n_head * n_embd_head_qk_nope, n_tokens}
+                struct ggml_tensor * q_nope = ggml_view_3d(ctx0, q, n_embd_head_qk_nope, n_head, n_tokens,
+                        ggml_row_size(q->type, hparams.n_embd_head_k),
+                        ggml_row_size(q->type, hparams.n_embd_head_k * n_head),
+                        0);
+                cb(q_nope, "q_nope", il);
+
+                // and {n_head * n_embd_head_qk_rope, n_tokens}
+                struct ggml_tensor * q_pe = ggml_view_3d(ctx0, q, n_embd_head_qk_rope, n_head, n_tokens,
+                        ggml_row_size(q->type, hparams.n_embd_head_k),
+                        ggml_row_size(q->type, hparams.n_embd_head_k * n_head),
+                        ggml_row_size(q->type, n_embd_head_qk_nope));
+                cb(q_pe, "q_pe", il);
+
+                // {n_embd, kv_lora_rank + n_embd_head_qk_rope} * {n_embd, n_tokens} -> {kv_lora_rank + n_embd_head_qk_rope, n_tokens}
+                struct ggml_tensor * kv_pe_compresseed = ggml_mul_mat(ctx0, model.layers[il].wkv_a_mqa, cur);
+                cb(kv_pe_compresseed, "kv_pe_compresseed", il);
+
+                // split into {kv_lora_rank, n_tokens}
+                struct ggml_tensor * kv_compressed = ggml_view_2d(ctx0, kv_pe_compresseed, kv_lora_rank, n_tokens,
+                        kv_pe_compresseed->nb[1],
+                        0);
+                cb(kv_compressed, "kv_compressed", il);
+
+                // and {n_embd_head_qk_rope, n_tokens}
+                struct ggml_tensor * k_pe = ggml_view_3d(ctx0, kv_pe_compresseed, n_embd_head_qk_rope, 1, n_tokens,
+                        kv_pe_compresseed->nb[1],
+                        kv_pe_compresseed->nb[1],
+                        ggml_row_size(kv_pe_compresseed->type, kv_lora_rank));
+                cb(k_pe, "k_pe", il);
+
+                kv_compressed = ggml_cont(ctx0, kv_compressed); // TODO: the CUDA backend does not support non-contiguous norm
+                kv_compressed = llm_build_norm(ctx0, kv_compressed, hparams,
+                        model.layers[il].attn_kv_a_norm, NULL,
+                        LLM_NORM_RMS, cb, il);
+                cb(kv_compressed, "kv_compressed", il);
+
+                // {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v)} * {kv_lora_rank, n_tokens} -> {n_head * (n_embd_head_qk_nope + n_embd_head_v), n_tokens}
+                struct ggml_tensor * kv = ggml_mul_mat(ctx0, model.layers[il].wkv_b, kv_compressed);
+                cb(kv, "kv", il);
+
+                // split into {n_head * n_embd_head_qk_nope, n_tokens}
+                struct ggml_tensor * k_nope = ggml_view_3d(ctx0, kv, n_embd_head_qk_nope, n_head, n_tokens,
+                        ggml_row_size(kv->type, n_embd_head_qk_nope + hparams.n_embd_head_v),
+                        ggml_row_size(kv->type, n_head * (n_embd_head_qk_nope + hparams.n_embd_head_v)),
+                        0);
+                cb(k_nope, "k_nope", il);
+
+                // and {n_head * n_embd_head_v, n_tokens}
+                struct ggml_tensor * v_states = ggml_view_3d(ctx0, kv, hparams.n_embd_head_v, n_head, n_tokens,
+                        ggml_row_size(kv->type, (n_embd_head_qk_nope + hparams.n_embd_head_v)),
+                        ggml_row_size(kv->type, (n_embd_head_qk_nope + hparams.n_embd_head_v)*n_head),
+                        ggml_row_size(kv->type, (n_embd_head_qk_nope)));
+                cb(v_states, "v_states", il);
+
+                v_states = ggml_cont(ctx0, v_states);
+                cb(v_states, "v_states", il);
+
+                v_states = ggml_view_2d(ctx0, v_states, hparams.n_embd_head_v * n_head, n_tokens,
+                    ggml_row_size(kv->type, hparams.n_embd_head_v * n_head),
+                    0);
+                cb(v_states, "v_states", il);
+
+                q_pe = ggml_cont(ctx0, q_pe); // TODO: the CUDA backend does not support non-contiguous RoPE
+                q_pe = ggml_rope_ext(
+                    ctx0, q_pe, inp_pos, nullptr,
+                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+                    ext_factor, attn_factor_scaled, beta_fast, beta_slow
+                );
+                cb(q_pe, "q_pe", il);
+
+                // shared RoPE key
+                k_pe = ggml_cont(ctx0, k_pe); // TODO: the CUDA backend does not support non-contiguous RoPE
+                k_pe = ggml_rope_ext(
+                    ctx0, k_pe, inp_pos, nullptr,
+                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+                    ext_factor, attn_factor_scaled, beta_fast, beta_slow
+                );
+                cb(k_pe, "k_pe", il);
+
+                struct ggml_tensor * q_states = ggml_concat(ctx0, q_nope, q_pe, 0);
+                cb(q_states, "q_states", il);
+
+                struct ggml_tensor * k_states = ggml_concat(ctx0, k_nope, ggml_repeat(ctx0, k_pe, q_pe), 0);
+                cb(k_states, "k_states", il);
+
+                cur = llm_build_kv(ctx0, lctx, kv_self, gf,
+                        model.layers[il].wo, NULL,
+                        k_states, v_states, q_states, KQ_mask, n_tokens, kv_head, n_kv, kq_scale, cb, il);
+            }
+
+            if (il == n_layer - 1) {
+                // skip computing output for unused tokens
+                struct ggml_tensor * inp_out_ids = build_inp_out_ids();
+                n_tokens = n_outputs;
+                cur   = ggml_get_rows(ctx0,   cur, inp_out_ids);
+                inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
+            }
+
+            struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
+            cb(ffn_inp, "ffn_inp", il);
+
+            cur = llm_build_norm(ctx0, ffn_inp, hparams,
+                    model.layers[il].ffn_norm, NULL,
+                    LLM_NORM_RMS, cb, il);
+            cb(cur, "ffn_norm", il);
+
+            if ((uint32_t) il < hparams.n_layer_dense_lead) {
+                cur = llm_build_ffn(ctx0, lctx, cur,
+                        model.layers[il].ffn_up,   NULL, NULL,
+                        model.layers[il].ffn_gate, NULL, NULL,
+                        model.layers[il].ffn_down, NULL, NULL,
+                        NULL,
+                        LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
+                cb(cur, "ffn_out", il);
+            } else {
+                // MoE branch
+                ggml_tensor * moe_out =
+                        llm_build_moe_ffn(ctx0, lctx, cur,
+                            model.layers[il].ffn_gate_inp,
+                            model.layers[il].ffn_up_exps,
+                            model.layers[il].ffn_gate_exps,
+                            model.layers[il].ffn_down_exps,
+                            n_expert, n_expert_used,
+                            LLM_FFN_SILU, false,
+                            true, hparams.expert_weights_scale,
+                            cb, il);
+                cb(moe_out, "ffn_moe_out", il);
+
+                // FFN shared expert
+                {
+                    ggml_tensor * ffn_shexp = llm_build_ffn(ctx0, lctx, cur,
+                            model.layers[il].ffn_up_shexp,   NULL, NULL,
+                            model.layers[il].ffn_gate_shexp, NULL, NULL,
+                            model.layers[il].ffn_down_shexp, NULL, NULL,
+                            NULL,
+                            LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
+                    cb(ffn_shexp, "ffn_shexp", il);
+
+                    cur = ggml_add(ctx0, moe_out, ffn_shexp);
+                    cb(cur, "ffn_out", il);
+                }
+            }
+
+            cur = ggml_add(ctx0, cur, ffn_inp);
+            cur = lctx.cvec.apply_to(ctx0, cur, il);
+            cb(cur, "l_out", il);
+
+            // input for next layer
+            inpL = cur;
+        }
+
+        cur = inpL;
+
+        cur = llm_build_norm(ctx0, cur, hparams,
+                model.output_norm, NULL,
+                LLM_NORM_RMS, cb, -1);
+        cb(cur, "result_norm", -1);
+
+        // lm_head
+        cur = ggml_mul_mat(ctx0, model.output, cur);
+        cb(cur, "result_output", -1);
+
+        ggml_build_forward_expand(gf, cur);
+
+        return gf;
+    }
+
+    struct ggml_cgraph * build_bitnet() {
+        struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
+
+        const int64_t n_embd_head = hparams.n_embd_head_v;
+        GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
+
+        struct ggml_tensor * cur;
+        struct ggml_tensor * inpL;
+
+        inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
+
+        // inp_pos - contains the positions
+        struct ggml_tensor * inp_pos = build_inp_pos();
+
+        // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
+        struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
+
+        for (int il = 0; il < n_layer; ++il) {
+            struct ggml_tensor * inpSA = inpL;
+
+            cur = llm_build_norm(ctx0, inpL, hparams,
+                    model.layers[il].attn_norm, NULL,
+                    LLM_NORM_RMS, cb, il);
+            cb(cur, "attn_norm", il);
+
+            // self-attention
+            {
+                // compute Q and K and RoPE them
+                struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
+                float q_scale; std::memcpy(&q_scale, model.layers[il].wq->op_params, sizeof(float));
+                // Note: we could save this scale operation by applying the Q scale on the K * Q product further down
+                // (which also uses a scale). This works on the CPU and Metal backends, but produces NaNs on CUDA.
+                Qcur = ggml_scale(ctx0, Qcur, q_scale);
+                cb(Qcur, "Qcur", il);
+                if (model.layers[il].bq) {
+                    Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
+                    cb(Qcur, "Qcur", il);
+                }
+
+                // B1.K
+                struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
+                float k_scale; std::memcpy(&k_scale, model.layers[il].wk->op_params, sizeof(float));
+                Kcur = ggml_scale(ctx0, Kcur, k_scale);
+                cb(Kcur, "Kcur", il);
+                if (model.layers[il].bk) {
+                    Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
+                    cb(Kcur, "Kcur", il);
+                }
+
+                // B1.V
+                struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
+                float v_scale; std::memcpy(&v_scale, model.layers[il].wv->op_params, sizeof(float));
+                cb(Vcur, "Vcur", il);
+                if (model.layers[il].bv) {
+                    Vcur = ggml_scale(ctx0, Vcur, v_scale);
+                    Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
+                    cb(Vcur, "Vcur", il);
+                    v_scale = 1;
+                }
+
+                Qcur = ggml_rope_ext(
+                    ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
+                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+                    ext_factor, attn_factor, beta_fast, beta_slow
+                );
+                cb(Qcur, "Qcur", il);
+
+                Kcur = ggml_rope_ext(
+                    ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
+                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+                    ext_factor, attn_factor, beta_fast, beta_slow
+                );
+                cb(Kcur, "Kcur", il);
+
+                llm_build_kv_store(ctx0, hparams, cparams, kv_self, gf, Kcur, Vcur, n_tokens, kv_head, cb, il);
+
+                const int64_t n_ctx                 = cparams.n_ctx;
+                const int64_t n_head                = hparams.n_head();
+                const int64_t n_head_kv             = hparams.n_head_kv();
+                const int64_t n_embd_head_k         = hparams.n_embd_head_k;
+                const int64_t n_embd_k_gqa          = hparams.n_embd_k_gqa();
+                const int64_t n_embd_head_v         = hparams.n_embd_head_v;
+                const int64_t n_embd_v_gqa          = hparams.n_embd_v_gqa();
+
+                float                      kq_scale = 1.0f/sqrtf(float(n_embd_head));
+                // We would use this if we did not apply the Q scale above. Sadly, this fails on CUDA.
+                //float                      kq_scale = q_scale/sqrtf(float(n_embd_head));
+                struct ggml_tensor *       cur_attn;
+                struct ggml_tensor *              q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
+                cb(q, "q", il);
+
+                struct ggml_tensor * k =
+                    ggml_view_3d(ctx0, kv_self.k_l[il],
+                            n_embd_head_k, n_kv, n_head_kv,
+                            ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa),
+                            ggml_row_size(kv_self.k_l[il]->type, n_embd_head_k),
+                            0);
+                cb(k, "k", il);
+
+                if (cparams.flash_attn) {
+
+                    // split cached v into n_head heads (not transposed)
+                    struct ggml_tensor * v =
+                        ggml_view_3d(ctx0, kv_self.v_l[il],
+                                n_embd_head_v, n_kv, n_head_kv,
+                                ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa),
+                                ggml_row_size(kv_self.v_l[il]->type, n_embd_head_v),
+                                0);
+                    cb(v, "v", il);
+
+                    cur_attn = ggml_flash_attn_ext(ctx0, q, k, v, KQ_mask, kq_scale, hparams.f_max_alibi_bias);
+
+                    cur_attn = ggml_reshape_2d(ctx0, cur, n_embd_head_v*n_head, n_tokens);
+                } else {
+                    struct ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
+                    cb(kq, "kq", il);
+
+                    kq = ggml_soft_max_ext(ctx0, kq, KQ_mask, kq_scale, hparams.f_max_alibi_bias);
+                    cb(kq, "kq_soft_max_ext", il);
+
+                    GGML_ASSERT(kv_self.size == n_ctx);
+
+                    // split cached v into n_head heads
+                    struct ggml_tensor * v =
+                        ggml_view_3d(ctx0, kv_self.v_l[il],
+                                n_kv, n_embd_head_v, n_head_kv,
+                                ggml_element_size(kv_self.v_l[il])*n_ctx,
+                                ggml_element_size(kv_self.v_l[il])*n_ctx*n_embd_head_v,
+                                0);
+                    cb(v, "v", il);
+
+                    struct ggml_tensor * kqv = ggml_mul_mat(ctx0, v, kq);
+                    cb(kqv, "kqv", il);
+
+                    struct ggml_tensor * kqv_merged = ggml_permute(ctx0, kqv, 0, 2, 1, 3);
+                    cb(kqv_merged, "kqv_merged", il);
+
+                    cur_attn = ggml_cont_2d(ctx0, kqv_merged, n_embd_head_v*n_head, n_tokens);
+                    cb(cur_attn, "kqv_merged_cont", il);
+                }
+
+                cur_attn = llm_build_norm(ctx0, cur_attn, hparams,
+                        model.layers[il].attn_sub_norm, NULL,
+                        LLM_NORM_RMS, cb, il, 1/(v_scale*v_scale));
+                cb(cur_attn, "attn_sub_norm", il);
+
+                ggml_build_forward_expand(gf, cur_attn);
+
+                cur = ggml_mul_mat(ctx0, model.layers[il].wo, cur_attn);
+                float wo_scale; std::memcpy(&wo_scale, model.layers[il].wo->op_params, sizeof(float));
+                cur = ggml_scale(ctx0, cur, wo_scale);
+
+                cb(cur, "kqv_out", il);
+            }
+
+            if (il == n_layer - 1) {
+                // skip computing output for unused tokens
+                struct ggml_tensor * inp_out_ids = build_inp_out_ids();
+                cur   = ggml_get_rows(ctx0,   cur, inp_out_ids);
+                inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
+            }
+
+            struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
+            cb(ffn_inp, "ffn_inp", il);
+
+            // feed-forward forward
+            if (model.layers[il].ffn_gate_inp == nullptr) {
+                cur = llm_build_norm(ctx0, ffn_inp, hparams,
+                        model.layers[il].ffn_norm, NULL,
+                        LLM_NORM_RMS, cb, il);
+                cb(cur, "ffn_norm", il);
+
+                struct ggml_tensor *tmp = ggml_mul_mat(ctx0, model.layers[il].ffn_up, cur);
+                float ffn_up_scale; std::memcpy(&ffn_up_scale, model.layers[il].ffn_up->op_params, sizeof(float));
+
+                cb(tmp, "ffn_up", il);
+
+                cur = ggml_mul_mat(ctx0, model.layers[il].ffn_gate, cur);
+                float ffn_gate_scale; std::memcpy(&ffn_gate_scale, model.layers[il].ffn_gate->op_params, sizeof(float));
+                cur = ggml_scale(ctx0, cur, ffn_gate_scale);
+
+                cb(cur, "ffn_gate", il);
+
+
+                // combine this with the above scale into ggml_scaled_silu
+                cur = ggml_silu(ctx0, cur);
+                cb(cur, "ffn_silu", il);
+
+                cur = ggml_mul(ctx0, cur, tmp);
+                cb(cur, "ffn_gate_par", il);
+
+                cur = llm_build_norm(ctx0, cur, hparams,
+                                model.layers[il].ffn_sub_norm, NULL,
+                                LLM_NORM_RMS, cb, il, 1/(ffn_up_scale*ffn_up_scale));
+                cb(cur, "ffn_sub_norm", il);
+
+                cur = ggml_mul_mat(ctx0, model.layers[il].ffn_down, cur);
+                float ffn_down_scale; std::memcpy(&ffn_down_scale, model.layers[il].ffn_down->op_params, sizeof(float));
+                cur = ggml_scale(ctx0, cur, ffn_down_scale);
+                cb(cur, "ffn_down", il);
+            }
+            cur = ggml_add(ctx0, cur, ffn_inp);
+            cb(cur, "l_out", il);
+
+            // input for next layer
+            inpL = cur;
+        }
+
+        cur = inpL;
+
+        cur = llm_build_norm(ctx0, cur, hparams,
+                model.output_norm, NULL,
+                LLM_NORM_RMS, cb, -1);
+        cb(cur, "result_norm", -1);
+
+        // lm_head
+        cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
+        cb(cur, "result_output", -1);
+
+        ggml_build_forward_expand(gf, cur);
+        return gf;
+    }
+
+    struct ggml_cgraph * build_t5() {
+        struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
+
+        // mutable variable, needed during the last layer of the computation to skip unused tokens
+        int32_t n_tokens = this->n_tokens;
+
+        const int64_t n_embd_head = hparams.n_embd_head_v;
+        const int64_t n_embd_gqa  = hparams.n_embd_v_gqa();
+        GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
+
+        struct ggml_tensor * cur;
+        struct ggml_tensor * inpL;
+
+        inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
+
+        if (lctx.is_encoding) {
+            struct ggml_tensor * pos_bucket_enc = llm_build_pos_bucket(false);
+
+            // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
+            struct ggml_tensor * KQ_mask_enc = build_inp_KQ_mask(false);
+
+            for (int il = 0; il < n_layer; ++il) {
+                struct ggml_tensor * inpSA = inpL;
+
+                // norm
+                cur = llm_build_norm(ctx0, inpL, hparams,
+                        model.layers[il].attn_norm_enc, NULL,
+                        LLM_NORM_RMS, cb, il);
+                cb(cur, "attn_norm", il);
+
+                // self-attention
+                {
+                    struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq_enc, cur);
+                    cb(Qcur, "Qcur", il);
+
+                    struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk_enc, cur);
+                    cb(Kcur, "Kcur", il);
+
+                    struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv_enc, cur);
+                    cb(Vcur, "Vcur", il);
+
+                    Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
+                    Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
+
+                    struct ggml_tensor * q =                 ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
+                    struct ggml_tensor * k = ggml_cont(ctx0, ggml_permute(ctx0, Kcur, 0, 2, 1, 3));
+
+                    struct ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
+                    cb(kq, "kq", il);
+
+                    struct ggml_tensor * attn_rel_b = model.layers[il].attn_rel_b_enc ? model.layers[il].attn_rel_b_enc : model.layers[0].attn_rel_b_enc;
+                    struct ggml_tensor * pos_bias = llm_build_pos_bias(pos_bucket_enc, attn_rel_b);
+                    struct ggml_tensor * kq_b = ggml_add(ctx0, kq, pos_bias);
+                    cb(kq_b, "kq_b", il);
+
+                    kq = ggml_soft_max_ext(ctx0, kq_b, KQ_mask_enc, 1.0f, hparams.f_max_alibi_bias);
+                    cb(kq, "kq_soft_max_ext", il);
+
+                    struct ggml_tensor * v = ggml_cont(ctx0, ggml_transpose(ctx0, ggml_reshape_2d(ctx0, Vcur, n_embd_gqa, n_tokens)));
+                    cb(v, "v", il);
+
+                    struct ggml_tensor * kqv = ggml_mul_mat(ctx0, ggml_reshape_3d(ctx0, v, n_tokens, n_embd_head, n_head_kv), kq);
+                    cb(kqv, "kqv", il);
+
+                    struct ggml_tensor * kqv_merged = ggml_permute(ctx0, kqv, 0, 2, 1, 3);
+                    cb(kqv_merged, "kqv_merged", il);
+
+                    cur = ggml_cont_2d(ctx0, kqv_merged, n_embd_gqa, n_tokens);
+                    cb(cur, "kqv_merged_cont", il);
+
+                    ggml_build_forward_expand(gf, cur);
+
+                    cur = ggml_mul_mat(ctx0, model.layers[il].wo_enc, cur);
+                    cb(cur, "kqv_out", il);
+                }
+
+                if (il == n_layer - 1) {
+                    // skip computing output for unused tokens
+                    struct ggml_tensor * inp_out_ids = build_inp_out_ids();
+                    n_tokens = n_outputs;
+                    cur   = ggml_get_rows(ctx0,   cur, inp_out_ids);
+                    inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
+                }
+
+                struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
+                cb(ffn_inp, "ffn_inp", il);
+
+                // feed-forward network
+                {
+                    cur = llm_build_norm(ctx0, ffn_inp, hparams,
+                            model.layers[il].ffn_norm_enc, NULL,
+                            LLM_NORM_RMS, cb, il);
+                    cb(cur, "ffn_norm", il);
+
+                    // T5 uses relu, flan-T5 uses gelu-gated
+                    cur = llm_build_ffn(ctx0, lctx, cur,
+                            model.layers[il].ffn_up_enc,   NULL, NULL,
+                            model.layers[il].ffn_gate_enc, NULL, NULL,
+                            model.layers[il].ffn_down_enc, NULL, NULL,
+                            NULL,
+                            model.layers[il].ffn_gate_enc ? LLM_FFN_GELU : LLM_FFN_RELU,
+                            model.layers[il].ffn_gate_enc ? LLM_FFN_PAR  : LLM_FFN_SEQ,
+                            cb, il);
+                    cb(cur, "ffn_out", il);
+                }
+
+                cur = ggml_add(ctx0, cur, ffn_inp);
+                cb(cur, "ffn_out", il);
+
+                ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
+                if (layer_dir != nullptr) {
+                    cur = ggml_add(ctx0, cur, layer_dir);
+                }
+                cb(cur, "l_out", il);
+
+                // input for next layer
+                inpL = cur;
+            }
+
+            cur = inpL;
+            cb(cur, "result_embd", -1);
+
+            cur = llm_build_norm(ctx0, cur, hparams,
+                    model.output_norm_enc, NULL,
+                    LLM_NORM_RMS, cb, -1);
+            cb(cur, "result_norm", -1);
+        } else {
+            GGML_ASSERT(n_outputs_enc > 0 && "call llama_encode() first");
+
+            struct ggml_tensor * embd_enc       = llm_build_inp_embd_enc();
+            struct ggml_tensor * pos_bucket_dec = llm_build_pos_bucket(true);
+
+            struct ggml_tensor * KQ_mask_dec   = build_inp_KQ_mask();
+            struct ggml_tensor * KQ_mask_cross = llm_build_inp_KQ_mask_cross();
+
+            for (int il = 0; il < n_layer; ++il) {
+                struct ggml_tensor * inpSA = inpL;
+
+                // norm
+                cur = llm_build_norm(ctx0, inpL, hparams,
+                        model.layers[il].attn_norm, NULL,
+                        LLM_NORM_RMS, cb, il);
+                cb(cur, "attn_norm", il);
+
+                // self-attention
+                {
+                    struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
+                    cb(Qcur, "Qcur", il);
+
+                    struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
+                    cb(Kcur, "Kcur", il);
+
+                    struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
+                    cb(Vcur, "Vcur", il);
+
+                    llm_build_kv_store(ctx0, hparams, cparams, kv_self, gf, Kcur, Vcur, n_tokens, kv_head, cb, il);
+
+                    struct ggml_tensor * k =
+                        ggml_view_3d(ctx0, kv_self.k_l[il],
+                                n_embd_head_k, n_kv, n_head_kv,
+                                ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa),
+                                ggml_row_size(kv_self.k_l[il]->type, n_embd_head_k),
+                                0);
+                    cb(k, "k", il);
+
+                    struct ggml_tensor * v =
+                        ggml_view_3d(ctx0, kv_self.v_l[il],
+                                n_kv, n_embd_head_v, n_head_kv,
+                                ggml_element_size(kv_self.v_l[il])*n_ctx,
+                                ggml_element_size(kv_self.v_l[il])*n_ctx*n_embd_head_v,
+                                0);
+                    cb(v, "v", il);
+
+                    Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
+
+                    struct ggml_tensor * q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
+
+                    struct ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
+                    cb(kq, "kq", il);
+
+                    struct ggml_tensor * attn_rel_b = model.layers[il].attn_rel_b ? model.layers[il].attn_rel_b : model.layers[0].attn_rel_b;
+                    struct ggml_tensor * pos_bias = llm_build_pos_bias(pos_bucket_dec, attn_rel_b);
+                    struct ggml_tensor * kq_b = ggml_add(ctx0, kq, pos_bias);
+                    cb(kq_b, "kq_b", il);
+
+                    kq = ggml_soft_max_ext(ctx0, kq_b, KQ_mask_dec, 1.0f, hparams.f_max_alibi_bias);
+                    cb(kq, "kq_soft_max_ext", il);
+
+                    struct ggml_tensor * kqv = ggml_mul_mat(ctx0, v, kq);
+                    cb(kqv, "kqv", il);
+
+                    struct ggml_tensor * kqv_merged = ggml_permute(ctx0, kqv, 0, 2, 1, 3);
+                    cb(kqv_merged, "kqv_merged", il);
+
+                    cur = ggml_cont_2d(ctx0, kqv_merged, n_embd_gqa, n_tokens);
+                    cb(cur, "kqv_merged_cont", il);
+
+                    ggml_build_forward_expand(gf, cur);
+
+                    cur = ggml_mul_mat(ctx0, model.layers[il].wo, cur);
+                    cb(cur, "kqv_out", il);
+                }
+
+                cur = ggml_add(ctx0, cur, inpSA);
+                cb(cur, "cross_inp", il);
+
+                struct ggml_tensor * inpCA = cur;
+
+                // norm
+                cur = llm_build_norm(ctx0, cur, hparams,
+                        model.layers[il].attn_norm_cross, NULL,
+                        LLM_NORM_RMS, cb, il);
+                cb(cur, "attn_norm_cross", il);
+
+                // cross-attention
+                {
+                    struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq_cross, cur);
+                    cb(Qcur, "Qcur", il);
+
+                    struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk_cross, embd_enc);
+                    cb(Kcur, "Kcur", il);
+
+                    struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv_cross, embd_enc);
+                    cb(Vcur, "Vcur", il);
+
+                    Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head,    n_tokens);
+                    Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_outputs_enc);
+
+                    struct ggml_tensor * q =                 ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
+                    struct ggml_tensor * k = ggml_cont(ctx0, ggml_permute(ctx0, Kcur, 0, 2, 1, 3));
+
+                    struct ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
+                    cb(kq, "kq", il);
+
+                    kq = ggml_soft_max_ext(ctx0, kq, KQ_mask_cross, 1.0f, hparams.f_max_alibi_bias);
+                    cb(kq, "kq_soft_max_ext", il);
+
+                    struct ggml_tensor * v = ggml_cont(ctx0, ggml_transpose(ctx0, ggml_reshape_2d(ctx0, Vcur, n_embd_gqa, n_outputs_enc)));
+                    cb(v, "v", il);
+
+                    struct ggml_tensor * kqv = ggml_mul_mat(ctx0, ggml_reshape_3d(ctx0, v, n_outputs_enc, n_embd_head, n_head_kv), kq);
+                    cb(kqv, "kqv", il);
+
+                    struct ggml_tensor * kqv_merged = ggml_permute(ctx0, kqv, 0, 2, 1, 3);
+                    cb(kqv_merged, "kqv_merged", il);
+
+                    cur = ggml_cont_2d(ctx0, kqv_merged, n_embd_gqa, n_tokens);
+                    cb(cur, "kqv_merged_cont", il);
+
+                    ggml_build_forward_expand(gf, cur);
+
+                    cur = ggml_mul_mat(ctx0, model.layers[il].wo_cross, cur);
+                    cb(cur, "kqv_out", il);
+                }
+
+                if (il == n_layer - 1) {
+                    // skip computing output for unused tokens
+                    struct ggml_tensor * inp_out_ids = build_inp_out_ids();
+                    n_tokens = n_outputs;
+                    cur   = ggml_get_rows(ctx0,   cur, inp_out_ids);
+                    inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
+                    inpCA = ggml_get_rows(ctx0, inpCA, inp_out_ids);
+                }
+
+                struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpCA);
+                cb(ffn_inp, "ffn_inp", il);
+
+                // feed-forward network
+                {
+                    cur = llm_build_norm(ctx0, ffn_inp, hparams,
+                            model.layers[il].ffn_norm, NULL,
+                            LLM_NORM_RMS, cb, il);
+                    cb(cur, "ffn_norm", il);
+
+                    // T5 uses relu, flan-T5 uses gelu-gated
+                    cur = llm_build_ffn(ctx0, lctx, cur,
+                            model.layers[il].ffn_up,   NULL, NULL,
+                            model.layers[il].ffn_gate, NULL, NULL,
+                            model.layers[il].ffn_down, NULL, NULL,
+                            NULL,
+                            model.layers[il].ffn_gate_enc ? LLM_FFN_GELU : LLM_FFN_RELU,
+                            model.layers[il].ffn_gate_enc ? LLM_FFN_PAR : LLM_FFN_SEQ,
+                            cb, il);
+                    cb(cur, "ffn_out", il);
+                }
+
+                cur = ggml_add(ctx0, cur, ffn_inp);
+                cb(cur, "ffn_out", il);
+
+                ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
+                if (layer_dir != nullptr) {
+                    cur = ggml_add(ctx0, cur, layer_dir);
+                }
+                cb(cur, "l_out", il);
+
+                // input for next layer
+                inpL = cur;
+            }
+
+            cur = inpL;
+            cb(cur, "result_embd", -1);
+
+            cur = llm_build_norm(ctx0, cur, hparams,
+                    model.output_norm, NULL,
+                    LLM_NORM_RMS, cb, -1);
+            cb(cur, "result_norm", -1);
+
+            // lm_head
+            cur = ggml_mul_mat(ctx0, model.output, cur);
+            cb(cur, "result_output", -1);
+        }
+
+        ggml_build_forward_expand(gf, cur);
+
+        return gf;
+    }
+
+    struct ggml_cgraph * build_jais() {
+        struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
+
+        const int64_t n_embd_head = hparams.n_embd_head_v;
+        const int64_t n_embd_gqa  = hparams.n_embd_v_gqa();
+        GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
+
+        struct ggml_tensor * cur;
+        struct ggml_tensor * inpL;
+
+        inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
+
+        // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
+        struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
+
+        for (int il = 0; il < n_layer; ++il) {
+            cur = llm_build_norm(ctx0, inpL, hparams,
+                    model.layers[il].attn_norm,
+                    model.layers[il].attn_norm_b,
+                    LLM_NORM, cb, il);
+            cb(cur, "attn_norm", il);
+
+            // self-attention
+            {
+                cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wqkv, cur);
+                cb(cur, "wqkv", il);
+
+                cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
+                cb(cur, "bqkv", il);
+
+                struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd,     n_tokens, cur->nb[1], 0*cur->nb[0]*(n_embd)));
+                struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*cur->nb[0]*(n_embd)));
+                struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*cur->nb[0]*(n_embd + n_embd_gqa)));
+
+                cb(Qcur, "Qcur", il);
+                cb(Kcur, "Kcur", il);
+                cb(Vcur, "Vcur", il);
+
+                Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
+
+                cur = llm_build_kv(ctx0, lctx, kv_self, gf,
+                        model.layers[il].wo, model.layers[il].bo,
+                        Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/float(n_embd_head), cb, il);
+            }
+
+            if (il == n_layer - 1) {
+                // skip computing output for unused tokens
+                struct ggml_tensor * inp_out_ids = build_inp_out_ids();
+                cur  = ggml_get_rows(ctx0,  cur, inp_out_ids);
+                inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
+            }
+
+            // add the input
+            struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
+            cb(ffn_inp, "ffn_inp", il);
+
+            // FF
+            {
+                cur = llm_build_norm(ctx0, ffn_inp, hparams,
+                        model.layers[il].ffn_norm,
+                        model.layers[il].ffn_norm_b,
+                        LLM_NORM, cb, il);
+                cb(cur, "ffn_norm", il);
+
+                cur = llm_build_ffn(ctx0, lctx, cur,
+                        model.layers[il].ffn_up,   model.layers[il].ffn_up_b,   NULL,
+                        model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
+                        model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
+                        NULL,
+                        LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
+                cb(cur, "ffn_out", il);
+            }
+
+            inpL = ggml_add(ctx0, cur, ffn_inp);
+            cb(inpL, "l_out", il);
+        }
+
+        cur = llm_build_norm(ctx0, inpL, hparams,
+                model.output_norm,
+                model.output_norm_b,
+                LLM_NORM, cb, -1);
+        cb(cur, "result_norm", -1);
+
+        cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
+
+        cb(cur, "result_output", -1);
+
+        ggml_build_forward_expand(gf, cur);
+
+        return gf;
+    }
+
+    struct ggml_cgraph * build_chatglm() {
+        struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
+
+        const int64_t n_embd_head = hparams.n_embd_head_v;
+        const int64_t n_embd_gqa  = hparams.n_embd_v_gqa();
+        GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
+
+        struct ggml_tensor * cur;
+        struct ggml_tensor * inpL;
+
+        inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
+
+        // inp_pos - contains the positions
+        struct ggml_tensor * inp_pos = build_inp_pos();
+
+        // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
+        struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
+
+        for (int il = 0; il < n_layer; ++il) {
+            struct ggml_tensor * inpSA = inpL;
+
+            cur = llm_build_norm(ctx0, inpL, hparams,
+                    model.layers[il].attn_norm,
+                    NULL,
+                    LLM_NORM_RMS, cb, il);
+            cb(cur, "attn_norm", il);
+
+            // self-attention
+            {
+                struct ggml_tensor * Qcur = nullptr;
+                struct ggml_tensor * Kcur = nullptr;
+                struct ggml_tensor * Vcur = nullptr;
+
+                cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wqkv, cur);
+                cb(cur, "wqkv", il);
+
+                cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
+                cb(cur, "bqkv", il);
+
+                Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd,     n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
+                Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
+                Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
+
+                cb(Qcur, "Qcur", il);
+                cb(Kcur, "Kcur", il);
+                cb(Vcur, "Vcur", il);
+                //printf("freq_base: %f freq_scale: %f ext_factor: %f attn_factor: %f\n", freq_base, freq_scale, ext_factor, attn_factor);
+                Qcur = ggml_rope_ext(
+                    ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
+                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+                    ext_factor, attn_factor, beta_fast, beta_slow
+                );
+                cb(Qcur, "Qcur_rope", il);
+
+                Kcur = ggml_rope_ext(
+                    ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
+                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+                    ext_factor, attn_factor, beta_fast, beta_slow
+                );
+                cb(Kcur, "Kcur_rope", il);
+
+                cur = llm_build_kv(ctx0, lctx, kv_self, gf,
+                        model.layers[il].wo, NULL,
+                        Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
+
+            }
+
+            if (il == n_layer - 1) {
+                // skip computing output for unused tokens
+                struct ggml_tensor * inp_out_ids = build_inp_out_ids();
+                cur   = ggml_get_rows(ctx0,   cur, inp_out_ids);
+                inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
+            }
+
+            // Add the input
+            struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
+            cb(ffn_inp, "ffn_inp", il);
+
+            // FF
+            {
+                cur = llm_build_norm(ctx0, ffn_inp, hparams,
+                        model.layers[il].ffn_norm,
+                        NULL,
+                        LLM_NORM_RMS, cb, il);
+                cb(cur, "ffn_norm", il);
+
+                cur = llm_build_ffn(ctx0, lctx, cur,
+                        model.layers[il].ffn_up,   NULL, NULL,
+                        NULL,                      NULL, NULL,
+                        model.layers[il].ffn_down, NULL, NULL,
+                        NULL,
+                        LLM_FFN_SWIGLU, LLM_FFN_SEQ, cb, il);
+                cb(cur, "ffn_out", il);
+
+            }
+
+            inpL = ggml_add(ctx0, cur, ffn_inp);
+            cb(inpL, "l_out", il);
+        }
+
+        cur = llm_build_norm(ctx0, inpL, hparams,
+                model.output_norm,
+                NULL,
+                LLM_NORM_RMS, cb, -1);
+        cb(cur, "result_norm", -1);
+
+        cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
+        cb(cur, "result_output", -1);
+
+        ggml_build_forward_expand(gf, cur);
+
+        return gf;
+    }
+};
+
+static struct ggml_cgraph * llama_build_graph_defrag(llama_context & lctx, const std::vector & ids) {
+    llama_batch dummy;
+    dummy.n_tokens = 0;
+
+    llm_build_cb cb = [&](struct ggml_tensor * , const char * , int ) { };
+
+    struct llm_build_context llm(lctx, dummy, cb, false);
+
+    llm.init();
+
+    struct ggml_cgraph * result = llm.build_defrag(ids);
+
+    llm.free();
+
+    return result;
+}
+
+static struct ggml_cgraph * llama_build_graph_k_shift(llama_context & lctx) {
+    llama_batch dummy;
+    dummy.n_tokens = 0;
+
+    llm_build_cb cb = [&](struct ggml_tensor * , const char * , int ) { };
+
+    struct llm_build_context llm(lctx, dummy, cb, false);
+
+    llm.init();
+
+    struct ggml_cgraph * result = llm.build_k_shift();
+
+    llm.free();
+
+    return result;
+}
+
+static struct ggml_cgraph * llama_build_graph_s_copy(llama_context & lctx) {
+    llama_batch dummy;
+    dummy.n_tokens = 0;
+
+    llm_build_cb cb = [&](struct ggml_tensor * , const char * , int ) { };
+
+    struct llm_build_context llm(lctx, dummy, cb, false);
+
+    llm.init();
+
+    struct ggml_cgraph * result = llm.build_s_copy();
+
+    llm.free();
+
+    return result;
+}
+
+static struct ggml_cgraph * llama_build_graph(
+         llama_context & lctx,
+     const llama_batch & batch,
+                  bool   worst_case) {
+    const auto & model = lctx.model;
+
+    // this callback allows us to apply custom logic to each tensor (e.g. ggml-alloc, offloading, etc.)
+    llm_build_cb cb = [&](struct ggml_tensor * cur, const char * name, int il) {
+        if (il >= 0) {
+            ggml_format_name(cur, "%s-%d", name, il);
+        } else {
+            ggml_set_name(cur, name);
+        }
+
+        if (!lctx.cparams.offload_kqv) {
+            if (strcmp(name, "kqv_merged_cont") == 0) {
+                // all nodes between the KV store and the attention output are run on the CPU
+                ggml_backend_sched_set_tensor_backend(lctx.sched, cur, lctx.backend_cpu);
+            }
+        }
+
+        // norm may be automatically assigned to the backend of the previous layer, increasing data transfer between backends
+        // FIXME: fix in ggml_backend_sched
+        const bool full_offload = lctx.model.n_gpu_layers > (int)lctx.model.hparams.n_layer;
+        if (batch.n_tokens < 32 || full_offload) {
+            if (il != -1 && strcmp(name, "norm") == 0) {
+                for (auto * backend : lctx.backends) {
+                    if (ggml_backend_supports_buft(backend, lctx.model.buft_layer[il].buft) &&
+                        (ggml_backend_supports_op(backend, cur) || ggml_backend_offload_op(backend, cur))) {
+                        ggml_backend_sched_set_tensor_backend(lctx.sched, cur, backend);
+                        break;
+                    }
+                }
+            }
+        }
+    };
+
+    struct ggml_cgraph * result = NULL;
+
+    struct llm_build_context llm(lctx, batch, cb, worst_case);
+
+    llm.init();
+
+    switch (model.arch) {
+        case LLM_ARCH_LLAMA:
+            {
+                result = llm.build_llama();
+            } break;
+        case LLM_ARCH_BAICHUAN:
+            {
+                result = llm.build_baichuan();
+            } break;
+        case LLM_ARCH_FALCON:
+            {
+                result = llm.build_falcon();
+            } break;
+        case LLM_ARCH_GROK:
+            {
+                result = llm.build_grok();
+            } break;
+        case LLM_ARCH_STARCODER:
+            {
+                result = llm.build_starcoder();
+            } break;
+        case LLM_ARCH_REFACT:
+            {
+                result = llm.build_refact();
+            } break;
+        case LLM_ARCH_BERT:
+        case LLM_ARCH_JINA_BERT_V2:
+        case LLM_ARCH_NOMIC_BERT:
+            {
+                result = llm.build_bert();
+            } break;
+        case LLM_ARCH_BLOOM:
+            {
+                result = llm.build_bloom();
+            } break;
+        case LLM_ARCH_MPT:
+            {
+                result = llm.build_mpt();
+            } break;
+         case LLM_ARCH_STABLELM:
+            {
+                result = llm.build_stablelm();
+            } break;
+        case LLM_ARCH_QWEN:
+            {
+                result = llm.build_qwen();
+            } break;
+        case LLM_ARCH_QWEN2:
+            {
+                result = llm.build_qwen2();
+            } break;
+        case LLM_ARCH_QWEN2MOE:
+            {
+                result = llm.build_qwen2moe();
+            } break;
+        case LLM_ARCH_PHI2:
+            {
+                result = llm.build_phi2();
+            } break;
+        case LLM_ARCH_PHI3:
+            {
+                result = llm.build_phi3();
+            } break;
+        case LLM_ARCH_PLAMO:
+            {
+                result = llm.build_plamo();
+            } break;
+        case LLM_ARCH_GPT2:
+            {
+                result = llm.build_gpt2();
+            } break;
+        case LLM_ARCH_CODESHELL:
+            {
+                result = llm.build_codeshell();
+            } break;
+        case LLM_ARCH_ORION:
+            {
+                result = llm.build_orion();
+            } break;
+        case LLM_ARCH_INTERNLM2:
+            {
+                result = llm.build_internlm2();
+            } break;
+        case LLM_ARCH_MINICPM:
+            {
+                result = llm.build_minicpm();
+            } break;
+        case LLM_ARCH_GEMMA:
+            {
+                result = llm.build_gemma();
+            } break;
+        case LLM_ARCH_GEMMA2:
+            {
+                result = llm.build_gemma2();
+            } break;
+        case LLM_ARCH_STARCODER2:
+            {
+                result = llm.build_starcoder2();
+            } break;
+        case LLM_ARCH_MAMBA:
+            {
+                result = llm.build_mamba();
+            } break;
+        case LLM_ARCH_XVERSE:
+            {
+                result = llm.build_xverse();
+            } break;
+        case LLM_ARCH_COMMAND_R:
+            {
+                result = llm.build_command_r();
+            } break;
+        case LLM_ARCH_DBRX:
+            {
+                result = llm.build_dbrx();
+            } break;
+        case LLM_ARCH_OLMO:
+            {
+                result = llm.build_olmo();
+            } break;
+        case LLM_ARCH_OPENELM:
+            {
+                result = llm.build_openelm();
+            } break;
+        case LLM_ARCH_GPTNEOX:
+            {
+                result = llm.build_gptneox();
+            } break;
+        case LLM_ARCH_ARCTIC:
+            {
+                result = llm.build_arctic();
+            } break;
+        case LLM_ARCH_DEEPSEEK2:
+            {
+                result = llm.build_deepseek2();
+            } break;
+        case LLM_ARCH_CHATGLM:
+            {
+                result = llm.build_chatglm();
+            } break;
+        case LLM_ARCH_BITNET:
+            {
+                result = llm.build_bitnet();
+            } break;
+        case LLM_ARCH_T5:
+            {
+                result = llm.build_t5();
+            } break;
+        case LLM_ARCH_JAIS:
+            {
+                result = llm.build_jais();
+            } break;
+        default:
+            GGML_ASSERT(false);
+    }
+
+    // add on pooling layer
+    if (lctx.cparams.embeddings) {
+        result = llm.append_pooling(result);
+    }
+
+    llm.free();
+
+    return result;
+}
+
+static void llama_set_k_shift(llama_context & lctx) {
+    const int64_t kv_size = lctx.kv_self.size;
+
+    assert(ggml_backend_buffer_is_host(lctx.inp_K_shift->buffer));
+
+    int32_t * data = (int32_t *) lctx.inp_K_shift->data;
+
+    for (int i = 0; i < kv_size; ++i) {
+        data[i] = lctx.kv_self.cells[i].delta;
+    }
+}
+
+static void llama_set_s_copy(llama_context & lctx) {
+    const int64_t kv_size = lctx.kv_self.size;
+
+    assert(ggml_backend_buffer_is_host(lctx.inp_s_copy->buffer));
+
+    int32_t * data = (int32_t *) lctx.inp_s_copy->data;
+
+    for (int i = 0; i < kv_size; ++i) {
+        data[i] = lctx.kv_self.cells[i].src;
+    }
+}
+
+static int32_t llama_relative_position_bucket(llama_pos x, llama_pos y, uint64_t n_buckets, bool bidirectional) {
+    // TODO move to hparams if a T5 variant appears that uses a different value
+    const int64_t max_distance = 128;
+
+    if (bidirectional) {
+        n_buckets >>= 1;
+    }
+
+    const int64_t max_exact = n_buckets >> 1;
+
+    int32_t relative_position = x - y;
+    int32_t relative_bucket = 0;
+    if (bidirectional) {
+        relative_bucket += (relative_position > 0) * n_buckets;
+        relative_position = abs(relative_position);
+    } else {
+        relative_position = -std::min(relative_position, 0);
+    }
+    int32_t relative_position_if_large = floorf(max_exact + logf(1.0 * relative_position / max_exact) * (n_buckets - max_exact) / log(1.0 * max_distance / max_exact));
+    relative_position_if_large = std::min(relative_position_if_large, n_buckets - 1);
+    relative_bucket += (relative_position < max_exact ? relative_position : relative_position_if_large);
+    return relative_bucket;
+}
+
+static void llama_set_inputs(llama_context & lctx, const llama_batch & batch) {
+    //
+    // set input data
+    //
+
+    const auto & hparams = lctx.model.hparams;
+    const auto & cparams = lctx.cparams;
+    const auto & kv_self = lctx.kv_self;
+
+    if (batch.token) {
+        const int64_t n_tokens = batch.n_tokens;
+
+        ggml_backend_tensor_set(lctx.inp_tokens, batch.token, 0, n_tokens*ggml_element_size(lctx.inp_tokens));
+    }
+
+    if (batch.embd) {
+        const int64_t n_embd   = hparams.n_embd;
+        const int64_t n_tokens = batch.n_tokens;
+
+        ggml_backend_tensor_set(lctx.inp_embd, batch.embd, 0, n_tokens*n_embd*ggml_element_size(lctx.inp_embd));
+    }
+
+    if (batch.pos && lctx.inp_pos) {
+        const int64_t n_tokens = batch.n_tokens;
+
+        ggml_backend_tensor_set(lctx.inp_pos, batch.pos, 0, n_tokens*ggml_element_size(lctx.inp_pos));
+    }
+
+    if (hparams.causal_attn || cparams.pooling_type == LLAMA_POOLING_TYPE_NONE) {
+        GGML_ASSERT(lctx.inp_out_ids && "every model that can must skip unused outputs");
+        const int64_t n_tokens = batch.n_tokens;
+
+        GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_out_ids->buffer));
+        int32_t * data = (int32_t *) lctx.inp_out_ids->data;
+
+        if (lctx.n_outputs == n_tokens) {
+            for (int i = 0; i < n_tokens; ++i) {
+                data[i] = i;
+            }
+        } else if (batch.logits) {
+            int32_t n_outputs = 0;
+            for (int i = 0; i < n_tokens; ++i) {
+                if (batch.logits[i]) {
+                    data[n_outputs++] = i;
+                }
+            }
+            // the graph needs to have been passed the correct number of outputs
+            GGML_ASSERT(lctx.n_outputs == n_outputs);
+        } else if (lctx.n_outputs == 1) {
+            // only keep last output
+            data[0] = n_tokens - 1;
+        } else {
+            GGML_ASSERT(lctx.n_outputs == 0);
+        }
+    }
+
+    GGML_ASSERT(
+        // (!a || b) is a logical implication (a -> b)
+        // !hparams.causal_attn -> !cparams.causal_attn
+        (hparams.causal_attn || !cparams.causal_attn) &&
+        "causal attention is not supported by this model"
+    );
+
+    if (lctx.inp_KQ_mask || lctx.inp_KQ_mask_swa) {
+        // NOTE: hparams.causal_attn indicates the model is capable of generation and uses the kv cache.
+        if (cparams.causal_attn && !lctx.is_encoding) {
+            const int64_t n_kv     = kv_self.n;
+            const int64_t n_tokens = batch.n_tokens;
+
+
+            float * data     = nullptr;
+            float * data_swa = nullptr;
+
+            if (lctx.inp_KQ_mask) {
+                GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_KQ_mask->buffer));
+                data = (float *) lctx.inp_KQ_mask->data;
+            }
+
+            if (lctx.inp_KQ_mask_swa) {
+                GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_KQ_mask_swa->buffer));
+                data_swa = (float *) lctx.inp_KQ_mask_swa->data;
+            }
+
+            // For causal attention, use only the previous KV cells
+            // of the correct sequence for each token of the batch.
+            // It's assumed that if a token in the batch has multiple sequences, they are equivalent.
+            for (int h = 0; h < 1; ++h) {
+                for (int j = 0; j < n_tokens; ++j) {
+                    const llama_pos    pos    = batch.pos[j];
+                    const llama_seq_id seq_id = batch.seq_id[j][0];
+
+                    for (int i = 0; i < n_kv; ++i) {
+                        float f;
+                        if (!lctx.kv_self.cells[i].has_seq_id(seq_id) || lctx.kv_self.cells[i].pos > pos) {
+                            f = -INFINITY;
+                        } else {
+                            if (hparams.use_alibi) {
+                                f = -std::abs(lctx.kv_self.cells[i].pos - pos);
+                            } else {
+                                f = 0.0f;
+                            }
+                        }
+
+                        if (data) {
+                            data[h*(n_kv*n_tokens) + j*n_kv + i] = f;
+                        }
+
+                        // may need to cut off old tokens for sliding window
+                        if (data_swa) {
+                            if (pos - lctx.kv_self.cells[i].pos >= (int32_t)hparams.n_swa) {
+                                f = -INFINITY;
+                            }
+                            data_swa[h*(n_kv*n_tokens) + j*n_kv + i] = f;
+                        }
+                    }
+                }
+
+                if (data) {
+                    for (int i = n_tokens; i < GGML_PAD(n_tokens, GGML_KQ_MASK_PAD); ++i) {
+                        for (int j = 0; j < n_kv; ++j) {
+                            data[h*(n_kv*n_tokens) + i*n_kv + j] = -INFINITY;
+                        }
+                    }
+                }
+
+                if (data_swa) {
+                    for (int i = n_tokens; i < GGML_PAD(n_tokens, GGML_KQ_MASK_PAD); ++i) {
+                        for (int j = 0; j < n_kv; ++j) {
+                            data_swa[h*(n_kv*n_tokens) + i*n_kv + j] = -INFINITY;
+                        }
+                    }
+                }
+            }
+        } else {
+            // when using kv cache, the mask needs to match the kv cache size
+            const int64_t n_tokens = batch.n_tokens;
+            const int64_t n_stride = hparams.causal_attn && !lctx.is_encoding ? kv_self.n : n_tokens;
+
+            GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_KQ_mask->buffer));
+
+            float * data = (float *) lctx.inp_KQ_mask->data;
+
+            for (int h = 0; h < 1; ++h) {
+                for (int j = 0; j < n_tokens; ++j) {
+                    const llama_seq_id seq_id = batch.seq_id[j][0];
+
+                    for (int i = 0; i < n_tokens; ++i) {
+                        float f = -INFINITY;
+                        for (int s = 0; s < batch.n_seq_id[i]; ++s) {
+                            if (batch.seq_id[i][s] == seq_id) {
+                                if (hparams.use_alibi) {
+                                    f = -std::abs(batch.pos[i] - batch.pos[j]);
+                                } else {
+                                    f = 0.0f;
+                                }
+                                break;
+                            }
+                        }
+
+                        data[h*(n_tokens*n_tokens) + j*n_stride + i] = f;
+                    }
+
+                    for (int i = n_tokens; i < n_stride; ++i) {
+                        data[h*(n_tokens*n_tokens) + j*n_stride + i] = -INFINITY;
+                    }
+                }
+            }
+        }
+    }
+
+    if (cparams.embeddings && cparams.pooling_type == LLAMA_POOLING_TYPE_MEAN) {
+        const int64_t n_tokens = batch.n_tokens;
+
+        GGML_ASSERT(lctx.inp_mean);
+        GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_mean->buffer));
+
+        float * data = (float *) lctx.inp_mean->data;
+        memset(lctx.inp_mean->data, 0, n_tokens * n_tokens * ggml_element_size(lctx.inp_mean));
+
+        std::vector sum(n_tokens, 0);
+        for (int i = 0; i < n_tokens; ++i) {
+            const llama_seq_id seq_id = batch.seq_id[i][0];
+
+            GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == MEAN");
+
+            sum[seq_id] += 1;
+        }
+
+        std::vector div(n_tokens, 0.0f);
+        for (int i = 0; i < n_tokens; ++i) {
+            const uint64_t s = sum[i];
+            if (s > 0) {
+                div[i] = 1.0f/float(s);
+            }
+        }
+
+        for (int i = 0; i < n_tokens; ++i) {
+            const llama_seq_id seq_id = batch.seq_id[i][0];
+            data[seq_id*n_tokens + i] = div[seq_id];
+        }
+    }
+
+    if (cparams.embeddings && cparams.pooling_type == LLAMA_POOLING_TYPE_CLS) {
+        const int64_t n_tokens = batch.n_tokens;
+
+        GGML_ASSERT(lctx.inp_cls);
+        GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_cls->buffer));
+
+        uint32_t * data = (uint32_t *) lctx.inp_cls->data;
+        memset(lctx.inp_cls->data, 0, n_tokens * ggml_element_size(lctx.inp_cls));
+
+        for (int i = 0; i < n_tokens; ++i) {
+            const llama_seq_id seq_id = batch.seq_id[i][0];
+            const llama_pos    pos    = batch.pos[i];
+
+            GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == CLS");
+
+            if (pos == 0) {
+                data[seq_id] = i;
+            }
+        }
+    }
+
+    if (cparams.embeddings && cparams.pooling_type == LLAMA_POOLING_TYPE_LAST) {
+        const int64_t n_tokens = batch.n_tokens;
+
+        GGML_ASSERT(lctx.inp_cls);
+        GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_cls->buffer));
+
+        uint32_t * data = (uint32_t *) lctx.inp_cls->data;
+        memset(lctx.inp_cls->data, 0, n_tokens * ggml_element_size(lctx.inp_cls));
+
+        std::vector last_pos(n_tokens, -1);
+        std::vector last_row(n_tokens, -1);
+
+        for (int i = 0; i < n_tokens; ++i) {
+            const llama_seq_id seq_id = batch.seq_id[i][0];
+            const llama_pos    pos    = batch.pos[i];
+
+            GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == LAST");
+
+            if (pos >= last_pos[seq_id]) {
+                last_pos[seq_id] = pos;
+                last_row[seq_id] = i;
+            }
+        }
+
+        for (int i = 0; i < n_tokens; ++i) {
+            if (last_row[i] >= 0) {
+                data[i] = last_row[i];
+            }
+        }
+    }
+
+    if (kv_self.recurrent) {
+        const int64_t n_kv = kv_self.n;
+
+        if (lctx.inp_s_mask) {
+            GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_s_mask->buffer));
+            float * data = (float *) lctx.inp_s_mask->data;
+
+            // states which are not affected by the current batch are left untouched
+            for (int i = 0; i < n_kv; ++i) {
+                llama_seq_id    seq_id       = i + lctx.kv_self.head;
+                llama_kv_cell & kv_cell      = lctx.kv_self.cells[seq_id];
+                bool            has_self_seq = kv_cell.has_seq_id(seq_id);
+
+                data[i] = (float) has_self_seq;
+
+                // ensure current sequences will be kept
+                if (!has_self_seq && kv_cell.pos >= 0) {
+                    kv_cell.seq_id.insert(seq_id);
+                }
+            }
+        }
+        // For Mamba (and other recurrent architectures),
+        // update the correct state(s)/sequence(s) for each token of the batch.
+        // Like with the KQ_mask, if a token in the batch has multiple sequences,
+        // they are assumed to be equivalent (not here, but in ggml_ssm_scan and ggml_ssm_conv).
+        if (lctx.inp_s_seq) {
+            const int64_t n_tokens = batch.n_tokens;
+
+            GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_s_seq->buffer));
+            int32_t * data = (int32_t *) lctx.inp_s_seq->data;
+
+            for (int j = 0; j < n_tokens; ++j) {
+                const int32_t n_seq = batch.n_seq_id[j];
+                GGML_ASSERT(0 < n_seq); // a token should be part of at least 1 sequence
+
+                for (int i = 0; i < n_kv; ++i) {
+                    if (i < n_seq) {
+                        // for this type of model, the head is the minimum seq_id of the batch
+                        data[j*n_kv + i] = batch.seq_id[j][i] - kv_self.head;
+                    } else {
+                        data[j*n_kv + i] = -1;
+                    }
+                }
+            }
+        }
+    }
+
+    if (lctx.inp_pos_bucket) {
+        const int64_t n_tokens = batch.n_tokens;
+
+        GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_pos_bucket->buffer));
+
+        int32_t * data = (int32_t *) lctx.inp_pos_bucket->data;
+
+        if (!lctx.is_encoding) {
+            const int64_t n_kv = kv_self.n;
+            for (int h = 0; h < 1; ++h) {
+                for (int j = 0; j < n_tokens; ++j) {
+                    for (int i = 0; i < n_kv; ++i) {
+                        data[h*(n_kv*n_tokens) + j*n_kv + i] = llama_relative_position_bucket(lctx.kv_self.cells[i].pos, batch.pos[j], hparams.n_rel_attn_bkts, lctx.is_encoding);
+                    }
+                }
+            }
+        } else {
+            for (int h = 0; h < 1; ++h) {
+                for (int j = 0; j < n_tokens; ++j) {
+                    for (int i = 0; i < n_tokens; ++i) {
+                        data[h*(n_tokens*n_tokens) + j*n_tokens + i] = llama_relative_position_bucket(batch.pos[i], batch.pos[j], hparams.n_rel_attn_bkts, lctx.is_encoding);
+                    }
+                }
+            }
+        }
+    }
+
+    if (!lctx.is_encoding && lctx.inp_embd_enc) {
+        assert(lctx.inp_embd_enc->type == GGML_TYPE_F32);
+        assert((size_t) ggml_nelements(lctx.inp_embd_enc) == lctx.embd_enc.size());
+
+        ggml_backend_tensor_set(lctx.inp_embd_enc, lctx.embd_enc.data(), 0, ggml_nbytes(lctx.inp_embd_enc));
+    }
+
+    if (!lctx.is_encoding && lctx.inp_KQ_mask_cross) {
+        const int64_t n_output_enc = lctx.embd_enc.size() / hparams.n_embd;
+        const int64_t n_tokens = batch.n_tokens;
+
+        GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_KQ_mask_cross->buffer));
+
+        float * data = (float *) lctx.inp_KQ_mask_cross->data;
+
+        for (int h = 0; h < 1; ++h) {
+            for (int j = 0; j < n_tokens; ++j) {
+                for (int i = 0; i < n_output_enc; ++i) {
+                    float f = -INFINITY;
+                    for (int s = 0; s < batch.n_seq_id[j]; ++s) {
+                        const llama_seq_id seq_id = batch.seq_id[j][s];
+                        if (lctx.seq_ids_enc[i].find(seq_id) != lctx.seq_ids_enc[i].end()) {
+                            f = 0.0f;
+                        }
+                    }
+                    data[h*(n_output_enc*n_tokens) + j*n_output_enc + i] = f;
+                }
+            }
+
+            for (int i = n_tokens; i < GGML_PAD(n_tokens, GGML_KQ_MASK_PAD); ++i) {
+                for (int j = 0; j < n_output_enc; ++j) {
+                    data[h*(n_output_enc*n_tokens) + i*n_output_enc + j] = -INFINITY;
+                }
+            }
+        }
+    }
+}
+
+// Make sure enough space is available for outputs.
+// Returns max number of outputs for which space was reserved.
+static size_t llama_output_reserve(llama_context & lctx, size_t n_outputs) {
+    const auto & cparams = lctx.cparams;
+    const auto & hparams = lctx.model.hparams;
+
+    const size_t n_outputs_max = std::max(n_outputs, (size_t) cparams.n_seq_max);
+
+    const auto n_batch = cparams.n_batch;
+    const auto n_vocab = hparams.n_vocab;
+    const auto n_embd  = hparams.n_embd;
+
+    // TODO: use a per-batch flag for logits presence instead
+    const bool has_logits = !cparams.embeddings;
+    const bool has_embd   =  lctx.is_encoding || (cparams.embeddings && (cparams.pooling_type == LLAMA_POOLING_TYPE_NONE));
+
+    const size_t logits_size = has_logits ? n_vocab*n_outputs_max : 0;
+    const size_t embd_size   = has_embd   ?  n_embd*n_outputs_max : 0;
+
+    if (lctx.output_ids.empty()) {
+        // init, never resized afterwards
+        lctx.output_ids.resize(n_batch);
+    }
+
+    const size_t prev_size = lctx.buf_output ? ggml_backend_buffer_get_size(lctx.buf_output) : 0;
+    const size_t new_size  = (logits_size + embd_size) * sizeof(float);
+
+    // alloc only when more than the current capacity is required
+    // TODO: also consider shrinking the buffer
+    if (!lctx.buf_output || prev_size < new_size) {
+        if (lctx.buf_output) {
+#ifndef NDEBUG
+            // This doesn't happen often, but may be annoying in some cases (like the HellaSwag benchmark)
+            LLAMA_LOG_INFO("%s: reallocating output buffer from size %.02f MiB to %.02f MiB\n", __func__, prev_size / 1024.0 / 1024.0, new_size / 1024.0 / 1024.0);
+#endif
+            ggml_backend_buffer_free(lctx.buf_output);
+            lctx.buf_output = nullptr;
+            lctx.logits = nullptr;
+            lctx.embd = nullptr;
+        }
+
+        lctx.buf_output = ggml_backend_buft_alloc_buffer(llama_default_buffer_type_cpu(true), new_size);
+        if (lctx.buf_output == nullptr) {
+            LLAMA_LOG_ERROR("%s: failed to allocate output buffer of size %.2f MiB\n", __func__, new_size / (1024.0 * 1024.0));
+            return 0;
+        }
+    }
+
+    float * output_base = (float *) ggml_backend_buffer_get_base(lctx.buf_output);
+
+    lctx.logits = has_logits ? output_base               : nullptr;
+    lctx.embd   = has_embd   ? output_base + logits_size : nullptr;
+
+    lctx.output_size = n_outputs_max;
+    lctx.logits_size = logits_size;
+    lctx.embd_size   = embd_size;
+
+    // set all ids as invalid (negative)
+    std::fill(lctx.output_ids.begin(), lctx.output_ids.end(), -1);
+
+    ggml_backend_buffer_clear(lctx.buf_output, 0);
+
+    lctx.n_outputs = 0;
+
+    return n_outputs_max;
+}
+
+
+static void llama_graph_compute(
+        llama_context & lctx,
+          ggml_cgraph * gf,
+                  int   n_threads) {
+#ifdef GGML_USE_METAL
+    if (ggml_backend_is_metal(lctx.backend_metal)) {
+        ggml_backend_metal_set_n_cb(lctx.backend_metal, n_threads);
+    }
+#endif
+
+    if (lctx.backend_cpu != nullptr) {
+        ggml_backend_cpu_set_n_threads(lctx.backend_cpu, n_threads);
+        ggml_backend_cpu_set_abort_callback(lctx.backend_cpu, lctx.abort_callback, lctx.abort_callback_data);
+    }
+#ifdef GGML_USE_BLAS
+    if (lctx.backend_blas != nullptr) {
+        ggml_backend_blas_set_n_threads(lctx.backend_blas, n_threads);
+    }
+#endif
+
+    ggml_backend_sched_graph_compute_async(lctx.sched, gf);
+
+    // fprintf(stderr, "splits: %d\n", ggml_backend_sched_get_n_splits(lctx.sched));
+}
+
+// decode a batch of tokens by evaluating the transformer
+//
+//   - lctx:      llama context
+//   - batch:     batch to evaluate
+//
+// return 0 on success
+// return positive int on warning
+// return negative int on error
+//
+static int llama_decode_internal(
+         llama_context & lctx,
+           llama_batch   batch_all) { // TODO: rename back to batch
+
+    lctx.is_encoding = false;
+    const uint32_t n_tokens_all = batch_all.n_tokens;
+
+    if (n_tokens_all == 0) {
+        LLAMA_LOG_ERROR("%s: n_tokens == 0", __func__);
+        return -1;
+    }
+
+    const auto & model   = lctx.model;
+    const auto & hparams = model.hparams;
+    const auto & cparams = lctx.cparams;
+
+    GGML_ASSERT((!batch_all.token && batch_all.embd) || (batch_all.token && !batch_all.embd)); // NOLINT
+
+    GGML_ASSERT(n_tokens_all <= cparams.n_batch);
+
+    GGML_ASSERT((cparams.causal_attn || cparams.n_ubatch >= n_tokens_all) && "non-causal attention requires n_ubatch >= n_tokens");
+
+    if (lctx.t_compute_start_us == 0) {
+        lctx.t_compute_start_us = ggml_time_us();
+    }
+    lctx.n_queued_tokens += n_tokens_all;
+
+    auto & kv_self = lctx.kv_self;
+
+    const int64_t n_embd  = hparams.n_embd;
+    const int64_t n_vocab = hparams.n_vocab;
+
+    uint32_t n_outputs = 0;
+    uint32_t n_outputs_prev = 0;
+
+    const auto n_ubatch = cparams.n_ubatch;
+
+    // TODO: simplify or deprecate
+    std::vector pos;
+    std::vector                   n_seq_id;
+    std::vector            seq_id_arr;
+    std::vector> seq_id;
+
+    // this indicates we are doing pooled embedding, so we ignore batch.logits and output all tokens
+    const bool embd_pooled = cparams.embeddings && cparams.pooling_type != LLAMA_POOLING_TYPE_NONE;
+
+    // count outputs
+    if (batch_all.logits && !embd_pooled) {
+        for (uint32_t i = 0; i < n_tokens_all; ++i) {
+            n_outputs += batch_all.logits[i] != 0;
+        }
+    } else if (lctx.logits_all || embd_pooled) {
+        n_outputs = n_tokens_all;
+    } else {
+        // keep last output only
+        n_outputs = 1;
+    }
+
+    // reserve output buffer
+    if (llama_output_reserve(lctx, n_outputs) < n_outputs) {
+        LLAMA_LOG_ERROR("%s: could not reserve space for batch with %u outputs\n", __func__, n_outputs);
+        return -2;
+    };
+
+    // set output mappings
+    if (batch_all.logits) {
+        int32_t i_logits = 0;
+        for (uint32_t i = 0; i < n_tokens_all; ++i) {
+            if (batch_all.logits[i]) {
+                lctx.output_ids[i] = i_logits++;
+            }
+        }
+    } else {
+        for (uint32_t i = 0; i < n_outputs; ++i) {
+            lctx.output_ids[i] = i;
+        }
+    }
+
+    for (uint32_t cur_token = 0; cur_token < n_tokens_all; cur_token += n_ubatch) {
+        const uint32_t n_tokens = std::min(n_ubatch, n_tokens_all - cur_token);
+        llama_batch u_batch = {
+            /* .n_tokens   = */ (int32_t) n_tokens,
+            /* .token      = */ batch_all.token     ? batch_all.token    + cur_token        : nullptr,
+            /* .embd       = */ batch_all.embd      ? batch_all.embd     + cur_token*n_embd : nullptr,
+            /* .pos        = */ batch_all.pos       ? batch_all.pos      + cur_token        : nullptr,
+            /* .n_seq_id   = */ batch_all.n_seq_id  ? batch_all.n_seq_id + cur_token        : nullptr,
+            /* .seq_id     = */ batch_all.seq_id    ? batch_all.seq_id   + cur_token        : nullptr,
+            /* .logits     = */ batch_all.logits    ? batch_all.logits   + cur_token        : nullptr,
+            /* .all_pos_0  = */ batch_all.all_pos_0 + (llama_pos) cur_token*batch_all.all_pos_1,
+            /* .all_pos_1  = */ batch_all.all_pos_1,
+            /* .all_seq_id = */ batch_all.all_seq_id,
+        };
+
+        // count the outputs in this u_batch
+        {
+            int32_t n_outputs_new = 0;
+
+            if (u_batch.logits && !embd_pooled) {
+                for (uint32_t i = 0; i < n_tokens; i++) {
+                    n_outputs_new += u_batch.logits[i] != 0;
+                }
+            } else if (n_outputs == n_tokens_all) {
+                n_outputs_new = n_tokens;
+            } else {
+                // keep last output only
+                if (cur_token + n_tokens >= n_tokens_all) {
+                    n_outputs_new = 1;
+                }
+            }
+
+            // needs to happen before the graph is built
+            lctx.n_outputs = n_outputs_new;
+        }
+
+        int n_threads = n_tokens == 1 ? cparams.n_threads : cparams.n_threads_batch;
+        GGML_ASSERT(n_threads > 0);
+
+        // helpers for smoother batch API transition
+        // after deprecating the llama_eval calls, these will be removed
+        if (u_batch.pos == nullptr) {
+            pos.resize(n_tokens);
+            for (uint32_t i = 0; i < n_tokens; i++) {
+                pos[i] = u_batch.all_pos_0 + i*u_batch.all_pos_1;
+            }
+
+            u_batch.pos = pos.data();
+        }
+
+        if (u_batch.seq_id == nullptr) {
+            n_seq_id.resize(n_tokens);
+            seq_id.resize(n_tokens);
+            seq_id_arr.resize(n_tokens);
+            for (uint32_t i = 0; i < n_tokens; i++) {
+                n_seq_id[i] = 1;
+                seq_id[i].resize(1);
+                seq_id[i][0] = u_batch.all_seq_id;
+                seq_id_arr[i] = seq_id[i].data();
+            }
+
+            u_batch.n_seq_id = n_seq_id.data();
+            u_batch.seq_id = seq_id_arr.data();
+        }
+
+        // non-causal masks do not use the KV cache
+        if (hparams.causal_attn) {
+            llama_kv_cache_update(&lctx);
+
+            // if we have enough unused cells before the current head ->
+            //   better to start searching from the beginning of the cache, hoping to fill it
+            if (kv_self.head > kv_self.used + 2*n_tokens) {
+                kv_self.head = 0;
+            }
+
+            if (!llama_kv_cache_find_slot(kv_self, u_batch)) {
+                return 1;
+            }
+
+            if (!kv_self.recurrent) {
+                // a heuristic, to avoid attending the full cache if it is not yet utilized
+                // after enough generations, the benefit from this heuristic disappears
+                // if we start defragmenting the cache, the benefit from this will be more important
+                const uint32_t pad = llama_kv_cache_get_padding(cparams);
+                kv_self.n = std::min(kv_self.size, std::max(pad, GGML_PAD(llama_kv_cache_cell_max(kv_self), pad)));
+                //kv_self.n = llama_kv_cache_cell_max(kv_self);
+            }
+        }
+
+        //printf("kv_self.n = %5d, kv_self.used = %5d, kv_self.head = %5d\n", kv_self.n, kv_self.used, kv_self.head);
+
+        ggml_backend_sched_reset(lctx.sched);
+        ggml_backend_sched_set_eval_callback(lctx.sched, lctx.cparams.cb_eval, lctx.cparams.cb_eval_user_data);
+
+        ggml_cgraph * gf = llama_build_graph(lctx, u_batch, false);
+
+        // the output is always the last tensor in the graph
+        struct ggml_tensor * res  = gf->nodes[gf->n_nodes - 1];
+        struct ggml_tensor * embd = gf->nodes[gf->n_nodes - 2];
+
+        if (lctx.n_outputs == 0) {
+            // no output
+            res  = nullptr;
+            embd = nullptr;
+        } else if (cparams.embeddings) {
+            res = nullptr; // do not extract logits for embedding case
+            embd = gf->nodes[gf->n_nodes - 1];
+            if (strcmp(embd->name, "result_embd_pooled") != 0) {
+                embd = gf->nodes[gf->n_nodes - 2];
+            }
+            GGML_ASSERT(strcmp(embd->name, "result_embd_pooled") == 0 && "missing embeddings tensor");
+        } else {
+            embd = nullptr; // do not extract embeddings when not needed
+            GGML_ASSERT(strcmp(res->name, "result_output") == 0 && "missing result_output tensor");
+        }
+        // LLAMA_LOG_INFO("graph build time: %.3f ms (%d nodes, %d leafs)\n", (ggml_time_us() - t_start_us)/1000.0, gf->n_nodes, gf->n_leafs);
+
+        ggml_backend_sched_alloc_graph(lctx.sched, gf);
+
+        llama_set_inputs(lctx, u_batch);
+
+        llama_graph_compute(lctx, gf, n_threads);
+
+        // update the kv ring buffer
+        {
+            kv_self.head += n_tokens;
+
+            // Ensure kv cache head points to a valid index.
+            if (kv_self.head >= kv_self.size) {
+                kv_self.head = 0;
+            }
+        }
+
+        // plot the computation graph in dot format (for debugging purposes)
+        //if (n_past%100 == 0) {
+        //    ggml_graph_dump_dot(gf, NULL, "llama.dot");
+        //}
+
+        // extract logits
+        if (res) {
+            ggml_backend_t backend_res = ggml_backend_sched_get_tensor_backend(lctx.sched, res);
+            GGML_ASSERT(backend_res != nullptr);
+            GGML_ASSERT(lctx.logits != nullptr);
+
+            float * logits_out = lctx.logits + n_outputs_prev*n_vocab;
+            const int32_t n_outputs_new = lctx.n_outputs;
+
+            if (n_outputs_new) {
+                GGML_ASSERT( n_outputs_prev + n_outputs_new <= n_outputs);
+                GGML_ASSERT((n_outputs_prev + n_outputs_new)*n_vocab <= (int64_t) lctx.logits_size);
+                ggml_backend_tensor_get_async(backend_res, res, logits_out, 0, n_outputs_new*n_vocab*sizeof(float));
+            }
+        }
+
+        // extract embeddings
+        if (embd) {
+            ggml_backend_t backend_embd = ggml_backend_sched_get_tensor_backend(lctx.sched, embd);
+            GGML_ASSERT(backend_embd != nullptr);
+
+            switch (cparams.pooling_type) {
+                case LLAMA_POOLING_TYPE_NONE:
+                    {
+                        // extract token embeddings
+                        GGML_ASSERT(lctx.embd != nullptr);
+                        float * embd_out = lctx.embd + n_outputs_prev*n_embd;
+                        const int32_t n_outputs_new = lctx.n_outputs;
+
+                        if (n_outputs_new) {
+                            GGML_ASSERT( n_outputs_prev + n_outputs_new <= n_outputs);
+                            GGML_ASSERT((n_outputs_prev + n_outputs_new)*n_embd <= (int64_t) lctx.embd_size);
+                            ggml_backend_tensor_get_async(backend_embd, embd, embd_out, 0, n_outputs_new*n_embd*sizeof(float));
+                        }
+                    } break;
+                case LLAMA_POOLING_TYPE_MEAN:
+                case LLAMA_POOLING_TYPE_CLS:
+                case LLAMA_POOLING_TYPE_LAST:
+                    {
+                        // extract sequence embeddings
+                        auto & embd_seq_out = lctx.embd_seq;
+                        embd_seq_out.clear();
+
+                        for (uint32_t i = 0; i < n_tokens; i++) {
+                            const llama_seq_id seq_id = u_batch.seq_id[i][0];
+                            if (embd_seq_out.find(seq_id) != embd_seq_out.end()) {
+                                continue;
+                            }
+                            embd_seq_out[seq_id].resize(n_embd);
+                            ggml_backend_tensor_get_async(backend_embd, embd, embd_seq_out[seq_id].data(), (n_embd*seq_id)*sizeof(float), n_embd*sizeof(float));
+                        }
+                    } break;
+                case LLAMA_POOLING_TYPE_UNSPECIFIED:
+                    {
+                        GGML_ASSERT(false && "unknown pooling type");
+                    } break;
+            }
+        }
+        n_outputs_prev += lctx.n_outputs;
+    }
+
+    // set to total number of outputs in the batch, for use in llama_get_logits_ith
+    lctx.n_outputs = n_outputs;
+
+    // wait for the computation to finish (automatically done when obtaining the model output)
+    //llama_synchronize(&lctx);
+
+    // decide if we need to defrag the kv cache
+    if (cparams.causal_attn && cparams.defrag_thold >= 0.0f) {
+        const float fragmentation = kv_self.n >= 128 ? 1.0f - float(kv_self.used)/float(kv_self.n) : 0.0f;
+
+        // queue defragmentation for next llama_kv_cache_update
+        if (fragmentation > cparams.defrag_thold) {
+            //LLAMA_LOG_INFO("fragmentation: %.2f\n", fragmentation);
+
+            llama_kv_cache_defrag(kv_self);
+        }
+    }
+
+    // Reset state for the next token before backend sync, to allow the CPU activities in the reset to
+    // overlap with device computation.
+    ggml_backend_sched_reset(lctx.sched);
+
+    return 0;
+}
+
+// encode a batch of tokens by evaluating the encoder part of the transformer
+//
+//   - lctx:      llama context
+//   - batch:     batch to evaluate
+//
+// return 0 on success
+// return positive int on warning
+// return negative int on error
+//
+static int llama_encode_internal(
+         llama_context & lctx,
+           llama_batch   batch) {
+
+    lctx.is_encoding = true;
+
+    const uint32_t n_tokens = batch.n_tokens;
+
+    if (n_tokens == 0) {
+        LLAMA_LOG_ERROR("%s: n_tokens == 0", __func__);
+        return -1;
+    }
+
+    const auto & model   = lctx.model;
+    const auto & hparams = model.hparams;
+    const auto & cparams = lctx.cparams;
+
+    GGML_ASSERT((!batch.token && batch.embd) || (batch.token && !batch.embd)); // NOLINT
+
+    // micro-batching is not possible for non-causal encoding, so we process the batch in a single shot
+    GGML_ASSERT(cparams.n_ubatch >= n_tokens && "encoder requires n_ubatch >= n_tokens");
+
+    if (lctx.t_compute_start_us == 0) {
+        lctx.t_compute_start_us = ggml_time_us();
+    }
+
+    lctx.n_queued_tokens += n_tokens;
+
+    const int64_t n_embd = hparams.n_embd;
+
+    // TODO: simplify or deprecate
+    std::vector pos;
+    std::vector                   n_seq_id;
+    std::vector            seq_id_arr;
+    std::vector> seq_id;
+
+    // reserve output buffer
+    if (llama_output_reserve(lctx, n_tokens) < n_tokens) {
+        LLAMA_LOG_ERROR("%s: could not reserve space for batch with %u outputs\n", __func__, n_tokens);
+        return -2;
+    };
+
+    for (uint32_t i = 0; i < n_tokens; ++i) {
+        lctx.output_ids[i] = i;
+    }
+
+    lctx.inp_embd_enc = NULL;
+    lctx.n_outputs = n_tokens;
+
+    const int n_threads = n_tokens == 1 ? cparams.n_threads : cparams.n_threads_batch;
+    GGML_ASSERT(n_threads > 0);
+
+    // helpers for smoother batch API transition
+    // after deprecating the llama_eval calls, these will be removed
+    if (batch.pos == nullptr) {
+        pos.resize(n_tokens);
+        for (uint32_t i = 0; i < n_tokens; i++) {
+            pos[i] = batch.all_pos_0 + i*batch.all_pos_1;
+        }
+
+        batch.pos = pos.data();
+    }
+
+    if (batch.seq_id == nullptr) {
+        n_seq_id.resize(n_tokens);
+        seq_id.resize(n_tokens);
+        seq_id_arr.resize(n_tokens);
+        for (uint32_t i = 0; i < n_tokens; i++) {
+            n_seq_id[i] = 1;
+            seq_id[i].resize(1);
+            seq_id[i][0] = batch.all_seq_id;
+            seq_id_arr[i] = seq_id[i].data();
+        }
+
+        batch.n_seq_id = n_seq_id.data();
+        batch.seq_id = seq_id_arr.data();
+    }
+
+    ggml_backend_sched_reset(lctx.sched);
+    ggml_backend_sched_set_eval_callback(lctx.sched, lctx.cparams.cb_eval, lctx.cparams.cb_eval_user_data);
+
+    ggml_cgraph * gf = llama_build_graph(lctx, batch, false);
+
+    // the output embeddings after the final encoder normalization
+    struct ggml_tensor * embd = gf->nodes[gf->n_nodes - 1];
+
+    GGML_ASSERT(strcmp(embd->name, "result_norm") == 0);
+
+    ggml_backend_sched_alloc_graph(lctx.sched, gf);
+
+    llama_set_inputs(lctx, batch);
+
+    llama_graph_compute(lctx, gf, n_threads);
+
+    // extract embeddings
+    if (embd) {
+        ggml_backend_t backend_embd = ggml_backend_sched_get_tensor_backend(lctx.sched, embd);
+        GGML_ASSERT(backend_embd != nullptr);
+
+        // extract token embeddings
+        GGML_ASSERT(lctx.embd != nullptr);
+
+        lctx.embd_enc.resize(n_tokens*n_embd);
+        float * embd_out = lctx.embd_enc.data();
+
+        ggml_backend_tensor_get_async(backend_embd, embd, embd_out, 0, n_tokens*n_embd*sizeof(float));
+
+        // remember the sequence ids used during the encoding - needed for cross attention later
+        lctx.seq_ids_enc.resize(n_tokens);
+        for (uint32_t i = 0; i < n_tokens; i++) {
+            for (int s = 0; s < batch.n_seq_id[i]; s++) {
+                llama_seq_id seq_id = batch.seq_id[i][s];
+                lctx.seq_ids_enc[i].insert(seq_id);
+            }
+        }
+    }
+
+    // Reset state for the next token before backend sync, to allow the CPU activities in the reset to
+    // overlap with device computation.
+    ggml_backend_sched_reset(lctx.sched);
+
+    return 0;
+}
+
+// find holes from the beginning of the KV cache and fill them by moving data from the end of the cache
+static void llama_kv_cache_defrag_internal(struct llama_context & lctx) {
+    auto & kv_self = lctx.kv_self;
+
+    const auto & hparams = lctx.model.hparams;
+
+    const uint32_t n_layer = hparams.n_layer;
+
+    const uint32_t n_kv   = llama_kv_cache_cell_max(kv_self);
+    const uint32_t n_used = kv_self.used;
+
+    assert(n_used <= n_kv);
+
+    //const int64_t t_start = ggml_time_us();
+
+    // number of cells moved
+    uint32_t n_moves = 0;
+
+    // each move requires 6*n_layer tensors (see build_defrag)
+    //   - source view, destination view, copy operation
+    //   - x2 for keys and values
+    //const uint32_t max_moves = LLAMA_MAX_NODES/(6*n_layer);
+    // TODO: tmp fix https://github.com/ggerganov/llama.cpp/issues/6685#issuecomment-2057579516
+    const uint32_t max_moves = (LLAMA_MAX_NODES - 2*n_layer)/(6*n_layer);
+
+    // determine which KV cells to move where
+    //
+    //  cell i moves to ids[i]
+    //
+    //  if ids[i] == i || ids[i] == n_kv, then cell i is not moved
+    //
+    std::vector ids(n_kv, n_kv);
+
+    for (uint32_t i0 = 0; i0 < n_used; ++i0) {
+        const auto & cell0 = kv_self.cells[i0];
+
+        if (!cell0.is_empty()) {
+            ids[i0] = i0;
+
+            continue;
+        }
+
+        // found a hole - fill it with data from the end of the cache
+
+        uint32_t nh = 1;
+
+        // determine the size of the hole
+        while (i0 + nh < n_used && kv_self.cells[i0 + nh].is_empty()) {
+            nh++;
+        }
+
+        uint32_t nf = 0;
+        uint32_t is = n_kv - 1;
+
+        // starting from the end, find nh non-empty cells
+        for (; is > i0; --is) {
+            const auto & cell1 = kv_self.cells[is];
+
+            if (cell1.is_empty() || ids[is] != n_kv) {
+                continue;
+            }
+
+            // non-empty cell which is not yet moved
+            nf++;
+
+            if (nf == nh) {
+                break;
+            }
+        }
+
+        // this can only happen if `n_used` is not accurate, which would be a bug
+        GGML_ASSERT(nf == nh && "KV defrag bug: nf != nh");
+
+        nf = 0;
+
+        uint32_t i1 = is;
+
+        // are we moving a continuous block of memory?
+        bool cont = false;
+
+        // should we stop searching for the next move?
+        bool stop = false;
+
+        // go back and move the nf cells to the hole
+        for (; i1 < n_kv; ++i1) {
+            auto & cell1 = kv_self.cells[i1];
+
+            if (cell1.is_empty() || ids[i1] != n_kv) {
+                if (n_moves == max_moves) {
+                    stop = true;
+                    break;
+                }
+
+                cont = false;
+                continue;
+            }
+
+            // this cell goes to (i0 + nf)
+            ids[i1] = i0 + nf;
+
+            // move the cell meta data
+            kv_self.cells[i0 + nf] = cell1;
+
+            // clear the old cell and move the head there
+            cell1 = llama_kv_cell();
+            kv_self.head = n_used;
+
+            if (!cont) {
+                n_moves++;
+                cont = true;
+            }
+
+            nf++;
+
+            if (nf == nh) {
+                break;
+            }
+        }
+
+        if (stop || n_moves == max_moves) {
+            break;
+        }
+
+        //LLAMA_LOG_INFO("(tmp log) KV defrag: move [%u, %u) to [%u, %u)\n", is, i1 + 1, i0, i0 + nh);
+
+        i0 += nh - 1;
+    }
+
+    if (n_moves == 0) {
+        return;
+    }
+
+    //LLAMA_LOG_INFO("(tmp log) KV defrag cell moves: %u\n", n_moves);
+
+    //LLAMA_LOG_INFO("expected gf nodes: %u\n", 6*n_moves*n_layer);
+
+#if 0
+    // CPU defrag
+    //
+    // TODO: optimizations are possible:
+    //       - multiple threads
+    //       - avoid copying to the host memory when already there
+    //
+    // likely not worth the effort, as we have ggml_graph based defrag
+    //
+
+    const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa();
+    const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa();
+
+    const uint32_t kv_size = kv_self.size;
+
+    std::vector buf_k;
+    std::vector buf_v;
+
+    for (uint32_t il = 0; il < n_layer; ++il) {
+        const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa);
+        const size_t k_size     = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*kv_size);
+
+        const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type);
+        const size_t v_size    = ggml_row_size (kv_self.v_l[il]->type, n_embd_v_gqa*kv_size);
+
+        buf_k.resize(k_size);
+        buf_v.resize(v_size);
+
+        ggml_backend_tensor_get(kv_self.k_l[il], buf_k.data(), 0, buf_k.size());
+        ggml_backend_tensor_get(kv_self.v_l[il], buf_v.data(), 0, buf_v.size());
+
+        // batch move [i, i+nm) to [id, id+nm)
+        // note: cells can move only to a lower index
+        for (uint32_t i = 0; i < n_kv; ++i) {
+            const uint32_t id = ids[i];
+
+            if (i == id || id == n_kv) {
+                continue;
+            }
+
+            uint32_t nm = 1;
+
+            while (i + nm < n_kv && ids[i + nm] == id + nm) {
+                nm++;
+            }
+
+            // move keys
+            {
+                const int64_t os =  i*k_size_row;
+                const int64_t od = id*k_size_row;
+
+                memcpy(buf_k.data() + od, buf_k.data() + os, nm*k_size_row);
+            }
+
+            // move values (note: they are transposed)
+            {
+                const int64_t os =  i;
+                const int64_t od = id;
+
+                for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
+                    memcpy(buf_v.data() + (od + j*kv_size)*v_size_el, buf_v.data() + (os + j*kv_size)*v_size_el, nm*v_size_el);
+                }
+            }
+
+            i += nm - 1;
+        }
+
+        ggml_backend_tensor_set(kv_self.k_l[il], buf_k.data(), 0, buf_k.size());
+        ggml_backend_tensor_set(kv_self.v_l[il], buf_v.data(), 0, buf_v.size());
+    }
+#else
+    // ggml_graph defrag
+
+    ggml_backend_sched_reset(lctx.sched);
+
+    ggml_cgraph * gf = llama_build_graph_defrag(lctx, ids);
+
+    llama_graph_compute(lctx, gf, lctx.cparams.n_threads);
+#endif
+
+    //const int64_t t_end = ggml_time_us();
+
+    //LLAMA_LOG_INFO("(tmp log) KV defrag time: %.3f ms\n", (t_end - t_start)/1000.0);
+}
+
+static void llama_kv_cache_update_internal(struct llama_context & lctx) {
+    bool need_reserve = false;
+
+    // apply K-shift if needed
+    if (lctx.model.hparams.rope_type != LLAMA_ROPE_TYPE_NONE && lctx.kv_self.has_shift) {
+        if (lctx.model.arch == LLM_ARCH_DEEPSEEK2) { // not supported due to MLA
+            GGML_ASSERT(false && "Deepseek2 does not support K-shift");
+        }
+
+        {
+            ggml_backend_sched_reset(lctx.sched);
+
+            ggml_cgraph * gf = llama_build_graph_k_shift(lctx);
+
+            ggml_backend_sched_alloc_graph(lctx.sched, gf);
+
+            llama_set_k_shift(lctx);
+
+            llama_graph_compute(lctx, gf, lctx.cparams.n_threads);
+
+            need_reserve = true;
+        }
+
+        {
+            auto & kv_self = lctx.kv_self;
+
+            kv_self.has_shift = false;
+
+            for (uint32_t i = 0; i < kv_self.size; ++i) {
+                kv_self.cells[i].delta = 0;
+            }
+        }
+    }
+
+    if (lctx.kv_self.recurrent && lctx.kv_self.do_copy) {
+        {
+            ggml_backend_sched_reset(lctx.sched);
+
+            ggml_cgraph * gf = llama_build_graph_s_copy(lctx);
+
+            ggml_backend_sched_alloc_graph(lctx.sched, gf);
+
+            llama_set_s_copy(lctx);
+
+            llama_graph_compute(lctx, gf, lctx.cparams.n_threads);
+
+            need_reserve = true;
+        }
+
+        {
+            auto & kv_self = lctx.kv_self;
+
+            kv_self.do_copy = false;
+
+            for (uint32_t i = 0; i < kv_self.size; ++i) {
+                kv_self.cells[i].src = i;
+            }
+        }
+    }
+
+    // defragment the KV cache if needed
+    if (lctx.kv_self.do_defrag) {
+        llama_kv_cache_defrag_internal(lctx);
+
+        need_reserve = true;
+
+        lctx.kv_self.do_defrag = false;
+    }
+
+    // reserve a worst case graph again
+    if (need_reserve) {
+        // TODO: extract to a function
+        // build worst-case graph
+        int n_tokens = (int)std::min(lctx.cparams.n_ctx, lctx.cparams.n_ubatch);
+        int n_past = lctx.cparams.n_ctx - n_tokens;
+        llama_token token = llama_token_bos(&lctx.model); // not actually used by llama_build_graph, but required to choose between token and embedding inputs graph
+        ggml_cgraph * gf = llama_build_graph(lctx, llama_batch_get_one(&token, n_tokens, n_past, 0), true);
+
+        // initialize scheduler with the worst-case graph
+        ggml_backend_sched_reset(lctx.sched);
+        if (!ggml_backend_sched_reserve(lctx.sched, gf)) {
+            LLAMA_LOG_ERROR("%s: failed to allocate compute buffers\n", __func__);
+        }
+    }
+}
+
+//
+// quantization
+//
+
+struct quantize_state_internal {
+    const llama_model                 & model;
+    const llama_model_quantize_params * params;
+
+    int n_attention_wv    = 0;
+    int n_ffn_down        = 0;
+    int n_ffn_gate        = 0;
+    int n_ffn_up          = 0;
+    int i_attention_wv    = 0;
+    int i_ffn_down        = 0;
+    int i_ffn_gate        = 0;
+    int i_ffn_up          = 0;
+
+    int n_k_quantized     = 0;
+    int n_fallback        = 0;
+
+    bool has_imatrix      = false;
+
+    // used to figure out if a model shares tok_embd with the output weight
+    bool has_output       = false;
+
+    quantize_state_internal(const llama_model & model, const llama_model_quantize_params * params)
+        : model(model)
+        , params(params)
+        {}
+};
+
+static void llama_tensor_dequantize_internal(
+    struct ggml_tensor * tensor, std::vector> & output, std::vector & workers,
+    const size_t nelements, const int nthread
+) {
+    if (output.size() < nelements) {
+        output.resize(nelements);
+    }
+    float * f32_output = (float *) output.data();
+
+    ggml_type_traits_t qtype;
+    if (ggml_is_quantized(tensor->type)) {
+        qtype = ggml_internal_get_type_traits(tensor->type);
+        if (qtype.to_float == NULL) {
+            throw std::runtime_error(format("type %s unsupported for integer quantization: no dequantization available", ggml_type_name(tensor->type)));
+        }
+    } else if (tensor->type != GGML_TYPE_F16 &&
+               tensor->type != GGML_TYPE_BF16) {
+        throw std::runtime_error(format("cannot dequantize/convert tensor type %s", ggml_type_name(tensor->type)));
+    }
+
+    if (nthread < 2) {
+        if (tensor->type == GGML_TYPE_F16) {
+            ggml_fp16_to_fp32_row((ggml_fp16_t *)tensor->data, f32_output, nelements);
+        } else if (tensor->type == GGML_TYPE_BF16) {
+            ggml_bf16_to_fp32_row((ggml_bf16_t *)tensor->data, f32_output, nelements);
+        } else if (ggml_is_quantized(tensor->type)) {
+            qtype.to_float(tensor->data, f32_output, nelements);
+        } else {
+            GGML_ASSERT(false); // unreachable
+        }
+        return;
+    }
+
+    size_t block_size;
+    if (tensor->type == GGML_TYPE_F16 ||
+        tensor->type == GGML_TYPE_BF16) {
+        block_size = 1;
+    } else {
+        block_size = (size_t)ggml_blck_size(tensor->type);
+    }
+
+    size_t block_size_bytes = ggml_type_size(tensor->type);
+
+    GGML_ASSERT(nelements % block_size == 0);
+    size_t nblocks = nelements / block_size;
+    size_t blocks_per_thread = nblocks / nthread;
+    size_t spare_blocks = nblocks - (blocks_per_thread * nthread); // if blocks aren't divisible by thread count
+
+    size_t in_buff_offs = 0;
+    size_t out_buff_offs = 0;
+
+    for (int tnum = 0; tnum < nthread; tnum++) {
+        size_t thr_blocks = blocks_per_thread + (tnum == nthread - 1 ? spare_blocks : 0); // num blocks for this thread
+        size_t thr_elems = thr_blocks * block_size; // number of elements for this thread
+        size_t thr_block_bytes = thr_blocks * block_size_bytes; // number of input bytes for this thread
+
+        auto compute = [qtype] (ggml_type typ, uint8_t * inbuf, float * outbuf, int nels) {
+            if (typ == GGML_TYPE_F16) {
+                ggml_fp16_to_fp32_row((ggml_fp16_t *)inbuf, outbuf, nels);
+            } else if (typ == GGML_TYPE_BF16) {
+                ggml_bf16_to_fp32_row((ggml_bf16_t *)inbuf, outbuf, nels);
+            } else {
+                qtype.to_float(inbuf, outbuf, nels);
+            }
+        };
+        workers.emplace_back(compute, tensor->type, (uint8_t *) tensor->data + in_buff_offs, f32_output + out_buff_offs, thr_elems);
+        in_buff_offs += thr_block_bytes;
+        out_buff_offs += thr_elems;
+    }
+    for (auto & w : workers) { w.join(); }
+    workers.clear();
+}
+
+static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type new_type, const ggml_tensor * tensor, llama_ftype ftype) {
+    const std::string name = ggml_get_name(tensor);
+
+    // TODO: avoid hardcoded tensor names - use the TN_* constants
+    const llm_arch arch = qs.model.arch;
+    const auto       tn = LLM_TN(arch);
+
+    auto use_more_bits = [](int i_layer, int n_layers) -> bool {
+        return i_layer < n_layers/8 || i_layer >= 7*n_layers/8 || (i_layer - n_layers/8)%3 == 2;
+    };
+    const int n_expert = std::max(1, (int)qs.model.hparams.n_expert);
+    auto layer_info = [n_expert] (int i_layer, int n_layer, const char * name) {
+        if (n_expert > 1) {
+            // Believe it or not, "experts" in the FFN of Mixtral-8x7B are not consecutive, but iccasionally randomly
+            // sprinkled in the model. Hence, simply dividing i_ffn_down by n_expert does not work
+            // for getting the current layer as I initially thought, and we need to resort to parsing the
+            // tensor name.
+            if (sscanf(name, "blk.%d.", &i_layer) != 1) {
+                throw std::runtime_error(format("Failed to determine layer for tensor %s", name));
+            }
+            if (i_layer < 0 || i_layer >= n_layer) {
+                throw std::runtime_error(format("Bad layer %d for tensor %s. Must be in [0, %d)", i_layer, name, n_layer));
+            }
+        }
+        return std::make_pair(i_layer, n_layer);
+    };
+
+    // for arches that share the same tensor between the token embeddings and the output, we quantize the token embeddings
+    // with the quantization of the output tensor
+    if (name == tn(LLM_TENSOR_OUTPUT, "weight") || (!qs.has_output && name == tn(LLM_TENSOR_TOKEN_EMBD, "weight"))) {
+        if (qs.params->output_tensor_type < GGML_TYPE_COUNT) {
+            new_type = qs.params->output_tensor_type;
+        } else {
+            int nx = tensor->ne[0];
+            if (arch == LLM_ARCH_FALCON || nx % QK_K != 0) {
+                new_type = GGML_TYPE_Q8_0;
+            }
+            else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS ||
+                     ftype == LLAMA_FTYPE_MOSTLY_IQ1_S   || ftype == LLAMA_FTYPE_MOSTLY_IQ2_S  || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M   ||
+                     ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) {
+                new_type = GGML_TYPE_Q5_K;
+            }
+            else if (new_type != GGML_TYPE_Q8_0) {
+                new_type = GGML_TYPE_Q6_K;
+            }
+        }
+    } else if (name == "token_embd.weight") {
+        if (qs.params->token_embedding_type < GGML_TYPE_COUNT) {
+            new_type = qs.params->token_embedding_type;
+        } else {
+            if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS ||
+                ftype == LLAMA_FTYPE_MOSTLY_IQ1_S   || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) {
+                new_type = GGML_TYPE_Q2_K;
+            }
+            else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M) {
+                new_type = GGML_TYPE_IQ3_S;
+            }
+            else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
+                new_type = GGML_TYPE_IQ3_S;
+            }
+            else if (ftype == LLAMA_FTYPE_MOSTLY_IQ1_BN || ftype == LLAMA_FTYPE_MOSTLY_IQ2_BN) {
+                new_type = GGML_TYPE_IQ4_NL;
+            }
+            else if (new_type == GGML_TYPE_Q4_0_4_4 || new_type == GGML_TYPE_Q4_0_4_8 ||
+                     new_type == GGML_TYPE_Q4_0_8_8) {
+                new_type = GGML_TYPE_Q4_0;
+            }
+        }
+    } else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ1_S ||
+               ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M    || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) {
+        if (name.find("attn_v.weight") != std::string::npos) {
+            if (qs.model.hparams.n_gqa() >= 4 || qs.model.hparams.n_expert >= 4) new_type = GGML_TYPE_Q4_K;
+            else new_type = ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K;
+            ++qs.i_attention_wv;
+        }
+        else if (qs.model.hparams.n_expert == 8 && name.find("attn_k.weight") != std::string::npos) {
+            new_type = GGML_TYPE_Q4_K;
+        }
+        else if (name.find("ffn_down") != std::string::npos) {
+            if (qs.i_ffn_down < qs.n_ffn_down/8) {
+                new_type = ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K;
+            }
+            ++qs.i_ffn_down;
+        }
+        else if (name.find("attn_output.weight") != std::string::npos) {
+            if (qs.model.hparams.n_expert == 8) {
+                new_type = GGML_TYPE_Q5_K;
+            } else {
+                if (ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) new_type = GGML_TYPE_IQ2_XXS;
+                else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M) new_type = GGML_TYPE_IQ3_S;
+            }
+        }
+    } else if (name.find("attn_v.weight") != std::string::npos) {
+        if      (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) {
+            new_type = qs.model.hparams.n_gqa() >= 4 ? GGML_TYPE_Q4_K : GGML_TYPE_Q3_K;
+        }
+        else if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S && qs.model.hparams.n_gqa() >= 4) {
+            new_type = GGML_TYPE_Q4_K;
+        }
+        else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
+            new_type = qs.model.hparams.n_gqa() >= 4 ? GGML_TYPE_Q4_K : !qs.has_imatrix ? GGML_TYPE_IQ3_S : GGML_TYPE_IQ3_XXS;
+        }
+        else if ((ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_S) && qs.model.hparams.n_gqa() >= 4) {
+            new_type = GGML_TYPE_Q4_K;
+        }
+        else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M) {
+            new_type = GGML_TYPE_Q4_K;
+        }
+        else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
+            new_type = qs.i_attention_wv < 2 ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
+        }
+        else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
+        else if ((ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) && qs.model.hparams.n_gqa() >= 4) {
+            new_type = GGML_TYPE_Q5_K;
+        }
+        else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) &&
+                use_more_bits(qs.i_attention_wv, qs.n_attention_wv)) new_type = GGML_TYPE_Q6_K;
+        else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && qs.i_attention_wv < 4) new_type = GGML_TYPE_Q5_K;
+        if (qs.model.type == MODEL_70B) {
+            // In the 70B model we have 8 heads sharing the same attn_v weights. As a result, the attn_v.weight tensor is
+            // 8x smaller compared to attn_q.weight. Hence, we can get a nice boost in quantization accuracy with
+            // nearly negligible increase in model size by quantizing this tensor with more bits:
+            if (new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K) new_type = GGML_TYPE_Q5_K;
+        }
+        if (qs.model.hparams.n_expert == 8) {
+            // for the 8-expert model, bumping this to Q8_0 trades just ~128MB
+            // TODO: explore better strategies
+            new_type = GGML_TYPE_Q8_0;
+        }
+        ++qs.i_attention_wv;
+    } else if (name.find("attn_k.weight") != std::string::npos) {
+        if (qs.model.hparams.n_expert == 8) {
+            // for the 8-expert model, bumping this to Q8_0 trades just ~128MB
+            // TODO: explore better strategies
+            new_type = GGML_TYPE_Q8_0;
+        }
+        else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS) {
+            new_type = GGML_TYPE_IQ3_XXS;
+        }
+        else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
+            new_type = GGML_TYPE_IQ2_S;
+        }
+    } else if (name.find("attn_q.weight") != std::string::npos) {
+        if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS) {
+            new_type = GGML_TYPE_IQ3_XXS;
+        }
+        else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
+            new_type = GGML_TYPE_IQ2_S;
+        }
+    } else if (name.find("ffn_down") != std::string::npos) {
+        auto info = layer_info(qs.i_ffn_down, qs.n_ffn_down, name.c_str());
+        int i_layer = info.first, n_layer = info.second;
+        if      (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
+        else if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S) {
+            if (i_layer < n_layer/8) new_type = GGML_TYPE_Q4_K;
+        }
+        else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS && !qs.has_imatrix) {
+            new_type = i_layer < n_layer/8 ? GGML_TYPE_Q4_K : GGML_TYPE_Q3_K;
+        }
+        else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
+            new_type = i_layer < n_layer/16 ? GGML_TYPE_Q5_K
+                     : arch != LLM_ARCH_FALCON || use_more_bits(i_layer, n_layer) ? GGML_TYPE_Q4_K
+                     : GGML_TYPE_Q3_K;
+        }
+        else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M && (i_layer < n_layer/8 ||
+                    (qs.model.hparams.n_expert == 8 && use_more_bits(i_layer, n_layer)))) {
+            new_type = GGML_TYPE_Q4_K;
+        }
+        else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) {
+            new_type = arch == LLM_ARCH_FALCON ? GGML_TYPE_Q4_K : GGML_TYPE_Q5_K;
+        }
+        else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) {
+            if (arch == LLM_ARCH_FALCON) {
+                new_type = i_layer < n_layer/16 ? GGML_TYPE_Q6_K :
+                           use_more_bits(i_layer, n_layer) ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
+            } else {
+                if (use_more_bits(i_layer, n_layer)) new_type = GGML_TYPE_Q6_K;
+            }
+        }
+        else if (i_layer < n_layer/8 && (ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) && !qs.has_imatrix) {
+            new_type = GGML_TYPE_Q5_K;
+        }
+        else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M && use_more_bits(i_layer, n_layer)) new_type = GGML_TYPE_Q6_K;
+        else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && arch != LLM_ARCH_FALCON && i_layer < n_layer/8) {
+            new_type = GGML_TYPE_Q5_K;
+        }
+        else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_0 || ftype == LLAMA_FTYPE_MOSTLY_Q5_0)
+                && qs.has_imatrix && i_layer < n_layer/8) {
+            // Guard against craziness in the first few ffn_down layers that can happen even with imatrix for Q4_0/Q5_0.
+            // We only do it when an imatrix is provided because a) we want to make sure that one can always get the
+            // same quantization as before imatrix stuff, and b) Q4_1/Q5_1 do go crazy on ffn_down without an imatrix.
+            new_type = ftype == LLAMA_FTYPE_MOSTLY_Q4_0 ? GGML_TYPE_Q4_1 : GGML_TYPE_Q5_1;
+        }
+        ++qs.i_ffn_down;
+    } else if (name.find("attn_output.weight") != std::string::npos) {
+        if (arch != LLM_ARCH_FALCON) {
+            if (qs.model.hparams.n_expert == 8) {
+                if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K   || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS ||
+                    ftype == LLAMA_FTYPE_MOSTLY_Q3_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M  || ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL  ||
+                    ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M  || ftype == LLAMA_FTYPE_MOSTLY_IQ3_S  ||
+                    ftype == LLAMA_FTYPE_MOSTLY_IQ3_M  || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) {
+                    new_type = GGML_TYPE_Q5_K;
+                }
+            } else {
+                if      (ftype == LLAMA_FTYPE_MOSTLY_Q2_K   ) new_type = GGML_TYPE_Q3_K;
+                else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) new_type = GGML_TYPE_IQ3_S;
+                else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M ) new_type = GGML_TYPE_Q4_K;
+                else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L ) new_type = GGML_TYPE_Q5_K;
+                else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M  ) new_type = GGML_TYPE_Q4_K;
+            }
+        } else {
+            if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q4_K;
+        }
+    }
+    else if (name.find("attn_qkv.weight") != std::string::npos) {
+        if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L || ftype == LLAMA_FTYPE_MOSTLY_IQ3_M) {
+            new_type = GGML_TYPE_Q4_K;
+        }
+        else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) new_type = GGML_TYPE_Q5_K;
+        else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) new_type = GGML_TYPE_Q6_K;
+    }
+    else if (name.find("ffn_gate") != std::string::npos) {
+        auto info = layer_info(qs.i_ffn_gate, qs.n_ffn_gate, name.c_str());
+        int i_layer = info.first, n_layer = info.second;
+        if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS && (i_layer >= n_layer/8 && i_layer < 7*n_layer/8)) {
+            new_type = GGML_TYPE_IQ3_XXS;
+        }
+        ++qs.i_ffn_gate;
+    }
+    else if (name.find("ffn_up") != std::string::npos) {
+        auto info = layer_info(qs.i_ffn_up, qs.n_ffn_up, name.c_str());
+        int i_layer = info.first, n_layer = info.second;
+        if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS && (i_layer >= n_layer/8 && i_layer < 7*n_layer/8)) {
+            new_type = GGML_TYPE_IQ3_XXS;
+        }
+        ++qs.i_ffn_up;
+    }
+
+    //    if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
+    //}
+    // IK: let's remove this, else Q2_K is almost the same as Q3_K_S
+    //else if (name.find("ffn_gate") != std::string::npos || name.find("ffn_up") != std::string::npos) {
+    //    if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
+    //}
+    // This can be used to reduce the size of the Q5_K_S model.
+    // The associated PPL increase is fully in line with the size reduction
+    //else {
+    //    if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_S) new_type = GGML_TYPE_Q4_K;
+    //}
+    bool convert_incompatible_tensor = false;
+    if (new_type == GGML_TYPE_Q2_K    || new_type == GGML_TYPE_Q3_K    || new_type == GGML_TYPE_Q4_K   ||
+        new_type == GGML_TYPE_Q5_K    || new_type == GGML_TYPE_Q6_K    || new_type == GGML_TYPE_IQ4_XS ||
+        new_type == GGML_TYPE_IQ2_XS  || new_type == GGML_TYPE_IQ2_XXS || new_type == GGML_TYPE_IQ2_S  ||
+        new_type == GGML_TYPE_IQ3_XXS || new_type == GGML_TYPE_IQ1_S   || new_type == GGML_TYPE_IQ3_S  ||
+        new_type == GGML_TYPE_IQ1_M) {
+        int nx = tensor->ne[0];
+        int ny = tensor->ne[1];
+        if (nx % QK_K != 0) {
+            LLAMA_LOG_WARN("\n\n%s : tensor cols %d x %d are not divisible by %d, required for %s", __func__, nx, ny, QK_K, ggml_type_name(new_type));
+            convert_incompatible_tensor = true;
+        } else {
+            ++qs.n_k_quantized;
+        }
+    }
+    if (new_type == GGML_TYPE_IQ1_BN || new_type == GGML_TYPE_IQ2_BN) {
+        int nx = tensor->ne[0];
+        if (nx % QK_IQ1BN != 0) {
+            convert_incompatible_tensor = true;
+        }
+    }
+    if (convert_incompatible_tensor) {
+        switch (new_type) {
+            case GGML_TYPE_IQ2_XXS:
+            case GGML_TYPE_IQ2_XS:
+            case GGML_TYPE_IQ2_S:
+            case GGML_TYPE_IQ3_XXS:
+            case GGML_TYPE_IQ3_S:
+            case GGML_TYPE_IQ1_S:
+            case GGML_TYPE_IQ1_M:
+            case GGML_TYPE_Q2_K:
+            case GGML_TYPE_Q3_K:
+            case GGML_TYPE_IQ4_XS: new_type = GGML_TYPE_IQ4_NL; break;
+            case GGML_TYPE_Q4_K:   new_type = GGML_TYPE_Q5_0;   break;
+            case GGML_TYPE_Q5_K:   new_type = GGML_TYPE_Q5_1;   break;
+            case GGML_TYPE_Q6_K:   new_type = GGML_TYPE_Q8_0;   break;
+            default: throw std::runtime_error("\nUnsupported tensor size encountered\n");
+        }
+        LLAMA_LOG_WARN(" - using fallback quantization %s\n", ggml_type_name(new_type));
+        ++qs.n_fallback;
+    }
+
+    return new_type;
+}
+
+static size_t llama_tensor_quantize_internal(enum ggml_type new_type, const float * f32_data, void * new_data, const int64_t chunk_size, int64_t nrows, int64_t n_per_row, const float * imatrix, std::vector & workers, const int nthread) {
+    if (nthread < 2) {
+        // single-thread
+        size_t new_size = ggml_quantize_chunk(new_type, f32_data, new_data, 0, nrows, n_per_row, imatrix);
+        if (!ggml_validate_row_data(new_type, new_data, new_size)) {
+            throw std::runtime_error("quantized data validation failed");
+        }
+        return new_size;
+    }
+
+    std::mutex mutex;
+    int64_t counter = 0;
+    size_t new_size = 0;
+    bool valid = true;
+    auto compute = [&mutex, &counter, &new_size, &valid, new_type, f32_data, new_data, chunk_size,
+            nrows, n_per_row, imatrix]() {
+        const int64_t nrows_per_chunk = chunk_size / n_per_row;
+        size_t local_size = 0;
+        while (true) {
+            std::unique_lock lock(mutex);
+            int64_t first_row = counter; counter += nrows_per_chunk;
+            if (first_row >= nrows) {
+                if (local_size > 0) {
+                    new_size += local_size;
+                }
+                break;
+            }
+            lock.unlock();
+            const int64_t this_nrow = std::min(nrows - first_row, nrows_per_chunk);
+            size_t this_size = ggml_quantize_chunk(new_type, f32_data, new_data, first_row * n_per_row, this_nrow, n_per_row, imatrix);
+            local_size += this_size;
+
+            // validate the quantized data
+            const size_t row_size  = ggml_row_size(new_type, n_per_row);
+            void * this_data = (char *) new_data + first_row * row_size;
+            if (!ggml_validate_row_data(new_type, this_data, this_size)) {
+                std::unique_lock lock(mutex);
+                valid = false;
+                break;
+            }
+        }
+    };
+    for (int it = 0; it < nthread - 1; ++it) {
+        workers.emplace_back(compute);
+    }
+    compute();
+    for (auto & w : workers) { w.join(); }
+    workers.clear();
+    if (!valid) {
+        throw std::runtime_error("quantized data validation failed");
+    }
+    return new_size;
+}
+
+static void llama_model_quantize_internal(const std::string & fname_inp, const std::string & fname_out, const llama_model_quantize_params * params) {
+    ggml_type default_type;
+    llama_ftype ftype = params->ftype;
+
+    switch (params->ftype) {
+        case LLAMA_FTYPE_MOSTLY_Q4_0: default_type = GGML_TYPE_Q4_0; break;
+        case LLAMA_FTYPE_MOSTLY_Q4_1: default_type = GGML_TYPE_Q4_1; break;
+        case LLAMA_FTYPE_MOSTLY_Q5_0: default_type = GGML_TYPE_Q5_0; break;
+        case LLAMA_FTYPE_MOSTLY_Q5_1: default_type = GGML_TYPE_Q5_1; break;
+        case LLAMA_FTYPE_MOSTLY_Q8_0: default_type = GGML_TYPE_Q8_0; break;
+        case LLAMA_FTYPE_MOSTLY_F16:  default_type = GGML_TYPE_F16;  break;
+        case LLAMA_FTYPE_MOSTLY_BF16: default_type = GGML_TYPE_BF16; break;
+        case LLAMA_FTYPE_ALL_F32:     default_type = GGML_TYPE_F32;  break;
+
+        // K-quants
+        case LLAMA_FTYPE_MOSTLY_Q2_K_S:
+        case LLAMA_FTYPE_MOSTLY_Q2_K:    default_type = GGML_TYPE_Q2_K;    break;
+        case LLAMA_FTYPE_MOSTLY_IQ3_XS:  default_type = GGML_TYPE_IQ3_S;   break;
+        case LLAMA_FTYPE_MOSTLY_Q3_K_S:
+        case LLAMA_FTYPE_MOSTLY_Q3_K_M:
+        case LLAMA_FTYPE_MOSTLY_Q3_K_L:  default_type = GGML_TYPE_Q3_K;    break;
+        case LLAMA_FTYPE_MOSTLY_Q4_K_S:
+        case LLAMA_FTYPE_MOSTLY_Q4_K_M:  default_type = GGML_TYPE_Q4_K;    break;
+        case LLAMA_FTYPE_MOSTLY_Q5_K_S:
+        case LLAMA_FTYPE_MOSTLY_Q5_K_M:  default_type = GGML_TYPE_Q5_K;    break;
+        case LLAMA_FTYPE_MOSTLY_Q6_K:    default_type = GGML_TYPE_Q6_K;    break;
+        case LLAMA_FTYPE_MOSTLY_IQ2_XXS: default_type = GGML_TYPE_IQ2_XXS; break;
+        case LLAMA_FTYPE_MOSTLY_IQ2_XS:  default_type = GGML_TYPE_IQ2_XS;  break;
+        case LLAMA_FTYPE_MOSTLY_IQ2_S:   default_type = GGML_TYPE_IQ2_XS;  break;
+        case LLAMA_FTYPE_MOSTLY_IQ2_M:   default_type = GGML_TYPE_IQ2_S;   break;
+        case LLAMA_FTYPE_MOSTLY_IQ3_XXS: default_type = GGML_TYPE_IQ3_XXS; break;
+        case LLAMA_FTYPE_MOSTLY_IQ1_S:   default_type = GGML_TYPE_IQ1_S;   break;
+        case LLAMA_FTYPE_MOSTLY_IQ1_M:   default_type = GGML_TYPE_IQ1_M;   break;
+        case LLAMA_FTYPE_MOSTLY_IQ1_BN:  default_type = GGML_TYPE_IQ1_BN;  break;
+        case LLAMA_FTYPE_MOSTLY_IQ2_BN:  default_type = GGML_TYPE_IQ2_BN;  break;
+        case LLAMA_FTYPE_MOSTLY_IQ4_NL:  default_type = GGML_TYPE_IQ4_NL;  break;
+        case LLAMA_FTYPE_MOSTLY_IQ4_XS:  default_type = GGML_TYPE_IQ4_XS;  break;
+        case LLAMA_FTYPE_MOSTLY_IQ3_S:   default_type = GGML_TYPE_IQ3_S;   break;
+        case LLAMA_FTYPE_MOSTLY_IQ3_M:   default_type = GGML_TYPE_IQ3_S;   break;
+        case LLAMA_FTYPE_MOSTLY_Q4_0_4_4: default_type = GGML_TYPE_Q4_0_4_4; break;
+        case LLAMA_FTYPE_MOSTLY_Q4_0_4_8: default_type = GGML_TYPE_Q4_0_4_8; break;
+        case LLAMA_FTYPE_MOSTLY_Q4_0_8_8: default_type = GGML_TYPE_Q4_0_8_8; break;
+
+        default: throw std::runtime_error(format("invalid output file type %d\n", ftype));
+    }
+
+    int nthread = params->nthread;
+
+    if (nthread <= 0) {
+        nthread = std::thread::hardware_concurrency();
+    }
+
+    // mmap consistently increases speed Linux, and also increases speed on Windows with
+    // hot cache. It may cause a slowdown on macOS, possibly related to free memory.
+#if defined(__linux__) || defined(_WIN32)
+    constexpr bool use_mmap = true;
+#else
+    constexpr bool use_mmap = false;
+#endif
+
+    llama_model_kv_override * kv_overrides = nullptr;
+    if (params->kv_overrides) {
+        auto v = (std::vector*)params->kv_overrides;
+        kv_overrides = v->data();
+    }
+    llama_model_loader ml(fname_inp, use_mmap, /*check_tensors*/ true, kv_overrides);
+    ml.init_mappings(false); // no prefetching
+
+    llama_model model;
+    llm_load_arch(ml, model);
+    llm_load_hparams(ml, model);
+
+    struct quantize_state_internal qs(model, params);
+
+    if (params->only_copy) {
+        ftype = model.ftype;
+    }
+    const std::unordered_map> * imatrix_data = nullptr;
+    if (params->imatrix) {
+        imatrix_data = static_cast>*>(params->imatrix);
+        if (imatrix_data) {
+            LLAMA_LOG_INFO("================================ Have weights data with %d entries\n",int(imatrix_data->size()));
+            qs.has_imatrix = true;
+            // check imatrix for nans or infs
+            for (const auto & kv : *imatrix_data) {
+                for (float f : kv.second) {
+                    if (!std::isfinite(f)) {
+                        throw std::runtime_error(format("imatrix contains non-finite value %f\n", f));
+                    }
+                }
+            }
+        }
+    }
+
+    const size_t align = GGUF_DEFAULT_ALIGNMENT;
+    struct gguf_context * ctx_out = gguf_init_empty();
+
+    // copy the KV pairs from the input file
+    gguf_set_kv     (ctx_out, ml.meta);
+    gguf_set_val_u32(ctx_out, "general.quantization_version", GGML_QNT_VERSION); // TODO: use LLM_KV
+    gguf_set_val_u32(ctx_out, "general.file_type", ftype); // TODO: use LLM_KV
+
+    // Remove split metadata
+    gguf_remove_key(ctx_out, ml.llm_kv(LLM_KV_SPLIT_NO).c_str());
+    gguf_remove_key(ctx_out, ml.llm_kv(LLM_KV_SPLIT_COUNT).c_str());
+    gguf_remove_key(ctx_out, ml.llm_kv(LLM_KV_SPLIT_TENSORS_COUNT).c_str());
+
+    if (params->kv_overrides) {
+        const std::vector & overrides = *(const std::vector *)params->kv_overrides;
+        for (auto & o : overrides) {
+            if (o.key[0] == 0) break;
+            if (o.tag == LLAMA_KV_OVERRIDE_TYPE_FLOAT) {
+                gguf_set_val_f32(ctx_out, o.key, o.val_f64);
+            } else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_INT) {
+                gguf_set_val_i32(ctx_out, o.key, o.val_i64);
+            } else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_BOOL) {
+                gguf_set_val_bool(ctx_out, o.key, o.val_bool);
+            } else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_STR) {
+                gguf_set_val_str(ctx_out, o.key, o.val_str);
+            } else {
+                LLAMA_LOG_WARN("%s: unknown KV override type for key %s\n", __func__, o.key);
+            }
+        }
+    }
+
+    for (int i = 0; i < ml.n_tensors; ++i) {
+        const struct ggml_tensor * meta = ml.get_tensor_meta(i);
+
+        const std::string name = ggml_get_name(meta);
+
+        // TODO: avoid hardcoded tensor names - use the TN_* constants
+        if (name.find("attn_v.weight")   != std::string::npos ||
+            name.find("attn_qkv.weight") != std::string::npos) {
+            ++qs.n_attention_wv;
+        } else if (name == LLM_TN(model.arch)(LLM_TENSOR_OUTPUT, "weight")) {
+            qs.has_output = true;
+        }
+    }
+
+    qs.n_ffn_down = qs.n_ffn_gate = qs.n_ffn_up = (int)model.hparams.n_layer;
+
+    // sanity checks
+    //
+    //  - qs.n_attention_wv == 0                         for Mamba           models
+    //  - qs.n_attention_wv == model.hparams.n_layer     for Transformer     models
+    //  - qs.n_attention_wv == 3 * model.hparams.n_layer for Encoder-Decoder models
+    //
+    GGML_ASSERT((qs.n_attention_wv == 0 || qs.n_attention_wv == (int)model.hparams.n_layer || qs.n_attention_wv == 3 * (int)model.hparams.n_layer) && "n_attention_wv is unexpected");
+
+    size_t total_size_org = 0;
+    size_t total_size_new = 0;
+
+    std::vector workers;
+    workers.reserve(nthread);
+
+    int idx = 0;
+
+    std::vector> read_data;
+    std::vector> work;
+    std::vector> f32_conv_buf;
+
+    uint16_t n_split = 1;
+    // Assume split index is continuous
+    if (params->keep_split) {
+        for (int i = 0; i < ml.n_tensors; ++i) {
+            n_split = std::max(uint16_t(ml.get_weight(i)->idx+1), n_split);
+        }
+    }
+    std::vector ctx_outs(n_split, NULL);
+    ctx_outs[0] = ctx_out;
+
+    // populate the original tensors so we get an initial meta data
+    for (int i = 0; i < ml.n_tensors; ++i) {
+        auto weight = ml.get_weight(i);
+        uint16_t i_split = params->keep_split ? weight->idx : 0;
+        struct ggml_tensor * tensor = weight->tensor;
+        if (ctx_outs[i_split] == NULL) {
+            ctx_outs[i_split] = gguf_init_empty();
+        }
+        gguf_add_tensor(ctx_outs[i_split], tensor);
+    }
+
+    // Set split info if needed
+    if (n_split > 1) {
+        for (size_t i = 0; i < ctx_outs.size(); ++i) {
+            gguf_set_val_u16(ctx_outs[i], ml.llm_kv(LLM_KV_SPLIT_NO).c_str(), i);
+            gguf_set_val_u16(ctx_outs[i], ml.llm_kv(LLM_KV_SPLIT_COUNT).c_str(), n_split);
+            gguf_set_val_i32(ctx_outs[i], ml.llm_kv(LLM_KV_SPLIT_TENSORS_COUNT).c_str(), ml.n_tensors);
+        }
+    }
+
+    int cur_split = -1;
+    std::ofstream fout;
+    auto close_ofstream = [&]() {
+        // Write metadata and close file handler
+        if (fout.is_open()) {
+            fout.seekp(0);
+            std::vector data(gguf_get_meta_size(ctx_outs[cur_split]));
+            gguf_get_meta_data(ctx_outs[cur_split], data.data());
+            fout.write((const char *) data.data(), data.size());
+            fout.close();
+        }
+    };
+    auto new_ofstream = [&](int index) {
+        cur_split = index;
+        GGML_ASSERT(ctx_outs[cur_split] && "Find uninitialized gguf_context");
+        std::string fname = fname_out;
+        if (params->keep_split) {
+            char split_path[PATH_MAX] = {0};
+            llama_split_path(split_path, sizeof(split_path), fname_out.c_str(), cur_split, n_split);
+            fname = std::string(split_path);
+        }
+
+        fout = std::ofstream(fname, std::ios::binary);
+        fout.exceptions(std::ofstream::failbit); // fail fast on write errors
+        const size_t meta_size = gguf_get_meta_size(ctx_outs[cur_split]);
+        // placeholder for the meta data
+        ::zeros(fout, meta_size);
+    };
+
+    const auto tn = LLM_TN(model.arch);
+    new_ofstream(0);
+    for (int i = 0; i < ml.n_tensors; ++i) {
+        auto weight = ml.get_weight(i);
+        struct ggml_tensor * tensor = weight->tensor;
+        if (weight->idx != cur_split && params->keep_split) {
+            close_ofstream();
+            new_ofstream(weight->idx);
+        }
+
+        const std::string name = ggml_get_name(tensor);
+
+        if (!ml.use_mmap) {
+            if (read_data.size() < ggml_nbytes(tensor)) {
+                read_data.resize(ggml_nbytes(tensor));
+            }
+            tensor->data = read_data.data();
+        }
+        ml.load_data_for(tensor);
+
+        LLAMA_LOG_INFO("[%4d/%4d] %36s - [%s], type = %6s, ",
+               ++idx, ml.n_tensors,
+               ggml_get_name(tensor),
+               llama_format_tensor_shape(tensor).c_str(),
+               ggml_type_name(tensor->type));
+
+        // This used to be a regex, but  has an extreme cost to compile times.
+        bool quantize = name.rfind("weight") == name.size() - 6; // ends with 'weight'?
+
+        // quantize only 2D and 3D tensors (experts)
+        quantize &= (ggml_n_dims(tensor) >= 2);
+
+        // do not quantize norm tensors
+        quantize &= name.find("_norm.weight") == std::string::npos;
+
+        quantize &= params->quantize_output_tensor || name != "output.weight";
+        quantize &= !params->only_copy;
+
+        // do not quantize expert gating tensors
+        // NOTE: can't use LLM_TN here because the layer number is not known
+        quantize &= name.find("ffn_gate_inp.weight") == std::string::npos;
+
+        // do not quantize positional embeddings and token types (BERT)
+        quantize &= name != LLM_TN(model.arch)(LLM_TENSOR_POS_EMBD,    "weight");
+        quantize &= name != LLM_TN(model.arch)(LLM_TENSOR_TOKEN_TYPES, "weight");
+
+        // do not quantize Mamba's small yet 2D weights
+        // NOTE: can't use LLM_TN here because the layer number is not known
+        quantize &= name.find("ssm_conv1d.weight") == std::string::npos;
+        quantize &= name.find("ssm_x.weight")      == std::string::npos;
+        quantize &= name.find("ssm_dt.weight")     == std::string::npos;
+
+        // do not quantize relative position bias (T5)
+        quantize &= name.find("attn_rel_b.weight") == std::string::npos;
+
+        enum ggml_type new_type;
+        void * new_data;
+        size_t new_size;
+
+        if (quantize) {
+            new_type = default_type;
+
+            // get more optimal quantization type based on the tensor shape, layer, etc.
+            if (!params->pure && ggml_is_quantized(default_type)) {
+                new_type = llama_tensor_get_type(qs, new_type, tensor, ftype);
+            }
+            if (params->token_embedding_type < GGML_TYPE_COUNT && strcmp(tensor->name, "token_embd.weight") == 0) {
+                new_type = params->token_embedding_type;
+            }
+            if (params->output_tensor_type < GGML_TYPE_COUNT && strcmp(tensor->name, "output.weight") == 0) {
+                new_type = params->output_tensor_type;
+            }
+
+            // If we've decided to quantize to the same type the tensor is already
+            // in then there's nothing to do.
+            quantize = tensor->type != new_type;
+        }
+
+        if (!quantize) {
+            new_type = tensor->type;
+            new_data = tensor->data;
+            new_size = ggml_nbytes(tensor);
+            LLAMA_LOG_INFO("size = %8.3f MB\n", ggml_nbytes(tensor)/1024.0/1024.0);
+        } else {
+            const int64_t nelements = ggml_nelements(tensor);
+
+            const float * imatrix = nullptr;
+            if (imatrix_data) {
+                auto it = imatrix_data->find(tensor->name);
+                if (it == imatrix_data->end()) {
+                    LLAMA_LOG_INFO("\n====== %s: did not find weights for %s\n", __func__, tensor->name);
+                } else {
+                    if (it->second.size() == (size_t)tensor->ne[0]*tensor->ne[2]) {
+                        imatrix = it->second.data();
+                    } else {
+                        LLAMA_LOG_INFO("\n====== %s: imatrix size %d is different from tensor size %d for %s\n", __func__,
+                                int(it->second.size()), int(tensor->ne[0]*tensor->ne[2]), tensor->name);
+
+                        // this can happen when quantizing an old mixtral model with split tensors with a new incompatible imatrix
+                        // this is a significant error and it may be good idea to abort the process if this happens,
+                        // since many people will miss the error and not realize that most of the model is being quantized without an imatrix
+                        // tok_embd should be ignored in this case, since it always causes this warning
+                        if (name != tn(LLM_TENSOR_TOKEN_EMBD, "weight")) {
+                            throw std::runtime_error(format("imatrix size %d is different from tensor size %d for %s",
+                                    int(it->second.size()), int(tensor->ne[0]*tensor->ne[2]), tensor->name));
+                        }
+                    }
+                }
+            }
+            if ((new_type == GGML_TYPE_IQ2_XXS ||
+                 new_type == GGML_TYPE_IQ2_XS  ||
+                 new_type == GGML_TYPE_IQ2_S   ||
+                 new_type == GGML_TYPE_IQ1_S   ||
+                (new_type == GGML_TYPE_IQ1_M && strcmp(tensor->name, "token_embd.weight") && strcmp(tensor->name, "output.weight"))  ||
+                (new_type == GGML_TYPE_Q2_K && params->ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S && strcmp(tensor->name, "token_embd.weight") != 0)) && !imatrix) {
+                LLAMA_LOG_ERROR("\n\n============================================================\n");
+                LLAMA_LOG_ERROR("Missing importance matrix for tensor %s in a very low-bit quantization\n", tensor->name);
+                LLAMA_LOG_ERROR("The result will be garbage, so bailing out\n");
+                LLAMA_LOG_ERROR("============================================================\n\n");
+                throw std::runtime_error(format("Missing importance matrix for tensor %s in a very low-bit quantization", tensor->name));
+            }
+
+            float * f32_data;
+
+            if (tensor->type == GGML_TYPE_F32) {
+                f32_data = (float *) tensor->data;
+            } else if (ggml_is_quantized(tensor->type) && !params->allow_requantize) {
+                throw std::runtime_error(format("requantizing from type %s is disabled", ggml_type_name(tensor->type)));
+            } else {
+                llama_tensor_dequantize_internal(tensor, f32_conv_buf, workers, nelements, nthread);
+                f32_data = (float *) f32_conv_buf.data();
+            }
+
+            int chunk_size_multiplier = 1;
+            if (new_type == GGML_TYPE_Q4_0_4_4 || new_type == GGML_TYPE_Q4_0_4_8 || new_type == GGML_TYPE_Q4_0_8_8) {
+                if ((new_type == GGML_TYPE_Q4_0_8_8) && (tensor->ne[1] % 8 != 0)) new_type = GGML_TYPE_Q4_0;
+                else if (tensor->ne[1] % 4 != 0) new_type = GGML_TYPE_Q4_0;
+                if (new_type == GGML_TYPE_Q4_0_8_8) chunk_size_multiplier = 8;
+                else if (new_type == GGML_TYPE_Q4_0_4_4 || new_type == GGML_TYPE_Q4_0_4_8) chunk_size_multiplier = 4;
+            }
+
+            LLAMA_LOG_INFO("converting to %s .. ", ggml_type_name(new_type));
+            fflush(stdout);
+
+            if (work.size() < (size_t)nelements * 4) {
+                work.resize(nelements * 4); // upper bound on size
+            }
+            new_data = work.data();
+
+            const int64_t n_per_row = tensor->ne[0];
+            const int64_t nrows = tensor->ne[1];
+
+            static const int64_t min_chunk_size = 32 * 512;
+            const int64_t chunk_size = (n_per_row >= min_chunk_size ? n_per_row : n_per_row * ((min_chunk_size + n_per_row - 1)/n_per_row)) *
+                                       chunk_size_multiplier;
+
+            const int64_t nelements_matrix = tensor->ne[0] * tensor->ne[1];
+            const int64_t nchunk = (nelements_matrix + chunk_size - 1)/chunk_size;
+            const int64_t nthread_use = nthread > 1 ? std::max((int64_t)1, std::min((int64_t)nthread, nchunk)) : 1;
+
+            // quantize each expert separately since they have different importance matrices
+            new_size = 0;
+            for (int64_t i03 = 0; i03 < tensor->ne[2]; ++i03) {
+                const float * f32_data_03 = f32_data + i03 * nelements_matrix;
+                void * new_data_03 = (char *)new_data + ggml_row_size(new_type, n_per_row) * i03 * nrows;
+                const float * imatrix_03 = imatrix ? imatrix + i03 * n_per_row : nullptr;
+
+                new_size += llama_tensor_quantize_internal(new_type, f32_data_03, new_data_03, chunk_size, nrows, n_per_row, imatrix_03, workers, nthread_use);
+            }
+            LLAMA_LOG_INFO("size = %8.2f MiB -> %8.2f MiB\n", ggml_nbytes(tensor)/1024.0/1024.0, new_size/1024.0/1024.0);
+        }
+        total_size_org += ggml_nbytes(tensor);
+        total_size_new += new_size;
+
+        // update the gguf meta data as we go
+        gguf_set_tensor_type(ctx_outs[cur_split], name.c_str(), new_type);
+        gguf_set_tensor_data(ctx_outs[cur_split], name.c_str(), new_data, new_size);
+
+        // write tensor data + padding
+        fout.write((const char *) new_data, new_size);
+        zeros(fout, GGML_PAD(new_size, align) - new_size);
+    }
+    close_ofstream();
+    for (auto & c:ctx_outs) {
+        gguf_free(c);
+    }
+
+    LLAMA_LOG_INFO("%s: model size  = %8.2f MB\n", __func__, total_size_org/1024.0/1024.0);
+    LLAMA_LOG_INFO("%s: quant size  = %8.2f MB\n", __func__, total_size_new/1024.0/1024.0);
+
+    if (qs.n_fallback > 0) {
+        LLAMA_LOG_WARN("%s: WARNING: %d of %d tensor(s) required fallback quantization\n",
+                __func__, qs.n_fallback, qs.n_k_quantized + qs.n_fallback);
+    }
+}
+
+static void llama_lora_adapter_init_internal(struct llama_model * model, const char * path_lora, struct llama_lora_adapter & adapter) {
+    LLAMA_LOG_INFO("%s: loading lora adapter from '%s' ...\n", __func__, path_lora);
+
+    ggml_context * ctx = nullptr;
+    struct gguf_init_params meta_gguf_params = {
+        /* .no_alloc = */ true,
+        /* .ctx      = */ &ctx,
+    };
+    struct gguf_context * ctx_gguf = gguf_init_from_file(path_lora, meta_gguf_params);
+    if (!ctx_gguf) {
+        throw std::runtime_error("failed to load lora adapter file from " + std::string(path_lora));
+    }
+
+    // check metadata
+    {
+        auto get_kv_str = [&](const std::string & key) -> std::string {
+            int id = gguf_find_key(ctx_gguf, key.c_str());
+            return id < 0 ? "" : std::string(gguf_get_val_str(ctx_gguf, id));
+        };
+        auto get_kv_f32 = [&](const std::string & key) -> float {
+            int id = gguf_find_key(ctx_gguf, key.c_str());
+            return id < 0 ? 0.0f : gguf_get_val_f32(ctx_gguf, id);
+        };
+        LLM_KV llm_kv = LLM_KV(LLM_ARCH_UNKNOWN);
+
+        auto general_type = get_kv_str(llm_kv(LLM_KV_GENERAL_TYPE));
+        if (general_type != "adapter") {
+            gguf_free(ctx_gguf);
+            throw std::runtime_error("expect general.type to be 'adapter', but got: " + general_type);
+        }
+
+        auto general_arch_str = get_kv_str(llm_kv(LLM_KV_GENERAL_ARCHITECTURE));
+        auto general_arch = llm_arch_from_string(general_arch_str);
+        if (general_arch != model->arch) {
+            gguf_free(ctx_gguf);
+            throw std::runtime_error("model arch and LoRA arch mismatch");
+        }
+
+        auto adapter_type = get_kv_str(llm_kv(LLM_KV_ADAPTER_TYPE));
+        if (adapter_type != "lora") {
+            gguf_free(ctx_gguf);
+            throw std::runtime_error("expect adapter.type to be 'lora', but got: " + adapter_type);
+        }
+
+        adapter.alpha = get_kv_f32(llm_kv(LLM_KV_ADAPTER_LORA_ALPHA));
+    }
+
+    int n_tensors = gguf_get_n_tensors(ctx_gguf);
+
+    // contexts for each buffer type
+    std::map ctx_map;
+    auto get_ctx_for_buft = [&](ggml_backend_buffer_type_t buft) -> ggml_context * {
+        auto it = ctx_map.find(buft);
+        if (it == ctx_map.end()) {
+            // add a new context
+            struct ggml_init_params params = {
+                /*.mem_size   =*/ n_tensors*ggml_tensor_overhead(),
+                /*.mem_buffer =*/ NULL,
+                /*.no_alloc   =*/ true,
+            };
+            ggml_context * buft_ctx = ggml_init(params);
+            ctx_map[buft] = buft_ctx;
+            return buft_ctx;
+        };
+        return it->second;
+    };
+
+    // bundle lora_a and lora_b into pairs
+    std::map ab_map;
+    auto str_endswith = [](const std::string & str, const std::string & suffix) {
+        return str.size() >= suffix.size() && str.compare(str.size()-suffix.size(), suffix.size(), suffix) == 0;
+    };
+    for (ggml_tensor * cur = ggml_get_first_tensor(ctx); cur; cur = ggml_get_next_tensor(ctx, cur)) {
+        std::string name(cur->name);
+        if (str_endswith(name, ".lora_a")) {
+            replace_all(name, ".lora_a", "");
+            if (ab_map.find(name) == ab_map.end()) {
+                ab_map[name] = llama_lora_weight(cur, nullptr);
+            } else {
+                ab_map[name].a = cur;
+            }
+        } else if (str_endswith(name, ".lora_b")) {
+            replace_all(name, ".lora_b", "");
+            if (ab_map.find(name) == ab_map.end()) {
+                ab_map[name] = llama_lora_weight(nullptr, cur);
+            } else {
+                ab_map[name].b = cur;
+            }
+        } else {
+            gguf_free(ctx_gguf);
+            ggml_free(ctx);
+            throw std::runtime_error("LoRA tensor '" + name + "' has unexpected suffix");
+        }
+    }
+
+    // add tensors
+    for (auto & it : ab_map) {
+        const std::string & name = it.first;
+        llama_lora_weight & w = it.second;
+
+        if (!w.a || !w.b) {
+            gguf_free(ctx_gguf);
+            ggml_free(ctx);
+            throw std::runtime_error("LoRA tensor pair for '" + name + "' is missing one component");
+        }
+
+        // device buft and device ctx
+        auto * model_tensor = llama_get_model_tensor(model, name.c_str());
+        if (!model_tensor) {
+            gguf_free(ctx_gguf);
+            ggml_free(ctx);
+            throw std::runtime_error("LoRA tensor '" + name + "' does not exist in base model");
+        }
+        struct ggml_context * dev_ctx = get_ctx_for_buft(ggml_backend_buffer_get_type(model_tensor->buffer));
+        // validate tensor shape
+        if (model_tensor->ne[0] != w.a->ne[0] || model_tensor->ne[1] != w.b->ne[1]) {
+            gguf_free(ctx_gguf);
+            ggml_free(ctx);
+            throw std::runtime_error("tensor '" + name + "' has incorrect shape");
+        }
+        if (w.a->ne[1] != w.b->ne[0]) {
+            gguf_free(ctx_gguf);
+            ggml_free(ctx);
+            throw std::runtime_error("lora_a tensor is not transposed (hint: adapter from \"finetune\" example is no longer supported)");
+        }
+        // save tensor to adapter
+        struct ggml_tensor * tensor_a = ggml_dup_tensor(dev_ctx, w.a);
+        struct ggml_tensor * tensor_b = ggml_dup_tensor(dev_ctx, w.b);
+        ggml_set_name(tensor_a, w.a->name);
+        ggml_set_name(tensor_b, w.b->name);
+        adapter.ab_map[name] = llama_lora_weight(tensor_a, tensor_b);
+    }
+
+    // allocate tensors / buffers and zero
+    {
+        adapter.ctxs.reserve(ctx_map.size());
+        adapter.bufs.reserve(ctx_map.size());
+        for (auto it : ctx_map) {
+            ggml_backend_buffer_type_t buft = it.first;
+            ggml_context * ctx_dev = it.second;
+            ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx_dev, buft);
+            if (!buf) {
+                gguf_free(ctx_gguf);
+                ggml_free(ctx);
+                throw std::runtime_error("failed to allocate buffer for lora adapter\n");
+            }
+            LLAMA_LOG_INFO("%s: %10s LoRA buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf)/1024.0/1024.0);
+            adapter.ctxs.push_back(ctx_dev);
+            adapter.bufs.push_back(buf);
+        }
+    }
+
+    // set tensor data
+    {
+        llama_file gguf_file(path_lora, "rb");
+        std::vector read_buf;
+        auto set_tensor = [&](struct ggml_tensor * orig, struct ggml_tensor * dev) {
+            size_t offs = gguf_get_data_offset(ctx_gguf) + gguf_get_tensor_offset(ctx_gguf, gguf_find_tensor(ctx_gguf, orig->name));
+            size_t size = ggml_nbytes(orig);
+            read_buf.resize(size);
+            gguf_file.seek(offs, SEEK_SET);
+            gguf_file.read_raw(read_buf.data(), size);
+            ggml_backend_tensor_set(dev, read_buf.data(), 0, size);
+        };
+        for (auto & it : adapter.ab_map) {
+            auto orig = ab_map[it.first];
+            auto dev  = it.second;
+            set_tensor(orig.a, dev.a);
+            set_tensor(orig.b, dev.b);
+        }
+    }
+
+    LLAMA_LOG_INFO("%s: loaded %ld tensors from lora file\n", __func__, adapter.ab_map.size()*2);
+
+    // free ctx for reading gguf
+    gguf_free(ctx_gguf);
+    ggml_free(ctx);
+}
+
+int32_t llama_lora_adapter_set(
+            struct llama_context * ctx,
+            struct llama_lora_adapter * adapter,
+            float scale) {
+    if (ctx->cparams.flash_attn) {
+        LLAMA_LOG_ERROR("%s: flash_attn is not compatible with LoRA\n", __func__);
+        return -1;
+    }
+    ctx->lora_adapters[adapter] = scale;
+    return 0;
+}
+
+int32_t llama_lora_adapter_remove(
+            struct llama_context * ctx,
+            struct llama_lora_adapter * adapter) {
+    auto pos = ctx->lora_adapters.find(adapter);
+    if (pos != ctx->lora_adapters.end()) {
+        ctx->lora_adapters.erase(pos);
+        return 0;
+    }
+    return -1;
+}
+
+void llama_lora_adapter_clear(struct llama_context * ctx) {
+    ctx->lora_adapters.clear();
+}
+
+void llama_lora_adapter_free(struct llama_lora_adapter * adapter) {
+    delete adapter;
+}
+
+//
+// interface implementation
+//
+struct llama_model_params llama_model_default_params() {
+    struct llama_model_params result = {
+        /*.n_gpu_layers                =*/ 0,
+        /*.split_mode                  =*/ LLAMA_SPLIT_MODE_LAYER,
+        /*.main_gpu                    =*/ 0,
+        /*.tensor_split                =*/ nullptr,
+        /*.rpc_servers                 =*/ nullptr,
+        /*.progress_callback           =*/ nullptr,
+        /*.progress_callback_user_data =*/ nullptr,
+        /*.kv_overrides                =*/ nullptr,
+        /*.vocab_only                  =*/ false,
+        /*.use_mmap                    =*/ true,
+        /*.use_mlock                   =*/ false,
+        /*.check_tensors               =*/ false,
+    };
+
+#ifdef GGML_USE_METAL
+    // note: we usually have plenty of VRAM, so by default offload all layers to the GPU
+    result.n_gpu_layers = 999;
+#endif
+
+    return result;
+}
+
+struct llama_context_params llama_context_default_params() {
+    struct llama_context_params result = {
+        /*.seed                        =*/ LLAMA_DEFAULT_SEED,
+        /*.n_ctx                       =*/ 512,
+        /*.n_batch                     =*/ 2048,
+        /*.n_ubatch                    =*/ 512,
+        /*.n_seq_max                   =*/ 1,
+        /*.n_threads                   =*/ GGML_DEFAULT_N_THREADS, // TODO: better default
+        /*.n_threads_batch             =*/ GGML_DEFAULT_N_THREADS,
+        /*.rope_scaling_type           =*/ LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED,
+        /*.pooling_type                =*/ LLAMA_POOLING_TYPE_UNSPECIFIED,
+        /*.attention_type              =*/ LLAMA_ATTENTION_TYPE_UNSPECIFIED,
+        /*.rope_freq_base              =*/ 0.0f,
+        /*.rope_freq_scale             =*/ 0.0f,
+        /*.yarn_ext_factor             =*/ -1.0f,
+        /*.yarn_attn_factor            =*/ 1.0f,
+        /*.yarn_beta_fast              =*/ 32.0f,
+        /*.yarn_beta_slow              =*/ 1.0f,
+        /*.yarn_orig_ctx               =*/ 0,
+        /*.defrag_thold                =*/ -1.0f,
+        /*.cb_eval                     =*/ nullptr,
+        /*.cb_eval_user_data           =*/ nullptr,
+        /*.type_k                      =*/ GGML_TYPE_F16,
+        /*.type_v                      =*/ GGML_TYPE_F16,
+        /*.logits_all                  =*/ false,
+        /*.embeddings                  =*/ false,
+        /*.offload_kqv                 =*/ true,
+        /*.flash_attn                  =*/ false,
+        /*.abort_callback              =*/ nullptr,
+        /*.abort_callback_data         =*/ nullptr,
+    };
+
+    return result;
+}
+
+struct llama_model_quantize_params llama_model_quantize_default_params() {
+    struct llama_model_quantize_params result = {
+        /*.nthread                     =*/ 0,
+        /*.ftype                       =*/ LLAMA_FTYPE_MOSTLY_Q5_1,
+        /*.output_tensor_type          =*/ GGML_TYPE_COUNT,
+        /*.token_embedding_type        =*/ GGML_TYPE_COUNT,
+        /*.allow_requantize            =*/ false,
+        /*.quantize_output_tensor      =*/ true,
+        /*.only_copy                   =*/ false,
+        /*.pure                        =*/ false,
+        /*.keep_split                  =*/ false,
+        /*.imatrix                     =*/ nullptr,
+        /*.kv_overrides                =*/ nullptr,
+    };
+
+    return result;
+}
+
+size_t llama_max_devices(void) {
+#if defined(GGML_USE_RPC)
+    return GGML_RPC_MAX_SERVERS;
+#elif defined(GGML_USE_METAL)
+    return 1;
+#elif defined(GGML_USE_CUDA)
+    return GGML_CUDA_MAX_DEVICES;
+#elif defined(GGML_USE_SYCL)
+    return GGML_SYCL_MAX_DEVICES;
+#elif defined(GGML_USE_VULKAN)
+    return GGML_VK_MAX_DEVICES;
+#elif defined(GGML_USE_CANN)
+    return GGML_CANN_MAX_DEVICES;
+#else
+    return 1;
+#endif
+}
+
+bool llama_supports_mmap(void) {
+    return llama_mmap::SUPPORTED;
+}
+
+bool llama_supports_mlock(void) {
+    return llama_mlock::SUPPORTED;
+}
+
+bool llama_supports_gpu_offload(void) {
+#if defined(GGML_USE_CUDA) || defined(GGML_USE_METAL)   || defined(GGML_USE_VULKAN) || \
+    defined(GGML_USE_SYCL) || defined(GGML_USE_KOMPUTE) || defined(GGML_USE_RPC)
+    // Defined when llama.cpp is compiled with support for offloading model layers to GPU.
+    return true;
+#else
+    return false;
+#endif
+}
+
+void llama_backend_init(void) {
+    ggml_time_init();
+
+    // needed to initialize f16 tables
+    {
+        struct ggml_init_params params = { 0, NULL, false };
+        struct ggml_context * ctx = ggml_init(params);
+        ggml_free(ctx);
+    }
+}
+
+void llama_numa_init(enum ggml_numa_strategy numa) {
+    if (numa != GGML_NUMA_STRATEGY_DISABLED) {
+        ggml_numa_init(numa);
+    }
+}
+
+void llama_backend_free(void) {
+    ggml_quantize_free();
+}
+
+int64_t llama_time_us(void) {
+    return ggml_time_us();
+}
+
+struct llama_model * llama_load_model_from_file(
+        const char * path_model,
+        struct llama_model_params   params) {
+    ggml_time_init();
+
+    llama_model * model = new llama_model;
+
+    unsigned cur_percentage = 0;
+    if (params.progress_callback == NULL) {
+        params.progress_callback_user_data = &cur_percentage;
+        params.progress_callback = [](float progress, void * ctx) {
+            unsigned * cur_percentage_p = (unsigned *) ctx;
+            unsigned percentage = (unsigned) (100 * progress);
+            while (percentage > *cur_percentage_p) {
+                *cur_percentage_p = percentage;
+                LLAMA_LOG_INFO(".");
+                if (percentage >= 100) {
+                    LLAMA_LOG_INFO("\n");
+                }
+            }
+            return true;
+        };
+    }
+    if (params.rpc_servers != nullptr && params.rpc_servers[0] != '\0') {
+        // split the servers set them into model->rpc_servers
+        std::string servers(params.rpc_servers);
+        size_t pos = 0;
+        while ((pos = servers.find(",")) != std::string::npos) {
+            std::string server = servers.substr(0, pos);
+            model->rpc_servers.push_back(server);
+            servers.erase(0, pos + 1);
+        }
+        model->rpc_servers.push_back(servers);
+    }
+    int status = llama_model_load(path_model, *model, params);
+    GGML_ASSERT(status <= 0);
+    if (status < 0) {
+        if (status == -1) {
+            LLAMA_LOG_ERROR("%s: failed to load model\n", __func__);
+        } else if (status == -2) {
+            LLAMA_LOG_INFO("%s: cancelled model load\n", __func__);
+        }
+        delete model;
+        return nullptr;
+    }
+
+    return model;
+}
+
+void llama_free_model(struct llama_model * model) {
+    delete model;
+}
+
+struct llama_context * llama_new_context_with_model(
+                 struct llama_model * model,
+        struct llama_context_params   params) {
+
+    if (!model) {
+        LLAMA_LOG_ERROR("%s: model cannot be NULL\n", __func__);
+        return nullptr;
+    }
+
+    if (params.n_batch == 0 && params.n_ubatch == 0) {
+        LLAMA_LOG_ERROR("%s: n_batch and n_ubatch cannot both be zero\n", __func__);
+        return nullptr;
+    }
+
+    if (params.n_ctx == 0 && model->hparams.n_ctx_train == 0) {
+        LLAMA_LOG_ERROR("%s: n_ctx and model->hparams.n_ctx_train cannot both be zero\n", __func__);
+        return nullptr;
+    }
+
+    if (params.flash_attn && model->arch == LLM_ARCH_GROK) {
+        LLAMA_LOG_WARN("%s: flash_attn is not compatible with Grok - forcing off\n", __func__);
+        params.flash_attn = false;
+    }
+
+    if (params.flash_attn && model->hparams.attn_soft_cap) {
+        LLAMA_LOG_WARN("%s: flash_attn is not compatible with attn_soft_cap - forcing off\n", __func__);
+        params.flash_attn = false;
+    }
+
+
+    if (params.flash_attn && model->hparams.n_embd_head_k != model->hparams.n_embd_head_v) {
+        LLAMA_LOG_WARN("%s: flash_attn requires n_embd_head_k == n_embd_head_v - forcing off\n", __func__);
+        params.flash_attn = false;
+    }
+
+    if (params.type_v != GGML_TYPE_F16 && !params.flash_attn) {
+        LLAMA_LOG_ERROR("%s: V cache quantization requires flash_attn\n", __func__);
+        return nullptr;
+    }
+
+    llama_context * ctx = new llama_context(*model);
+
+    const auto & hparams = model->hparams;
+    auto       & cparams = ctx->cparams;
+
+    cparams.n_seq_max        = std::max(1u, params.n_seq_max);
+    cparams.n_threads        = params.n_threads;
+    cparams.n_threads_batch  = params.n_threads_batch;
+    cparams.yarn_ext_factor  = params.yarn_ext_factor;
+    cparams.yarn_attn_factor = params.yarn_attn_factor;
+    cparams.yarn_beta_fast   = params.yarn_beta_fast;
+    cparams.yarn_beta_slow   = params.yarn_beta_slow;
+    cparams.defrag_thold     = params.defrag_thold;
+    cparams.embeddings       = params.embeddings;
+    cparams.offload_kqv      = params.offload_kqv;
+    cparams.flash_attn       = params.flash_attn;
+    cparams.pooling_type     = params.pooling_type;
+
+    cparams.n_ctx            = params.n_ctx           == 0    ? hparams.n_ctx_train           : params.n_ctx;
+    cparams.rope_freq_base   = params.rope_freq_base  == 0.0f ? hparams.rope_freq_base_train  : params.rope_freq_base;
+    cparams.rope_freq_scale  = params.rope_freq_scale == 0.0f ? hparams.rope_freq_scale_train : params.rope_freq_scale;
+
+    // this is necessary due to kv_self.n being padded later during inference
+    cparams.n_ctx            = GGML_PAD(cparams.n_ctx, llama_kv_cache_get_padding(cparams));
+
+    // with causal attention, the batch size is limited by the context size
+    cparams.n_batch          = hparams.causal_attn ? std::min(cparams.n_ctx, params.n_batch) : params.n_batch;
+
+    // the batch has to be at least GGML_KQ_MASK_PAD because we will be padding the KQ_mask
+    // this is required by GPU kernels in order to avoid out-of-bounds accesses (e.g. ggml_flash_attn_ext)
+    // ref: https://github.com/ggerganov/llama.cpp/pull/5021
+    if (cparams.n_batch < GGML_KQ_MASK_PAD) {
+        LLAMA_LOG_WARN("%s: n_batch is less than GGML_KQ_MASK_PAD - increasing to %d\n", __func__, GGML_KQ_MASK_PAD);
+        cparams.n_batch = GGML_KQ_MASK_PAD;
+    }
+
+    cparams.n_ubatch         = std::min(cparams.n_batch, params.n_ubatch == 0 ? params.n_batch : params.n_ubatch);
+
+    cparams.n_ctx_orig_yarn  = params.yarn_orig_ctx    != 0 ? params.yarn_orig_ctx    :
+                               hparams.n_ctx_orig_yarn != 0 ? hparams.n_ctx_orig_yarn :
+                                                              hparams.n_ctx_train;
+
+    cparams.cb_eval           = params.cb_eval;
+    cparams.cb_eval_user_data = params.cb_eval_user_data;
+
+    auto rope_scaling_type = params.rope_scaling_type;
+    if (rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED) {
+        rope_scaling_type = hparams.rope_scaling_type_train;
+    }
+
+    if (rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_NONE) {
+        cparams.rope_freq_scale = 1.0f; // never scale if scaling type is none
+    }
+
+    if (cparams.yarn_ext_factor < 0.0f) { // negative indicates 'not set'
+        cparams.yarn_ext_factor = rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_YARN ? 1.0f : 0.0f;
+    }
+
+    cparams.yarn_attn_factor *= hparams.rope_attn_factor;
+
+    if (cparams.pooling_type == LLAMA_POOLING_TYPE_UNSPECIFIED) {
+        if (hparams.pooling_type == LLAMA_POOLING_TYPE_UNSPECIFIED) {
+            cparams.pooling_type = LLAMA_POOLING_TYPE_NONE;
+        } else {
+            cparams.pooling_type = hparams.pooling_type;
+        }
+    }
+
+    if (params.attention_type == LLAMA_ATTENTION_TYPE_UNSPECIFIED) {
+        cparams.causal_attn = hparams.causal_attn;
+    } else {
+        cparams.causal_attn = params.attention_type == LLAMA_ATTENTION_TYPE_CAUSAL;
+    }
+
+    if (params.seed == LLAMA_DEFAULT_SEED) {
+        params.seed = time(NULL);
+    }
+
+    LLAMA_LOG_INFO("%s: n_ctx      = %u\n",     __func__, cparams.n_ctx);
+    LLAMA_LOG_INFO("%s: n_batch    = %u\n",     __func__, cparams.n_batch);
+    LLAMA_LOG_INFO("%s: n_ubatch   = %u\n",     __func__, cparams.n_ubatch);
+    LLAMA_LOG_INFO("%s: flash_attn = %d\n",     __func__, cparams.flash_attn);
+    LLAMA_LOG_INFO("%s: freq_base  = %.1f\n",   __func__, cparams.rope_freq_base);
+    LLAMA_LOG_INFO("%s: freq_scale = %g\n",     __func__, cparams.rope_freq_scale);
+
+    ctx->abort_callback      = params.abort_callback;
+    ctx->abort_callback_data = params.abort_callback_data;
+
+    ctx->sampling.rng = std::mt19937(params.seed);
+    ctx->logits_all   = params.logits_all;
+
+    uint32_t kv_size = cparams.n_ctx;
+    ggml_type type_k = params.type_k;
+    ggml_type type_v = params.type_v;
+
+    // Mamba only needs a constant number of KV cache cells per sequence
+    if (model->arch == LLM_ARCH_MAMBA) {
+        // Mamba needs at least as many KV cells as there are sequences kept at any time
+        kv_size = std::max((uint32_t) 1, params.n_seq_max);
+        // it's probably best to keep as much precision as possible for the states
+        type_k = GGML_TYPE_F32; // required by ggml_ssm_conv for Mamba's conv_states
+        type_v = GGML_TYPE_F32; // required by ggml_ssm_scan for Mamba's ssm_states
+    }
+
+    GGML_ASSERT(hparams.n_embd_head_k % ggml_blck_size(type_k) == 0);
+    GGML_ASSERT(hparams.n_embd_head_v % ggml_blck_size(type_v) == 0);
+
+    if (!hparams.vocab_only) {
+        // initialize backends
+#if defined(GGML_USE_METAL)
+        if (model->n_gpu_layers > 0) {
+            ctx->backend_metal = ggml_backend_metal_init();
+            if (ctx->backend_metal == nullptr) {
+                LLAMA_LOG_ERROR("%s: failed to initialize Metal backend\n", __func__);
+                llama_free(ctx);
+                return nullptr;
+            }
+            ctx->backends.push_back(ctx->backend_metal);
+        }
+#elif defined(GGML_USE_CUDA)
+        if (model->split_mode == LLAMA_SPLIT_MODE_NONE || model->split_mode == LLAMA_SPLIT_MODE_ROW) {
+            // with split_mode LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_ROW, only the main GPU backend is used
+            ggml_backend_t backend = ggml_backend_cuda_init(model->main_gpu);
+            if (backend == nullptr) {
+                LLAMA_LOG_ERROR("%s: failed to initialize CUDA%d backend\n", __func__, model->main_gpu);
+                llama_free(ctx);
+                return nullptr;
+            }
+            ctx->backends.push_back(backend);
+        } else {
+            // LLAMA_SPLIT_MODE_LAYER requires a backend for each GPU
+            for (int device = 0; device < ggml_backend_cuda_get_device_count(); ++device) {
+                ggml_backend_t backend = ggml_backend_cuda_init(device);
+                if (backend == nullptr) {
+                    LLAMA_LOG_ERROR("%s: failed to initialize CUDA%d backend\n", __func__, device);
+                    llama_free(ctx);
+                    return nullptr;
+                }
+                ctx->backends.push_back(backend);
+            }
+        }
+#elif defined(GGML_USE_VULKAN)
+        if (model->split_mode == LLAMA_SPLIT_MODE_ROW) {
+            LLAMA_LOG_ERROR("%s: Row split not supported. Failed to initialize Vulkan backend\n", __func__);
+            llama_free(ctx);
+            return nullptr;
+        }
+        if (model->split_mode == LLAMA_SPLIT_MODE_NONE) {
+            ggml_backend_t backend = ggml_backend_vk_init(model->main_gpu);
+            if (backend == nullptr) {
+                LLAMA_LOG_ERROR("%s: failed to initialize Vulkan backend\n", __func__);
+                llama_free(ctx);
+                return nullptr;
+            }
+            ctx->backends.push_back(backend);
+        } else {
+            for (int device = 0; device < ggml_backend_vk_get_device_count(); ++device) {
+                ggml_backend_t backend = ggml_backend_vk_init(device);
+                if (backend == nullptr) {
+                    LLAMA_LOG_ERROR("%s: failed to initialize Vulkan%d backend\n", __func__, device);
+                    llama_free(ctx);
+                    return nullptr;
+                }
+                ctx->backends.push_back(backend);
+            }
+        }
+#elif defined(GGML_USE_SYCL)
+        // with split_mode LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_ROW, only the main GPU backend is used
+        if (model->split_mode == LLAMA_SPLIT_MODE_NONE || model->split_mode == LLAMA_SPLIT_MODE_ROW) {
+            ggml_backend_t backend = ggml_backend_sycl_init(model->main_gpu);
+            if (backend == nullptr) {
+                LLAMA_LOG_ERROR("%s: failed to initialize SYCL%d backend\n", __func__, model->main_gpu);
+                llama_free(ctx);
+                return nullptr;
+            }
+            ctx->backends.push_back(backend);
+        } else {
+            // LLAMA_SPLIT_LAYER requires a backend for each GPU
+            for (int i = 0; i < ggml_backend_sycl_get_device_count(); ++i) {
+                ggml_backend_t backend = ggml_backend_sycl_init(i);
+                if (backend == nullptr) {
+                    LLAMA_LOG_ERROR("%s: failed to initialize SYCL%d for No.%d backend\n", __func__, i, i);
+                    llama_free(ctx);
+                    return nullptr;
+                }
+                ctx->backends.push_back(backend);
+            }
+        }
+#elif defined(GGML_USE_KOMPUTE)
+        if (model->n_gpu_layers > 0) {
+            auto * backend = ggml_backend_kompute_init(model->main_gpu);
+            if (backend == nullptr) {
+                LLAMA_LOG_ERROR("%s: failed to initialize Kompute backend\n", __func__);
+                llama_free(ctx);
+                return nullptr;
+            }
+            ctx->backends.push_back(backend);
+        }
+#elif defined(GGML_USE_CANN)
+    // with split_mode LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_ROW, only the main GPU backend is used
+    // TODO: ggml_backend_cann is not support split tensor now, just leave code here.
+    if (model->split_mode == LLAMA_SPLIT_MODE_NONE || model->split_mode == LLAMA_SPLIT_MODE_ROW) {
+        ggml_backend_t backend = ggml_backend_cann_init(model->main_gpu);
+        if (backend == nullptr) {
+            LLAMA_LOG_ERROR("%s: failed to initialize CANN%d backend\n", __func__, model->main_gpu);
+            llama_free(ctx);
+            return nullptr;
+        }
+        ctx->backends.push_back(backend);
+    } else {
+        // LLAMA_SPLIT_MODE_LAYER requires a backend for each GPU
+        // TODO: currently, CANN can't use multi-gpus, just leave code here for further cann version.
+        for (int32_t device = 0; device < ggml_backend_cann_get_device_count(); ++device) {
+            ggml_backend_t backend = ggml_backend_cann_init(device);
+            if (backend == nullptr) {
+                LLAMA_LOG_ERROR("%s: failed to initialize CANN%d backend\n", __func__, device);
+                llama_free(ctx);
+                return nullptr;
+            }
+            ctx->backends.push_back(backend);
+        }
+    }
+#endif
+
+#ifdef GGML_USE_BLAS
+        ctx->backend_blas = ggml_backend_blas_init();
+        if (ctx->backend_blas == nullptr) {
+            LLAMA_LOG_WARN("%s: failed to initialize BLAS backend\n", __func__);
+        } else {
+            ctx->backends.push_back(ctx->backend_blas);
+        }
+#endif
+
+#if defined(GGML_USE_RPC)
+        if (model->n_gpu_layers > 0) {
+            for (const auto & endpoint : model->rpc_servers) {
+                ggml_backend_t backend = ggml_backend_rpc_init(endpoint.c_str());
+                if (backend == nullptr) {
+                    LLAMA_LOG_ERROR("%s: failed to initialize RPC to '%s'\n", __func__, endpoint.c_str());
+                    llama_free(ctx);
+                    return nullptr;
+                }
+                ctx->backends.push_back(backend);
+            }
+        }
+#endif
+        ctx->backend_cpu = ggml_backend_cpu_init();
+        if (ctx->backend_cpu == nullptr) {
+            LLAMA_LOG_ERROR("%s: failed to initialize CPU backend\n", __func__);
+            llama_free(ctx);
+            return nullptr;
+        }
+        ctx->backends.push_back(ctx->backend_cpu);
+
+        if (!llama_kv_cache_init(ctx->kv_self, ctx, type_k, type_v, kv_size, cparams.offload_kqv)) {
+            LLAMA_LOG_ERROR("%s: llama_kv_cache_init() failed for self-attention cache\n", __func__);
+            llama_free(ctx);
+            return nullptr;
+        }
+
+        {
+            size_t memory_size_k = 0;
+            size_t memory_size_v = 0;
+
+            for (auto & k : ctx->kv_self.k_l) {
+                memory_size_k += ggml_nbytes(k);
+            }
+
+            for (auto & v : ctx->kv_self.v_l) {
+                memory_size_v += ggml_nbytes(v);
+            }
+
+            LLAMA_LOG_INFO("%s: KV self size  = %7.2f MiB, K (%s): %7.2f MiB, V (%s): %7.2f MiB\n", __func__,
+                (float)(memory_size_k + memory_size_v) / (1024.0f * 1024.0f),
+                ggml_type_name(type_k), (float)memory_size_k / (1024.0f * 1024.0f),
+                ggml_type_name(type_v), (float)memory_size_v / (1024.0f * 1024.0f));
+        }
+
+        // graph outputs buffer
+        {
+            // resized during inference when a batch uses more outputs
+            if (llama_output_reserve(*ctx, params.n_seq_max) < params.n_seq_max) {
+                LLAMA_LOG_ERROR("%s: failed to reserve initial output buffer\n", __func__);
+                llama_free(ctx);
+                return nullptr;
+            }
+
+            LLAMA_LOG_INFO("%s: %10s  output buffer size = %8.2f MiB\n", __func__,
+                    ggml_backend_buffer_name(ctx->buf_output),
+                    ggml_backend_buffer_get_size(ctx->buf_output) / 1024.0 / 1024.0);
+        }
+
+        // scheduler and compute buffers
+        {
+            // buffer types used for the compute buffer of each backend
+            std::vector backend_buft;
+            for (auto * backend : ctx->backends) {
+                if (ggml_backend_is_cpu(backend)) {
+                    // use host buffers for the CPU backend compute buffer
+                    backend_buft.push_back(llama_default_buffer_type_cpu(true));
+                } else {
+                    backend_buft.push_back(ggml_backend_get_default_buffer_type(backend));
+                }
+            }
+
+            // buffer used to store the computation graph and the tensor meta data
+            ctx->buf_compute_meta.resize(ggml_tensor_overhead()*LLAMA_MAX_NODES + ggml_graph_overhead_custom(LLAMA_MAX_NODES, false));
+
+            // enabling pipeline parallelism in the scheduler increases memory usage, so it is only done when necessary
+            bool pipeline_parallel =
+                llama_get_device_count(*model) > 1 &&
+                model->n_gpu_layers > (int)model->hparams.n_layer &&
+                model->split_mode == LLAMA_SPLIT_MODE_LAYER &&
+                params.offload_kqv;
+#ifndef GGML_USE_CUDA
+            // pipeline parallelism requires support for async compute and events
+            // currently this is only implemented in the CUDA backend
+            pipeline_parallel = false;
+#endif
+            ctx->sched = ggml_backend_sched_new(ctx->backends.data(), backend_buft.data(), ctx->backends.size(), LLAMA_MAX_NODES, pipeline_parallel);
+
+            if (pipeline_parallel) {
+                LLAMA_LOG_INFO("%s: pipeline parallelism enabled (n_copies=%d)\n", __func__, ggml_backend_sched_get_n_copies(ctx->sched));
+            }
+
+            // build worst-case graph
+            int n_tokens = (int)std::min(cparams.n_ctx, cparams.n_ubatch);
+            int n_past = cparams.n_ctx - n_tokens;
+            llama_token token = llama_token_bos(&ctx->model); // not actually used by llama_build_graph, but required to choose between token and embedding inputs graph
+            ggml_cgraph * gf = llama_build_graph(*ctx, llama_batch_get_one(&token, n_tokens, n_past, 0), true);
+
+            // initialize scheduler with the worst-case graph
+            if (!ggml_backend_sched_reserve(ctx->sched, gf)) {
+                LLAMA_LOG_ERROR("%s: failed to allocate compute buffers\n", __func__);
+                llama_free(ctx);
+                return nullptr;
+            }
+
+            for (size_t i = 0; i < ctx->backends.size(); i++) {
+                ggml_backend_t backend = ctx->backends[i];
+                ggml_backend_buffer_type_t buft = backend_buft[i];
+                size_t size = ggml_backend_sched_get_buffer_size(ctx->sched, backend);
+                if (size > 1) {
+                    LLAMA_LOG_INFO("%s: %10s compute buffer size = %8.2f MiB\n", __func__,
+                            ggml_backend_buft_name(buft),
+                            size / 1024.0 / 1024.0);
+                }
+            }
+
+            // note: the number of splits during measure is higher than during inference due to the kv shift
+            int n_splits = ggml_backend_sched_get_n_splits(ctx->sched);
+            LLAMA_LOG_INFO("%s: graph nodes  = %d\n", __func__, gf->n_nodes);
+            LLAMA_LOG_INFO("%s: graph splits = %d\n", __func__, n_splits);
+        }
+    }
+
+    return ctx;
+}
+
+void llama_free(struct llama_context * ctx) {
+    delete ctx;
+}
+
+const struct llama_model * llama_get_model(const struct llama_context * ctx) {
+    return &ctx->model;
+}
+
+const struct llama_vocab * llama_get_vocab(const struct llama_context * ctx) {
+    return &ctx->model.vocab;
+}
+
+uint32_t llama_n_ctx(const struct llama_context * ctx) {
+    return ctx->cparams.n_ctx;
+}
+
+uint32_t llama_n_batch(const struct llama_context * ctx) {
+    return ctx->cparams.n_batch;
+}
+
+uint32_t llama_n_ubatch(const struct llama_context * ctx) {
+    return ctx->cparams.n_ubatch;
+}
+
+uint32_t llama_n_seq_max(const struct llama_context * ctx) {
+    return ctx->kv_self.size;
+}
+
+enum llama_vocab_type llama_vocab_type(const struct llama_model * model) {
+    return model->vocab.type;
+}
+
+enum llama_rope_type llama_rope_type(const struct llama_model * model) {
+    switch (model->arch) {
+        // these models do not use RoPE
+        case LLM_ARCH_GPT2:
+        case LLM_ARCH_GPTJ:
+        case LLM_ARCH_MPT:
+        case LLM_ARCH_REFACT:
+        case LLM_ARCH_BLOOM:
+        case LLM_ARCH_MAMBA:
+        case LLM_ARCH_JINA_BERT_V2:
+        case LLM_ARCH_T5:
+        case LLM_ARCH_JAIS:
+            return LLAMA_ROPE_TYPE_NONE;
+
+        // use what we call a normal RoPE, operating on pairs of consecutive head values
+        case LLM_ARCH_LLAMA:
+        case LLM_ARCH_BAICHUAN:
+        case LLM_ARCH_STARCODER:
+        case LLM_ARCH_PLAMO:
+        case LLM_ARCH_ORION:
+        case LLM_ARCH_INTERNLM2:
+        case LLM_ARCH_MINICPM:
+        case LLM_ARCH_XVERSE:
+        case LLM_ARCH_COMMAND_R:
+        case LLM_ARCH_OLMO:
+        case LLM_ARCH_ARCTIC:
+        case LLM_ARCH_DEEPSEEK2:
+        case LLM_ARCH_CHATGLM:
+            return LLAMA_ROPE_TYPE_NORM;
+
+        // the pairs of head values are offset by n_rot/2
+        case LLM_ARCH_FALCON:
+        case LLM_ARCH_GROK:
+        case LLM_ARCH_DBRX:
+        case LLM_ARCH_BERT:
+        case LLM_ARCH_NOMIC_BERT:
+        case LLM_ARCH_STABLELM:
+        case LLM_ARCH_BITNET:
+        case LLM_ARCH_QWEN:
+        case LLM_ARCH_QWEN2:
+        case LLM_ARCH_QWEN2MOE:
+        case LLM_ARCH_PHI2:
+        case LLM_ARCH_PHI3:
+        case LLM_ARCH_GEMMA:
+        case LLM_ARCH_GEMMA2:
+        case LLM_ARCH_STARCODER2:
+        case LLM_ARCH_OPENELM:
+        case LLM_ARCH_GPTNEOX:
+        case LLM_ARCH_CODESHELL:
+            return LLAMA_ROPE_TYPE_NEOX;
+
+        // all model arches should be listed explicitly here
+        case LLM_ARCH_UNKNOWN:
+            GGML_ASSERT(false && "unknown architecture");
+            break;
+    }
+
+    return LLAMA_ROPE_TYPE_NONE;
+}
+
+enum llama_pooling_type llama_pooling_type(const struct llama_context * ctx) {
+    return ctx->cparams.pooling_type;
+}
+
+int32_t llama_n_vocab(const struct llama_model * model) {
+    return model->hparams.n_vocab;
+}
+
+int32_t llama_n_ctx_train(const struct llama_model * model) {
+    return model->hparams.n_ctx_train;
+}
+
+int32_t llama_n_embd(const struct llama_model * model) {
+    return model->hparams.n_embd;
+}
+
+int32_t llama_n_layer(const struct llama_model * model) {
+    return model->hparams.n_layer;
+}
+
+float llama_rope_freq_scale_train(const struct llama_model * model) {
+    return model->hparams.rope_freq_scale_train;
+}
+
+int32_t llama_model_meta_val_str(const struct llama_model * model, const char * key, char * buf, size_t buf_size) {
+    const auto & it = model->gguf_kv.find(key);
+    if (it == model->gguf_kv.end()) {
+        if (buf_size > 0) {
+            buf[0] = '\0';
+        }
+        return -1;
+    }
+    return snprintf(buf, buf_size, "%s", it->second.c_str());
+}
+
+int32_t llama_model_meta_count(const struct llama_model * model) {
+    return (int)model->gguf_kv.size();
+}
+
+int32_t llama_model_meta_key_by_index(const struct llama_model * model, int i, char * buf, size_t buf_size) {
+    if (i < 0 || i >= (int)model->gguf_kv.size()) {
+        if (buf_size > 0) {
+            buf[0] = '\0';
+        }
+        return -1;
+    }
+    auto it = model->gguf_kv.begin();
+    std::advance(it, i);
+    return snprintf(buf, buf_size, "%s", it->first.c_str());
+}
+
+int32_t llama_model_meta_val_str_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size) {
+    if (i < 0 || i >= (int)model->gguf_kv.size()) {
+        if (buf_size > 0) {
+            buf[0] = '\0';
+        }
+        return -1;
+    }
+    auto it = model->gguf_kv.begin();
+    std::advance(it, i);
+    return snprintf(buf, buf_size, "%s", it->second.c_str());
+}
+
+int32_t llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size) {
+    return snprintf(buf, buf_size, "%s %s %s",
+            llama_model_arch_name(model->arch),
+            llama_model_type_name(model->type),
+            llama_model_ftype_name(model->ftype).c_str());
+}
+
+uint64_t llama_model_size(const struct llama_model * model) {
+    uint64_t size = 0;
+    for (const auto & it : model->tensors_by_name) {
+        size += ggml_nbytes(it.second);
+    }
+    return size;
+}
+
+uint64_t llama_model_n_params(const struct llama_model * model) {
+    uint64_t nparams = 0;
+    for (const auto & it : model->tensors_by_name) {
+        nparams += ggml_nelements(it.second);
+    }
+    return nparams;
+}
+
+struct ggml_tensor * llama_get_model_tensor(struct llama_model * model, const char * name) {
+    auto it = std::find_if(model->tensors_by_name.begin(), model->tensors_by_name.end(),
+            [name](const std::pair & it) {
+                return it.first == name;
+            });
+    if (it == model->tensors_by_name.end()) {
+        return nullptr;
+    }
+    return it->second;
+}
+
+bool llama_model_has_encoder(const struct llama_model * model) {
+    switch (model->arch) {
+        case LLM_ARCH_T5: return true;
+        default:          return false;
+    }
+}
+
+llama_token llama_model_decoder_start_token(const struct llama_model * model) {
+    return model->hparams.dec_start_token_id;
+}
+
+uint32_t llama_model_quantize(
+        const char * fname_inp,
+        const char * fname_out,
+        const llama_model_quantize_params * params) {
+    try {
+        llama_model_quantize_internal(fname_inp, fname_out, params);
+        return 0;
+    } catch (const std::exception & err) {
+        LLAMA_LOG_ERROR("%s: failed to quantize: %s\n", __func__, err.what());
+        return 1;
+    }
+}
+
+struct llama_lora_adapter * llama_lora_adapter_init(struct llama_model * model, const char * path_lora) {
+    try {
+        struct llama_lora_adapter * adapter = new llama_lora_adapter(model);
+        llama_lora_adapter_init_internal(model, path_lora, *adapter);
+        return adapter;
+    } catch (const std::exception & err) {
+        LLAMA_LOG_ERROR("%s: failed to apply lora adapter: %s\n", __func__, err.what());
+        return nullptr;
+    }
+}
+
+static bool llama_control_vector_init(struct llama_control_vector & cvec, const llama_model & model) {
+    GGML_ASSERT(cvec.tensors.empty());
+    GGML_ASSERT(cvec.ctxs.empty());
+    GGML_ASSERT(cvec.bufs.empty());
+
+    // count layer buffer types
+    std::map buft_layer_count;
+    for (int64_t i = 0; i < model.hparams.n_layer; i++) {
+        buft_layer_count[model.buft_layer[i].buft]++;
+    }
+
+    // allocate contexts
+    std::map ctx_map;
+    for (auto & it : buft_layer_count) {
+        int n_layers = it.second;
+        struct ggml_init_params params = {
+            /*.mem_size   =*/ n_layers * ggml_tensor_overhead(),
+            /*.mem_buffer =*/ NULL,
+            /*.no_alloc   =*/ true,
+        };
+        ggml_context * ctx = ggml_init(params);
+        if (!ctx) {
+            LLAMA_LOG_ERROR("%s: failed to allocate context for control vector\n", __func__);
+            return 1;
+        }
+        ctx_map[it.first] = ctx;
+    }
+
+    // make tensors
+    cvec.tensors.reserve(model.hparams.n_layer);
+    cvec.tensors.push_back(nullptr); // there's never a tensor for layer 0
+    for (size_t il = 1; il < model.hparams.n_layer; il++) {
+        struct ggml_context * ctx = ctx_map.at(model.buft_layer[il].buft);
+        ggml_tensor * tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, model.hparams.n_embd);
+        cvec.tensors.push_back(tensor);
+    }
+
+    // allocate tensors / buffers and zero
+    cvec.ctxs.reserve(ctx_map.size());
+    cvec.bufs.reserve(ctx_map.size());
+    for (auto it : ctx_map) {
+        ggml_backend_buffer_type_t buft = it.first;
+        ggml_context * ctx = it.second;
+        ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
+        if (!buf) {
+            LLAMA_LOG_ERROR("%s: failed to allocate buffer for control vector\n", __func__);
+            return false;
+        }
+        ggml_backend_buffer_clear(buf, 0);
+        cvec.ctxs.push_back(ctx);
+        cvec.bufs.push_back(buf);
+    }
+
+    return true;
+}
+
+int32_t llama_control_vector_apply(struct llama_context * lctx, const float * data, size_t len, int32_t n_embd, int32_t il_start, int32_t il_end) {
+    const llama_model & model = lctx->model;
+    llama_control_vector & cvec = lctx->cvec;
+
+    if (data == nullptr) {
+        // disable the current control vector (but leave allocated for later)
+        cvec.layer_start = -1;
+        cvec.layer_end   = -1;
+        return 0;
+    }
+
+    if (n_embd != (int) model.hparams.n_embd) {
+        LLAMA_LOG_ERROR("%s: control vector n_embd does not match model\n", __func__);
+        return 1;
+    }
+
+    if (cvec.tensors.empty()) {
+        if (!llama_control_vector_init(cvec, model)) {
+            return 1;
+        }
+    }
+
+    cvec.layer_start = il_start;
+    cvec.layer_end   = il_end;
+
+    for (size_t il = 1; il < model.hparams.n_layer; il++) {
+        assert(cvec.tensors[il] != nullptr);
+
+        const size_t off = n_embd * (il - 1); // buffer doesn't have data for layer 0, since it's never present
+        if (off + n_embd <= len) {
+            ggml_backend_tensor_set(cvec.tensors[il], data + off, 0, n_embd * ggml_element_size(cvec.tensors[il]));
+        }
+    }
+
+    return 0;
+}
+
+struct llama_kv_cache_view llama_kv_cache_view_init(const struct llama_context * ctx, int32_t n_seq_max) {
+    struct llama_kv_cache_view result = {
+        /*.n_cells            = */ 0,
+        /*.n_seq_max          = */ n_seq_max,
+        /*.token_count        = */ 0,
+        /*.used_cells         = */ llama_get_kv_cache_used_cells(ctx),
+        /*.max_contiguous     = */ 0,
+        /*.max_contiguous_idx = */ -1,
+        /*.cells              = */ nullptr,
+        /*.cells_sequences    = */ nullptr,
+    };
+    return result;
+}
+
+void llama_kv_cache_view_free(struct llama_kv_cache_view * view) {
+    if (view->cells != nullptr) {
+        free(view->cells);
+        view->cells = nullptr;
+    }
+    if (view->cells_sequences != nullptr) {
+        free(view->cells_sequences);
+        view->cells_sequences = nullptr;
+    }
+}
+
+void llama_kv_cache_view_update(const struct llama_context * ctx, struct llama_kv_cache_view * view) {
+    if (uint32_t(view->n_cells) < ctx->kv_self.size || view->cells == nullptr) {
+        view->n_cells = int32_t(ctx->kv_self.size);
+        void * p = realloc(view->cells, sizeof(struct llama_kv_cache_view_cell) * view->n_cells);
+        GGML_ASSERT(p != nullptr && "Failed to alloc kv_cache_view cells");
+        view->cells = (struct llama_kv_cache_view_cell *)p;
+        p = realloc(view->cells_sequences, sizeof(llama_seq_id) * view->n_seq_max * view->n_cells);
+        GGML_ASSERT(p != nullptr && "Failed to alloc kv_cache_view cells sequences");
+        view->cells_sequences = (llama_seq_id *)p;
+    }
+
+    const std::vector & kv_cells = ctx->kv_self.cells;
+    llama_kv_cache_view_cell * c_curr = view->cells;
+    llama_seq_id * cs_curr = view->cells_sequences;
+    int32_t used_cells = 0;
+    int32_t token_count = 0;
+    int32_t curr_contig_idx = -1;
+    uint32_t max_contig = 0;
+    int32_t max_contig_idx = -1;
+
+    for (int32_t i = 0; i < int32_t(ctx->kv_self.size); i++, c_curr++, cs_curr += view->n_seq_max) {
+        const size_t curr_size = kv_cells[i].seq_id.size();
+        token_count += curr_size;
+        c_curr->pos = kv_cells[i].pos + kv_cells[i].delta;
+
+        if (curr_size > 0) {
+            if (curr_contig_idx >= 0 && uint32_t(i - curr_contig_idx) > max_contig) {
+                max_contig = i - curr_contig_idx;
+                max_contig_idx = curr_contig_idx;
+            }
+            curr_contig_idx = -1;
+        } else if (curr_contig_idx < 0) {
+            curr_contig_idx = i;
+        }
+
+        int seq_idx = 0;
+        for (const llama_seq_id it : kv_cells[i].seq_id) {
+            if (seq_idx >= view->n_seq_max) {
+                break;
+            }
+            cs_curr[seq_idx] = it;
+            seq_idx++;
+        }
+        if (seq_idx != 0) {
+            used_cells++;
+        }
+        for (; seq_idx < view->n_seq_max; seq_idx++) {
+            cs_curr[seq_idx] = -1;
+        }
+    }
+    if (curr_contig_idx >= 0 && kv_cells.size() - curr_contig_idx > max_contig) {
+        max_contig_idx = curr_contig_idx;
+        max_contig = kv_cells.size() - curr_contig_idx;
+    }
+    view->max_contiguous = max_contig;
+    view->max_contiguous_idx = max_contig_idx;
+    view->token_count = token_count;
+    view->used_cells = used_cells;
+    if (uint32_t(used_cells) != ctx->kv_self.used) {
+        LLAMA_LOG_ERROR("%s: used cells mismatch. kv_cache says %d but we calculated %d\n",
+            __func__, ctx->kv_self.used, used_cells);
+    }
+}
+
+int32_t llama_get_kv_cache_token_count(const struct llama_context * ctx) {
+    int result = 0;
+
+    for (uint32_t i = 0; i < ctx->kv_self.size; i++) {
+        result += ctx->kv_self.cells[i].seq_id.size();
+    }
+
+    return result;
+}
+
+int32_t llama_get_kv_cache_used_cells(const struct llama_context * ctx) {
+    return ctx->kv_self.used;
+}
+
+void llama_kv_cache_clear(struct llama_context * ctx) {
+    llama_kv_cache_clear(ctx->kv_self);
+}
+
+bool llama_kv_cache_seq_rm(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1) {
+    return llama_kv_cache_seq_rm(ctx->kv_self, seq_id, p0, p1);
+}
+
+void llama_kv_cache_seq_cp(struct llama_context * ctx, llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) {
+    if (seq_id_src == seq_id_dst) {
+        return;
+    }
+    llama_kv_cache_seq_cp(ctx->kv_self, seq_id_src, seq_id_dst, p0, p1);
+}
+
+void llama_kv_cache_seq_keep(struct llama_context * ctx, llama_seq_id seq_id) {
+    llama_kv_cache_seq_keep(ctx->kv_self, seq_id);
+}
+
+void llama_kv_cache_seq_add(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos delta) {
+    if (delta == 0) {
+        return;
+    }
+
+    llama_kv_cache_seq_add(ctx->kv_self, seq_id, p0, p1, delta);
+}
+
+void llama_kv_cache_seq_div(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) {
+    if (d == 1) {
+        return;
+    }
+
+    llama_kv_cache_seq_div(ctx->kv_self, seq_id, p0, p1, d);
+}
+
+llama_pos llama_kv_cache_seq_pos_max(struct llama_context * ctx, llama_seq_id seq_id) {
+    return llama_kv_cache_seq_pos_max(ctx->kv_self, seq_id);
+}
+
+void llama_kv_cache_defrag(struct llama_context * ctx) {
+    llama_kv_cache_defrag(ctx->kv_self);
+}
+
+void llama_kv_cache_update(struct llama_context * ctx) {
+    llama_kv_cache_update_internal(*ctx);
+}
+
+// deprecated
+size_t llama_get_state_size(const struct llama_context * ctx) {
+    return llama_state_get_size(ctx);
+}
+
+// deprecated
+size_t llama_copy_state_data(struct llama_context * ctx, uint8_t * dst) {
+    return llama_state_get_data(ctx, dst);
+}
+
+// deprecated
+size_t llama_set_state_data(struct llama_context * ctx, const uint8_t * src) {
+    return llama_state_set_data(ctx, src);
+}
+
+// deprecated
+bool llama_load_session_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
+    return llama_state_load_file(ctx, path_session, tokens_out, n_token_capacity, n_token_count_out);
+}
+
+// deprecated
+bool llama_save_session_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
+    return llama_state_save_file(ctx, path_session, tokens, n_token_count);
+}
+
+// Returns the *maximum* size of the state
+size_t llama_state_get_size(const struct llama_context * ctx) {
+    const auto & cparams = ctx->cparams;
+    const auto & hparams = ctx->model.hparams;
+
+    // we don't know size of rng until we actually serialize it. so reserve more than enough memory for its serialized state.
+    // for reference, std::mt19937(1337) serializes to 6701 bytes.
+    const size_t s_rng_size        = sizeof(size_t);
+    const size_t s_rng             = LLAMA_MAX_RNG_STATE;
+    const size_t s_n_outputs       = sizeof(size_t);
+    // assume worst case for outputs although only currently set ones are serialized
+    const size_t s_output_pos      = ctx->cparams.n_batch * sizeof(int32_t);
+    const size_t s_logits_size     = sizeof(size_t);
+    const size_t s_logits          = ctx->logits_size ? cparams.n_batch * hparams.n_vocab * sizeof(float) : 0;
+    const size_t s_embedding_size  = sizeof(size_t);
+    const size_t s_embedding       = ctx->embd_size   ? cparams.n_batch * hparams.n_embd  * sizeof(float) : 0;
+    const size_t s_kv_buf_size     = sizeof(size_t);
+    const size_t s_kv_head         = sizeof(uint32_t);
+    const size_t s_kv_size         = sizeof(uint32_t);
+    const size_t s_kv_used         = sizeof(uint32_t);
+    const size_t s_v_trans         = sizeof(uint32_t);
+    const size_t s_kv              = ctx->kv_self.total_size();
+    const size_t s_kv_cell         = sizeof(llama_pos) + sizeof(size_t) + cparams.n_seq_max*sizeof(llama_seq_id);
+    const size_t s_kv_cells        = ctx->kv_self.size * s_kv_cell;
+
+    const size_t s_total = (
+        + s_rng_size
+        + s_rng
+        + s_n_outputs
+        + s_output_pos
+        + s_logits_size
+        + s_logits
+        + s_embedding_size
+        + s_embedding
+        + s_kv_buf_size
+        + s_kv_head
+        + s_kv_size
+        + s_kv_used
+        + s_v_trans
+        + s_kv
+        + s_kv_cells
+    );
+
+    // on session change it is very likely that the state size has changed - so we need to update this function
+    static_assert(LLAMA_SESSION_VERSION == 7, "So you just bumped the session version - good. But did you remember to update llama_state_get_size?");
+
+    return s_total;
+}
+
+// llama_context_data
+struct llama_data_context {
+    virtual void write(const void * src, size_t size) = 0;
+    virtual size_t get_size_written() = 0;
+    virtual ~llama_data_context() = default;
+};
+
+struct llama_data_buffer_context : llama_data_context {
+    uint8_t * ptr;
+    size_t size_written = 0;
+
+    llama_data_buffer_context(uint8_t * p) : ptr(p) {}
+
+    void write(const void * src, size_t size) override {
+        memcpy(ptr, src, size);
+        ptr += size;
+        size_written += size;
+    }
+
+    size_t get_size_written() override {
+        return size_written;
+    }
+};
+
+struct llama_data_file_context : llama_data_context {
+    llama_file * file;
+    size_t size_written = 0;
+
+    llama_data_file_context(llama_file * f) : file(f) {}
+
+    void write(const void * src, size_t size) override {
+        file->write_raw(src, size);
+        size_written += size;
+    }
+
+    size_t get_size_written() override {
+        return size_written;
+    }
+};
+
+/** copy state data into either a buffer or file depending on the passed in context
+ *
+ * file context:
+ * llama_file file("/path", "wb");
+ * llama_data_file_context data_ctx(&file);
+ * llama_state_get_data(ctx, &data_ctx);
+ *
+ * buffer context:
+ * std::vector buf(max_size, 0);
+ * llama_data_buffer_context data_ctx(&buf.data());
+ * llama_state_get_data(ctx, &data_ctx);
+ *
+*/
+static void llama_state_get_data_internal(struct llama_context * ctx, llama_data_context * data_ctx) {
+    llama_synchronize(ctx);
+
+    // copy rng
+    {
+        std::ostringstream rng_ss;
+        rng_ss << ctx->sampling.rng;
+
+        const std::string & rng_str  = rng_ss.str();
+        const size_t        rng_size = rng_str.size();
+
+        GGML_ASSERT(rng_size <= LLAMA_MAX_RNG_STATE);
+
+        data_ctx->write(&rng_size,      sizeof(rng_size));
+        data_ctx->write(rng_str.data(), rng_size);
+    }
+
+    // copy outputs
+    {
+        // Can't use ctx->n_outputs because it's not for the
+        // entire last batch when n_ubatch is smaller than n_batch
+        size_t n_outputs = 0;
+
+        // copy output ids
+        {
+            std::vector output_pos;
+
+            const size_t    n_batch = ctx->cparams.n_batch;
+            const auto & output_ids = ctx->output_ids;
+
+            output_pos.resize(ctx->output_size);
+
+            // build a more compact representation of the output ids
+            for (size_t i = 0; i < n_batch; ++i) {
+                // map an output id to a position in the batch
+                int32_t pos = output_ids[i];
+                if (pos >= 0) {
+                    if ((size_t) pos >= n_outputs) {
+                        n_outputs = pos + 1;
+                    }
+                    GGML_ASSERT((size_t) pos < ctx->output_size);
+                    output_pos[pos] = i;
+                }
+            }
+
+            data_ctx->write(&n_outputs, sizeof(n_outputs));
+
+            if (n_outputs) {
+                data_ctx->write(output_pos.data(), n_outputs * sizeof(int32_t));
+            }
+        }
+
+        // copy logits
+        {
+            const size_t logits_size = std::min(ctx->logits_size, n_outputs * ctx->model.hparams.n_vocab);
+
+            data_ctx->write(&logits_size, sizeof(logits_size));
+
+            if (logits_size) {
+                data_ctx->write(ctx->logits, logits_size * sizeof(float));
+            }
+        }
+
+        // copy embeddings
+        {
+            const size_t embeddings_size = std::min(ctx->embd_size, n_outputs * ctx->model.hparams.n_embd);
+
+            data_ctx->write(&embeddings_size, sizeof(embeddings_size));
+
+            if (embeddings_size) {
+                data_ctx->write(ctx->embd, embeddings_size * sizeof(float));
+            }
+        }
+    }
+
+    // copy kv cache
+    {
+        const auto & kv_self = ctx->kv_self;
+        const auto & hparams = ctx->model.hparams;
+
+        const uint32_t n_layer      = hparams.n_layer;
+
+        // NOTE: kv_size and kv_buf_size are mostly used for sanity checks
+        const uint32_t kv_head     = llama_kv_cache_cell_max(kv_self);
+        const uint32_t kv_size     = kv_self.size;
+        const size_t   kv_buf_size = kv_self.total_size() / (kv_size ? kv_size : 1) * kv_head;
+        const uint32_t kv_used     = kv_self.used;
+        const uint32_t v_trans     = kv_self.v_trans ? 1 : 0;
+
+        data_ctx->write(&kv_buf_size, sizeof(kv_buf_size));
+        data_ctx->write(&kv_head,     sizeof(kv_head));
+        data_ctx->write(&kv_size,     sizeof(kv_size));
+        data_ctx->write(&kv_used,     sizeof(kv_used));
+        data_ctx->write(&v_trans,     sizeof(v_trans));
+
+        if (kv_buf_size) {
+            const size_t pre_kv_buf_size = data_ctx->get_size_written();
+
+            std::vector tmp_buf;
+            for (int il = 0; il < (int) n_layer; ++il) {
+                const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(il) + hparams.n_embd_k_s();
+                const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s();
+
+                const size_t k_size = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*kv_head);
+
+                tmp_buf.resize(k_size);
+                ggml_backend_tensor_get(kv_self.k_l[il], tmp_buf.data(), 0, tmp_buf.size());
+                data_ctx->write(tmp_buf.data(), tmp_buf.size());
+
+                if (kv_self.recurrent || !kv_self.v_trans) {
+                    // v is contiguous for recurrent models
+                    // TODO: use other tensors for state models than k and v
+                    const size_t v_size = ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa*kv_head);
+
+                    tmp_buf.resize(v_size);
+                    ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), 0, tmp_buf.size());
+                    data_ctx->write(tmp_buf.data(), tmp_buf.size());
+                    continue;
+                }
+
+                // v is not contiguous, copy row by row
+                const size_t v_row_size   = ggml_row_size(kv_self.v_l[il]->type, kv_head);
+                const size_t v_row_stride = ggml_row_size(kv_self.v_l[il]->type, kv_size);
+
+                tmp_buf.resize(v_row_size);
+                for (int ir = 0; ir < (int) n_embd_v_gqa; ++ir) {
+                    ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), ir*v_row_stride, tmp_buf.size());
+                    data_ctx->write(tmp_buf.data(), tmp_buf.size());
+                }
+            }
+            GGML_ASSERT(kv_buf_size == data_ctx->get_size_written() - pre_kv_buf_size);
+        }
+
+        for (uint32_t i = 0; i < kv_head; ++i) {
+            const auto & cell = kv_self.cells[i];
+
+            const llama_pos pos         = cell.pos;
+            const size_t    seq_id_size = cell.seq_id.size();
+
+            data_ctx->write(&pos,         sizeof(pos));
+            data_ctx->write(&seq_id_size, sizeof(seq_id_size));
+
+            for (auto seq_id : cell.seq_id) {
+                data_ctx->write(&seq_id, sizeof(seq_id));
+            }
+        }
+    }
+}
+
+size_t llama_state_get_data(struct llama_context * ctx, uint8_t * dst) {
+    llama_data_buffer_context data_ctx(dst);
+    llama_state_get_data_internal(ctx, &data_ctx);
+
+    return data_ctx.get_size_written();
+}
+
+// Sets the state reading from the specified source address
+size_t llama_state_set_data(struct llama_context * ctx, const uint8_t * src) {
+    llama_synchronize(ctx);
+
+    const uint8_t * inp = src;
+
+    // set rng
+    {
+        size_t rng_size;
+        memcpy(&rng_size, inp, sizeof(rng_size)); inp += sizeof(rng_size);
+
+        GGML_ASSERT(rng_size <= LLAMA_MAX_RNG_STATE);
+
+        std::string rng_str((const char *)inp, rng_size); inp += rng_size;
+
+        std::istringstream rng_ss(rng_str);
+        rng_ss >> ctx->sampling.rng;
+
+        GGML_ASSERT(!rng_ss.fail());
+    }
+
+    // set output ids
+    {
+        size_t n_outputs;
+        std::vector output_pos;
+
+        memcpy(&n_outputs, inp, sizeof(n_outputs)); inp += sizeof(n_outputs);
+
+        GGML_ASSERT(n_outputs <= llama_output_reserve(*ctx, n_outputs));
+
+        if (n_outputs) {
+            output_pos.resize(n_outputs);
+            memcpy(output_pos.data(), inp, n_outputs * sizeof(int32_t));
+            inp += n_outputs * sizeof(int32_t);
+
+            for (int32_t i = 0; i < (int32_t) output_pos.size(); ++i) {
+                int32_t id = output_pos[i];
+                GGML_ASSERT((uint32_t) id < ctx->cparams.n_batch);
+                ctx->output_ids[id] = i;
+            }
+
+            ctx->n_outputs = n_outputs;
+        }
+    }
+
+    // set logits
+    {
+        size_t logits_size;
+
+        memcpy(&logits_size, inp, sizeof(logits_size)); inp += sizeof(logits_size);
+
+        GGML_ASSERT(ctx->logits_size >= logits_size);
+
+        if (logits_size) {
+            memcpy(ctx->logits, inp, logits_size * sizeof(float));
+            inp += logits_size * sizeof(float);
+        }
+    }
+
+    // set embeddings
+    {
+        size_t embeddings_size;
+
+        memcpy(&embeddings_size, inp, sizeof(embeddings_size)); inp += sizeof(embeddings_size);
+
+        GGML_ASSERT(ctx->embd_size >= embeddings_size);
+
+        if (embeddings_size) {
+            memcpy(ctx->embd, inp, embeddings_size * sizeof(float));
+            inp += embeddings_size * sizeof(float);
+        }
+    }
+
+    // set kv cache
+    {
+        const auto & kv_self = ctx->kv_self;
+        const auto & hparams = ctx->model.hparams;
+
+        const uint32_t n_layer      = hparams.n_layer;
+
+        size_t   kv_buf_size;
+        uint32_t kv_head;
+        uint32_t kv_size;
+        uint32_t kv_used;
+        uint32_t v_trans;
+
+        memcpy(&kv_buf_size, inp, sizeof(kv_buf_size)); inp += sizeof(kv_buf_size);
+        memcpy(&kv_head,     inp, sizeof(kv_head));     inp += sizeof(kv_head);
+        memcpy(&kv_size,     inp, sizeof(kv_size));     inp += sizeof(kv_size);
+        memcpy(&kv_used,     inp, sizeof(kv_used));     inp += sizeof(kv_used);
+        memcpy(&v_trans,     inp, sizeof(v_trans));     inp += sizeof(v_trans);
+
+        GGML_ASSERT(kv_self.v_trans == (bool) v_trans); // incompatible V transposition
+
+        if (kv_self.size != kv_size) {
+            // the KV cache needs to be big enough to load all the KV cells from the saved state
+            GGML_ASSERT(kv_self.size >= kv_head);
+
+            LLAMA_LOG_INFO("%s: state contains %d KV cells, was saved with kv_size=%d, but is loaded with kv_size=%d (fine, but different)\n",
+                __func__, kv_head, kv_size, kv_self.size);
+        }
+
+        llama_kv_cache_clear(ctx);
+
+        if (kv_buf_size) {
+            const size_t pre_kv_buf_size = inp - src;
+
+            GGML_ASSERT(kv_self.total_size() >= kv_buf_size);
+
+            for (int il = 0; il < (int) n_layer; ++il) {
+                const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(il) + hparams.n_embd_k_s();
+                const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s();
+
+                const size_t k_size = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*kv_head);
+
+                ggml_backend_tensor_set(kv_self.k_l[il], inp, 0, k_size);
+                inp += k_size;
+
+                if (kv_self.recurrent || !kv_self.v_trans) {
+                    // v is contiguous for recurrent models
+                    // TODO: use other tensors for state models than k and v
+                    const size_t v_size = ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa*kv_head);
+
+                    ggml_backend_tensor_set(kv_self.v_l[il], inp, 0, v_size);
+                    inp += v_size;
+                    continue;
+                }
+
+                // v is not contiguous, copy row by row
+                const size_t v_row_size   = ggml_row_size(kv_self.v_l[il]->type, kv_head);
+                const size_t v_row_stride = ggml_row_size(kv_self.v_l[il]->type, kv_self.size);
+
+                for (int ir = 0; ir < (int) n_embd_v_gqa; ++ir) {
+                    ggml_backend_tensor_set(kv_self.v_l[il], inp, ir*v_row_stride, v_row_size);
+                    inp += v_row_size;
+                }
+            }
+            GGML_ASSERT(kv_buf_size == inp - src - pre_kv_buf_size);
+        }
+
+        ctx->kv_self.head = kv_head;
+        ctx->kv_self.used = kv_used;
+
+        for (uint32_t i = 0; i < kv_head; ++i) {
+            llama_pos pos;
+            size_t    seq_id_size;
+
+            memcpy(&pos,         inp, sizeof(pos));         inp += sizeof(pos);
+            memcpy(&seq_id_size, inp, sizeof(seq_id_size)); inp += sizeof(seq_id_size);
+
+            ctx->kv_self.cells[i].pos = pos;
+
+            llama_seq_id seq_id;
+
+            for (size_t j = 0; j < seq_id_size; ++j) {
+                memcpy(&seq_id, inp, sizeof(seq_id)); inp += sizeof(seq_id);
+                ctx->kv_self.cells[i].seq_id.insert(seq_id);
+            }
+        }
+    }
+
+    const size_t nread    = inp - src;
+    const size_t max_size = llama_state_get_size(ctx);
+
+    GGML_ASSERT(nread <= max_size);
+
+    return nread;
+}
+
+static bool llama_state_load_file_internal(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
+    llama_file file(path_session, "rb");
+
+    // sanity checks
+    {
+        const uint32_t magic   = file.read_u32();
+        const uint32_t version = file.read_u32();
+
+        if (magic != LLAMA_SESSION_MAGIC || version != LLAMA_SESSION_VERSION) {
+            LLAMA_LOG_ERROR("%s : unknown (magic, version) for session file: %08x, %08x\n", __func__, magic, version);
+            return false;
+        }
+
+        llama_hparams session_hparams;
+        file.read_raw(&session_hparams, sizeof(llama_hparams));
+
+        if (session_hparams != ctx->model.hparams) {
+            LLAMA_LOG_INFO("%s : model hparams didn't match from session file!\n", __func__);
+            return false;
+        }
+    }
+
+    // load the prompt
+    {
+        const uint32_t n_token_count = file.read_u32();
+
+        if (n_token_count > n_token_capacity) {
+            LLAMA_LOG_ERROR("%s : token count in session file exceeded capacity! %u > %zu\n", __func__, n_token_count, n_token_capacity);
+            return false;
+        }
+
+        file.read_raw(tokens_out, sizeof(llama_token) * n_token_count);
+        *n_token_count_out = n_token_count;
+    }
+
+    // restore the context state
+    {
+        const size_t n_state_size_cur = file.size - file.tell();
+        const size_t n_state_size_max = llama_state_get_size(ctx);
+
+        if (n_state_size_cur > n_state_size_max) {
+            LLAMA_LOG_ERROR("%s : the state size in session file is too big! max %zu, got %zu\n", __func__, n_state_size_max, n_state_size_cur);
+            return false;
+        }
+
+        std::vector state_data(n_state_size_max);
+        file.read_raw(state_data.data(), n_state_size_cur);
+
+        llama_state_set_data(ctx, state_data.data());
+    }
+
+    return true;
+}
+
+bool llama_state_load_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
+    try {
+        return llama_state_load_file_internal(ctx, path_session, tokens_out, n_token_capacity, n_token_count_out);
+    } catch (const std::exception & err) {
+        LLAMA_LOG_ERROR("error loading session file: %s\n", err.what());
+        return false;
+    }
+}
+
+static bool llama_state_save_file_internal(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
+    llama_file file(path_session, "wb");
+
+    file.write_u32(LLAMA_SESSION_MAGIC);
+    file.write_u32(LLAMA_SESSION_VERSION);
+
+    file.write_raw(&ctx->model.hparams, sizeof(llama_hparams));
+
+    // save the prompt
+    file.write_u32((uint32_t) n_token_count);
+    file.write_raw(tokens, sizeof(llama_token) * n_token_count);
+
+    // save the context state using stream saving
+    llama_data_file_context data_ctx(&file);
+    llama_state_get_data_internal(ctx, &data_ctx);
+
+    return true;
+}
+
+bool llama_state_save_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
+    try {
+        return llama_state_save_file_internal(ctx, path_session, tokens, n_token_count);
+    } catch (const std::exception & err) {
+        LLAMA_LOG_ERROR("error saving session file: %s\n", err.what());
+        return false;
+    }
+}
+
+size_t llama_state_seq_get_size(struct llama_context* ctx, llama_seq_id seq_id) {
+    // save the size of size_t as a uint32_t for safety check
+    const size_t size_t_size_size = sizeof(uint32_t);
+
+    // other values
+    const size_t s_cell_count_size = sizeof(uint32_t);
+    const size_t s_layer_count_size = sizeof(uint32_t);
+    const size_t n_embd_v_gqa_size = sizeof(uint32_t);
+
+    size_t s_cell_count = 0;
+    size_t s_cell_data_size = 0;
+    const auto & kv_self = ctx->kv_self;
+    const auto & hparams = ctx->model.hparams;
+
+    const uint32_t n_layer = hparams.n_layer;
+
+    for (uint32_t i = 0; i < kv_self.size; ++i) {
+        const auto & cell = kv_self.cells[i];
+        if (cell.seq_id.count(seq_id) > 0) {
+            ++s_cell_count;
+            s_cell_data_size += sizeof(llama_pos);
+        }
+    }
+
+    for (int il = 0; il < (int)n_layer; ++il) {
+        const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(il) + hparams.n_embd_k_s();
+        const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s();
+
+        // types of keys and values
+        s_cell_data_size += sizeof(int32_t) * 2;
+        // k_size_row and v_size_el values of layer
+        s_cell_data_size += sizeof(size_t) * 2;
+
+        // keys
+        const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa);
+        s_cell_data_size += k_size_row * s_cell_count;
+
+        // values (transposed)
+        const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type);
+        s_cell_data_size += v_size_el * s_cell_count * n_embd_v_gqa;
+    }
+
+    const size_t s_total = (
+        size_t_size_size +
+        s_cell_count_size +
+        s_layer_count_size +
+        n_embd_v_gqa_size +
+        s_cell_data_size
+        );
+
+    return s_total;
+}
+
+static size_t llama_state_seq_get_data_internal(struct llama_context * ctx, llama_data_context & data_ctx, llama_seq_id seq_id) {
+    llama_synchronize(ctx);
+
+    const auto & kv_self = ctx->kv_self;
+    GGML_ASSERT(!kv_self.recurrent); // not implemented
+
+    // Save the size of size_t as a uint32_t for safety check
+    const uint32_t size_t_size = sizeof(size_t);
+    data_ctx.write(&size_t_size, sizeof(size_t_size));
+
+    std::vector> cell_ranges; // ranges, from inclusive, to exclusive
+    uint32_t cell_count = 0;
+
+    // Count the number of cells with the specified seq_id
+    // Find all the ranges of cells with this seq id
+    {
+        uint32_t cell_range_begin = kv_self.size;
+        for (uint32_t i = 0; i < kv_self.size; ++i) {
+            const auto & cell = kv_self.cells[i];
+            if (cell.has_seq_id(seq_id)) {
+                ++cell_count;
+                if (cell_range_begin == kv_self.size) {
+                    cell_range_begin = i;
+                }
+            }
+            else {
+                if (cell_range_begin != kv_self.size) {
+                    cell_ranges.emplace_back(cell_range_begin, i);
+                    cell_range_begin = kv_self.size;
+                }
+            }
+        }
+        if (cell_range_begin != kv_self.size) {
+            cell_ranges.emplace_back(cell_range_begin, kv_self.size);
+        }
+
+        // DEBUG CHECK: Sum of cell counts in ranges should equal the total cell count
+        uint32_t cell_count_check = 0;
+        for (const auto & range : cell_ranges) {
+            cell_count_check += range.second - range.first;
+        }
+        GGML_ASSERT(cell_count == cell_count_check);
+    }
+
+    // Write the cell count
+    data_ctx.write(&cell_count, sizeof(cell_count));
+
+    const auto & hparams = ctx->model.hparams;
+    const uint32_t n_layer = hparams.n_layer;
+
+    // Write the layer count
+    data_ctx.write(&n_layer, sizeof(n_layer));
+
+    // Write n_embd_v_gqa (reference value)
+    {
+        const uint32_t n_embd_v_gqa_ref = hparams.n_embd_v_gqa() + hparams.n_embd_k_s();
+        data_ctx.write(&n_embd_v_gqa_ref, sizeof(n_embd_v_gqa_ref));
+    }
+
+    // Iterate the ranges and write all the pos (this is the token position in the prompt)
+    for (const auto & range : cell_ranges) {
+        for (uint32_t i = range.first; i < range.second; ++i) {
+            const auto & cell = kv_self.cells[i];
+            data_ctx.write(&cell.pos, sizeof(cell.pos));
+        }
+    }
+
+    // Iterate and write all the keys first, each row is a cell
+    // Get whole range at a time
+    std::vector tmp_buf;
+    for (int il = 0; il < (int)n_layer; ++il) {
+        const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(il) + hparams.n_embd_k_s();
+
+        // Write key type
+        const int32_t k_type_i = (int32_t)kv_self.k_l[il]->type;
+        data_ctx.write(&k_type_i, sizeof(k_type_i));
+
+        // Write row size of key
+        const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa);
+        data_ctx.write(&k_size_row, sizeof(k_size_row));
+
+        // Read each range of cells of k_size length each into tmp_buf and write out
+        for (const auto & range : cell_ranges) {
+            const size_t range_size = range.second - range.first;
+            tmp_buf.resize(range_size * k_size_row);
+            ggml_backend_tensor_get(kv_self.k_l[il], tmp_buf.data(), range.first * k_size_row, range_size * k_size_row);
+            data_ctx.write(tmp_buf.data(), tmp_buf.size());
+        }
+    }
+
+    // TODO: simplify, reduce copy-paste
+    if (!kv_self.v_trans) {
+        for (int il = 0; il < (int)n_layer; ++il) {
+            const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s();
+
+            // Write value type
+            const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type;
+            data_ctx.write(&v_type_i, sizeof(v_type_i));
+
+            // Write row size of value
+            const size_t v_size_row = ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa);
+            data_ctx.write(&v_size_row, sizeof(v_size_row));
+
+            // Read each range of cells of v_size length each into tmp_buf and write out
+            for (const auto & range : cell_ranges) {
+                const size_t range_size = range.second - range.first;
+                tmp_buf.resize(range_size * v_size_row);
+                ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), range.first * v_size_row, range_size * v_size_row);
+                data_ctx.write(tmp_buf.data(), tmp_buf.size());
+            }
+        }
+    } else {
+        // For the values, they are transposed, so we also need the element size and get the element ranges from each row
+        const uint32_t kv_size = kv_self.size;
+        for (int il = 0; il < (int)n_layer; ++il) {
+            const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s();
+
+            // Write value type
+            const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type;
+            data_ctx.write(&v_type_i, sizeof(v_type_i));
+
+            // Write element size
+            const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type);
+            data_ctx.write(&v_size_el, sizeof(v_size_el));
+
+            // For each row, we get the element values of each cell
+            for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
+                // Read each range of cells of v_size_el length each into tmp_buf and write out
+                for (const auto & range : cell_ranges) {
+                    const size_t range_size = range.second - range.first;
+                    const size_t src_offset = (range.first + j * kv_size) * v_size_el;
+                    tmp_buf.resize(range_size * v_size_el);
+                    ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), src_offset, tmp_buf.size());
+                    data_ctx.write(tmp_buf.data(), tmp_buf.size());
+                }
+            }
+        }
+    }
+
+    return data_ctx.get_size_written();
+}
+
+size_t llama_state_seq_get_data(struct llama_context* ctx, uint8_t* dst, llama_seq_id seq_id) {
+    llama_data_buffer_context data_ctx(dst);
+    return llama_state_seq_get_data_internal(ctx, data_ctx, seq_id);
+}
+
+size_t llama_state_seq_set_data(struct llama_context * ctx, const uint8_t * src, llama_seq_id dest_seq_id) {
+    llama_synchronize(ctx);
+
+    auto & kv_self = ctx->kv_self;
+    GGML_ASSERT(!kv_self.recurrent); // not implemented
+
+    // Wipe the slot
+    llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
+
+    const uint8_t * inp = src;
+
+    // Read size of size_t
+    uint32_t size_t_size;
+    memcpy(&size_t_size, inp, sizeof(size_t_size));
+    inp += sizeof(size_t_size);
+    if (size_t_size != sizeof(size_t)) {
+        LLAMA_LOG_ERROR("%s: size_t size mismatch\n", __func__);
+        return 0;
+    }
+
+    // Read the cell count
+    uint32_t cell_count;
+    memcpy(&cell_count, inp, sizeof(cell_count));
+    inp += sizeof(cell_count);
+
+    // Read the layer count
+    uint32_t n_layer_ref;
+    memcpy(&n_layer_ref, inp, sizeof(n_layer_ref));
+    inp += sizeof(n_layer_ref);
+
+    // Read n_embd_v_gqa
+    uint32_t n_embd_v_gqa_ref;
+    memcpy(&n_embd_v_gqa_ref, inp, sizeof(n_embd_v_gqa_ref));
+    inp += sizeof(n_embd_v_gqa_ref);
+
+    // Sanity check model compatibility
+    const auto & hparams = ctx->model.hparams;
+    const uint32_t n_layer = hparams.n_layer;
+
+    if (n_layer != n_layer_ref) {
+        LLAMA_LOG_ERROR("%s: mismatched n_layer (%d != %d)\n", __func__, n_layer, n_layer_ref);
+        return 0;
+    }
+
+    if (hparams.n_embd_v_gqa() != n_embd_v_gqa_ref) {
+        LLAMA_LOG_ERROR("%s: mismatched n_embd_v_gqa (%d != %d)\n", __func__, hparams.n_embd_v_gqa(), n_embd_v_gqa_ref);
+        return 0;
+    }
+
+    // Allocate the new cells for the slot
+    if (cell_count) {
+        llama_batch batch = llama_batch_init(cell_count, 0, 1);
+        batch.n_tokens = cell_count;
+        for (uint32_t i = 0; i < cell_count; ++i) {
+            llama_pos pos;
+            memcpy(&pos, inp, sizeof(pos));
+            inp += sizeof(pos);
+
+            batch.pos[i] = pos;
+            batch.n_seq_id[i] = 1;
+            batch.seq_id[i][0] = dest_seq_id;
+        }
+        if (!llama_kv_cache_find_slot(kv_self, batch)) {
+            llama_batch_free(batch);
+            LLAMA_LOG_ERROR("%s: failed to find available cells in kv cache\n", __func__);
+            return 0;
+        }
+
+        // DEBUG CHECK: kv_self.head should be our first cell, kv_self.head + cell_count - 1 should be our last cell (verify seq_id and pos values)
+        // Assume that this is one contiguous block of cells
+        GGML_ASSERT(kv_self.head + cell_count <= kv_self.size);
+        GGML_ASSERT(kv_self.cells[kv_self.head].pos == batch.pos[0]);
+        GGML_ASSERT(kv_self.cells[kv_self.head + cell_count - 1].pos == batch.pos[cell_count - 1]);
+        GGML_ASSERT(kv_self.cells[kv_self.head].has_seq_id(dest_seq_id));
+        GGML_ASSERT(kv_self.cells[kv_self.head + cell_count - 1].has_seq_id(dest_seq_id));
+
+        // Cleanup
+        llama_batch_free(batch);
+    }
+
+    const uint32_t kv_size = kv_self.size;
+    const uint32_t kv_head = kv_self.head;
+
+    // For each layer, read the keys for each cell, one row is one cell, read as one contiguous blo
+    for (int il = 0; il < (int)n_layer; ++il) {
+        const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(il) + hparams.n_embd_k_s();
+
+        // Read type of key
+        int32_t k_type_i_ref;
+        memcpy(&k_type_i_ref, inp, sizeof(k_type_i_ref));
+        inp += sizeof(k_type_i_ref);
+        const int32_t k_type_i = (int32_t)kv_self.k_l[il]->type;
+        if (k_type_i != k_type_i_ref) {
+            llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
+            LLAMA_LOG_ERROR("%s: mismatched key type (%d != %d, layer %d)\n", __func__, k_type_i, k_type_i_ref, il);
+            return 0;
+        }
+
+        // Read row size of key
+        size_t k_size_row_ref;
+        memcpy(&k_size_row_ref, inp, sizeof(k_size_row_ref));
+        inp += sizeof(k_size_row_ref);
+        const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa);
+        if (k_size_row != k_size_row_ref) {
+            llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
+            LLAMA_LOG_ERROR("%s: mismatched key row size (%zu != %zu, layer %d)\n", __func__, k_size_row, k_size_row_ref, il);
+            return 0;
+        }
+
+        if (cell_count) {
+            // Read and set the keys for the whole cell range
+            ggml_backend_tensor_set(kv_self.k_l[il], inp, kv_head * k_size_row, cell_count * k_size_row);
+            inp += cell_count * k_size_row;
+        }
+    }
+
+    // TODO: simplify, reduce copy-paste
+    if (!kv_self.v_trans) {
+        for (int il = 0; il < (int)n_layer; ++il) {
+            const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s();
+
+            // Read type of value
+            int32_t v_type_i_ref;
+            memcpy(&v_type_i_ref, inp, sizeof(v_type_i_ref));
+            inp += sizeof(v_type_i_ref);
+            const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type;
+            if (v_type_i != v_type_i_ref) {
+                llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
+                LLAMA_LOG_ERROR("%s: mismatched value type (%d != %d, layer %d)\n", __func__, v_type_i, v_type_i_ref, il);
+                return 0;
+            }
+
+            // Read row size of value
+            size_t v_size_row_ref;
+            memcpy(&v_size_row_ref, inp, sizeof(v_size_row_ref));
+            inp += sizeof(v_size_row_ref);
+            const size_t v_size_row = ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa);
+            if (v_size_row != v_size_row_ref) {
+                llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
+                LLAMA_LOG_ERROR("%s: mismatched value row size (%zu != %zu, layer %d)\n", __func__, v_size_row, v_size_row_ref, il);
+                return 0;
+            }
+
+            if (cell_count) {
+                // Read and set the values for the whole cell range
+                ggml_backend_tensor_set(kv_self.v_l[il], inp, kv_head * v_size_row, cell_count * v_size_row);
+                inp += cell_count * v_size_row;
+            }
+        }
+    } else {
+        // For each layer, read the values for each cell (transposed)
+        for (int il = 0; il < (int)n_layer; ++il) {
+            const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s();
+
+            // Read type of value
+            int32_t v_type_i_ref;
+            memcpy(&v_type_i_ref, inp, sizeof(v_type_i_ref));
+            inp += sizeof(v_type_i_ref);
+            const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type;
+            if (v_type_i != v_type_i_ref) {
+                llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
+                LLAMA_LOG_ERROR("%s: mismatched value type (%d != %d, layer %d)\n", __func__, v_type_i, v_type_i_ref, il);
+                return 0;
+            }
+
+            // Read element size of value
+            size_t v_size_el_ref;
+            memcpy(&v_size_el_ref, inp, sizeof(v_size_el_ref));
+            inp += sizeof(v_size_el_ref);
+            const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type);
+            if (v_size_el != v_size_el_ref) {
+                llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
+                LLAMA_LOG_ERROR("%s: mismatched value element size (%zu != %zu, layer %d)\n", __func__, v_size_el, v_size_el_ref, il);
+                return 0;
+            }
+
+            if (cell_count) {
+                // For each row in the transposed matrix, read the values for the whole cell range
+                for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
+                    const size_t dst_offset = (kv_head + j * kv_size) * v_size_el;
+                    ggml_backend_tensor_set(kv_self.v_l[il], inp, dst_offset, cell_count * v_size_el);
+                    inp += cell_count * v_size_el;
+                }
+            }
+        }
+    }
+
+    const size_t nread = inp - src;
+
+    return nread;
+}
+
+static size_t llama_state_seq_save_file_internal(struct llama_context * ctx, const char * filepath, llama_seq_id seq_id, const llama_token * tokens, size_t n_token_count) {
+    llama_file file(filepath, "wb");
+
+    file.write_u32(LLAMA_STATE_SEQ_MAGIC);
+    file.write_u32(LLAMA_STATE_SEQ_VERSION);
+
+    // save the prompt
+    file.write_u32((uint32_t)n_token_count);
+    file.write_raw(tokens, sizeof(llama_token) * n_token_count);
+
+    // save the context state using stream saving
+    llama_data_file_context data_ctx(&file);
+    llama_state_seq_get_data_internal(ctx, data_ctx, seq_id);
+
+    const size_t res = file.tell();
+    GGML_ASSERT(res == sizeof(uint32_t) * 3 + sizeof(llama_token) * n_token_count + data_ctx.get_size_written());
+    return res;
+}
+
+static size_t llama_state_seq_load_file_internal(struct llama_context * ctx, const char * filepath, llama_seq_id dest_seq_id, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
+    llama_file file(filepath, "rb");
+
+    // version checks
+    {
+        const uint32_t magic   = file.read_u32();
+        const uint32_t version = file.read_u32();
+
+        if (magic != LLAMA_STATE_SEQ_MAGIC || version != LLAMA_STATE_SEQ_VERSION) {
+            LLAMA_LOG_ERROR("%s: unknown (magic, version) for sequence state file: %08x, %08x\n", __func__, magic, version);
+            return 0;
+        }
+    }
+
+    // load the prompt
+    {
+        const uint32_t n_token_count = file.read_u32();
+
+        if (n_token_count > n_token_capacity) {
+            LLAMA_LOG_ERROR("%s: token count in sequence state file exceeded capacity! %u > %zu\n", __func__, n_token_count, n_token_capacity);
+            return 0;
+        }
+
+        file.read_raw(tokens_out, sizeof(llama_token) * n_token_count);
+        *n_token_count_out = n_token_count;
+    }
+
+    // restore the context state
+    {
+        const size_t state_size = file.size - file.tell();
+        std::vector state_data(state_size);
+        file.read_raw(state_data.data(), state_size);
+        const size_t nread = llama_state_seq_set_data(ctx, state_data.data(), dest_seq_id);
+        if (!nread) {
+            LLAMA_LOG_ERROR("%s: failed to restore sequence state\n", __func__);
+            return 0;
+        }
+        GGML_ASSERT(nread <= state_size);
+        GGML_ASSERT(nread + sizeof(uint32_t) * 3 + sizeof(llama_token) * *n_token_count_out == file.tell());
+    }
+
+    return file.tell();
+}
+
+size_t llama_state_seq_save_file(struct llama_context * ctx, const char * filepath, llama_seq_id seq_id, const llama_token * tokens, size_t n_token_count) {
+    try {
+        return llama_state_seq_save_file_internal(ctx, filepath, seq_id, tokens, n_token_count);
+    } catch (const std::exception & err) {
+        LLAMA_LOG_ERROR("error saving sequence state file: %s\n", err.what());
+        return 0;
+    }
+}
+
+size_t llama_state_seq_load_file(struct llama_context * ctx, const char * filepath, llama_seq_id dest_seq_id, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
+    try {
+        return llama_state_seq_load_file_internal(ctx, filepath, dest_seq_id, tokens_out, n_token_capacity, n_token_count_out);
+    } catch (const std::exception & err) {
+        LLAMA_LOG_ERROR("error loading sequence state file: %s\n", err.what());
+        return 0;
+    }
+}
+
+void llama_set_n_threads(struct llama_context * ctx, uint32_t n_threads, uint32_t n_threads_batch) {
+    ctx->cparams.n_threads       = n_threads;
+    ctx->cparams.n_threads_batch = n_threads_batch;
+}
+
+uint32_t llama_n_threads(struct llama_context * ctx) {
+    return ctx->cparams.n_threads;
+}
+
+uint32_t llama_n_threads_batch(struct llama_context * ctx) {
+    return ctx->cparams.n_threads_batch;
+}
+
+void llama_set_abort_callback(struct llama_context * ctx, bool (*abort_callback)(void * data), void * abort_callback_data) {
+    ctx->abort_callback      = abort_callback;
+    ctx->abort_callback_data = abort_callback_data;
+}
+
+void llama_set_embeddings(struct llama_context * ctx, bool embeddings) {
+    ctx->cparams.embeddings = embeddings;
+}
+
+void llama_set_causal_attn(struct llama_context * ctx, bool causal_attn) {
+    ctx->cparams.causal_attn = causal_attn;
+}
+
+struct llama_batch llama_batch_get_one(
+             llama_token * tokens,
+                 int32_t   n_tokens,
+               llama_pos   pos_0,
+            llama_seq_id   seq_id) {
+    return {
+        /*n_tokens       =*/ n_tokens,
+        /*tokens         =*/ tokens,
+        /*embd           =*/ nullptr,
+        /*pos            =*/ nullptr,
+        /*n_seq_id       =*/ nullptr,
+        /*seq_id         =*/ nullptr,
+        /*logits         =*/ nullptr,
+        /*all_pos_0      =*/ pos_0,
+        /*all_pos_1      =*/ 1,
+        /*all_seq_id     =*/ seq_id,
+    };
+}
+
+struct llama_batch llama_batch_init(int32_t n_tokens_alloc, int32_t embd, int32_t n_seq_max) {
+    llama_batch batch = { 0, nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, 0, 0, 0, };
+
+    if (embd) {
+        batch.embd = (float *) malloc(sizeof(float) * n_tokens_alloc * embd);
+    } else {
+        batch.token = (llama_token *) malloc(sizeof(llama_token) * n_tokens_alloc);
+    }
+
+    batch.pos      = (llama_pos *)     malloc(sizeof(llama_pos)      * n_tokens_alloc);
+    batch.n_seq_id = (int32_t *)       malloc(sizeof(int32_t)        * n_tokens_alloc);
+    batch.seq_id   = (llama_seq_id **) malloc(sizeof(llama_seq_id *) * (n_tokens_alloc + 1));
+    for (int i = 0; i < n_tokens_alloc; ++i) {
+        batch.seq_id[i] = (llama_seq_id *) malloc(sizeof(llama_seq_id) * n_seq_max);
+    }
+    batch.seq_id[n_tokens_alloc] = nullptr;
+
+    batch.logits   = (int8_t *)        malloc(sizeof(int8_t)         * n_tokens_alloc);
+
+    return batch;
+}
+
+void llama_batch_free(struct llama_batch batch) {
+    if (batch.token)    free(batch.token);
+    if (batch.embd)     free(batch.embd);
+    if (batch.pos)      free(batch.pos);
+    if (batch.n_seq_id) free(batch.n_seq_id);
+    if (batch.seq_id) {
+        for (int i = 0; batch.seq_id[i] != nullptr; ++i) {
+            free(batch.seq_id[i]);
+        }
+        free(batch.seq_id);
+    }
+    if (batch.logits)   free(batch.logits);
+}
+
+int32_t llama_encode(
+        struct llama_context * ctx,
+          struct llama_batch   batch) {
+    const int ret = llama_encode_internal(*ctx, batch);
+    if (ret < 0) {
+        LLAMA_LOG_ERROR("%s: failed to encode, ret = %d\n", __func__, ret);
+    }
+
+    return ret;
+}
+
+int32_t llama_decode(
+        struct llama_context * ctx,
+          struct llama_batch   batch) {
+    const int ret = llama_decode_internal(*ctx, batch);
+    if (ret < 0) {
+        LLAMA_LOG_ERROR("%s: failed to decode, ret = %d\n", __func__, ret);
+    }
+
+    return ret;
+}
+
+void llama_synchronize(struct llama_context * ctx) {
+    ggml_backend_sched_synchronize(ctx->sched);
+
+    // FIXME: if multiple single tokens are evaluated without a synchronization,
+    // the stats will be added to the prompt evaluation stats
+    // this should only happen when using batch size 1 to evaluate a batch
+
+    // add the evaluation to the stats
+    if (ctx->n_queued_tokens == 1) {
+        ctx->t_eval_us += ggml_time_us() - ctx->t_compute_start_us;
+        ctx->n_eval++;
+    } else if (ctx->n_queued_tokens > 1) {
+        ctx->t_p_eval_us += ggml_time_us() - ctx->t_compute_start_us;
+        ctx->n_p_eval += ctx->n_queued_tokens;
+    }
+
+    // get a more accurate load time, upon first eval
+    if (ctx->n_queued_tokens > 0 && !ctx->has_evaluated_once) {
+        ctx->t_load_us = ggml_time_us() - ctx->t_start_us;
+        ctx->has_evaluated_once = true;
+    }
+
+    ctx->n_queued_tokens = 0;
+    ctx->t_compute_start_us = 0;
+}
+
+float * llama_get_logits(struct llama_context * ctx) {
+    llama_synchronize(ctx);
+
+    return ctx->logits;
+}
+
+float * llama_get_logits_ith(struct llama_context * ctx, int32_t i) {
+    int32_t j = -1;
+    llama_synchronize(ctx);
+
+    try {
+        if (ctx->logits == nullptr) {
+            throw std::runtime_error("no logits");
+        }
+
+        if (i < 0) {
+            j = ctx->n_outputs + i;
+            if (j < 0) {
+                throw std::runtime_error(format("negative index out of range [0, %d)", ctx->n_outputs));
+            }
+        } else if ((size_t) i >= ctx->output_ids.size()) {
+            throw std::runtime_error(format("out of range [0, %lu)", ctx->output_ids.size()));
+        } else {
+            j = ctx->output_ids[i];
+        }
+
+        if (j < 0) {
+            throw std::runtime_error(format("batch.logits[%d] != true", i));
+        }
+        if (j >= ctx->n_outputs) {
+            // This should not happen
+            throw std::runtime_error(format("corrupt output buffer (j=%d, n_outputs=%d)", j, ctx->n_outputs));
+        }
+
+        return ctx->logits + j*ctx->model.hparams.n_vocab;
+    } catch (const std::exception & err) {
+        LLAMA_LOG_ERROR("%s: invalid logits id %d, reason: %s\n", __func__, i, err.what());
+#ifndef NDEBUG
+        GGML_ASSERT(false);
+#endif
+        return nullptr;
+    }
+}
+
+float * llama_get_embeddings(struct llama_context * ctx) {
+    llama_synchronize(ctx);
+
+    return ctx->embd;
+}
+
+float * llama_get_embeddings_ith(struct llama_context * ctx, int32_t i) {
+    int32_t j = -1;
+
+    llama_synchronize(ctx);
+
+    try {
+        if (ctx->embd == nullptr) {
+            throw std::runtime_error("no embeddings");
+        }
+
+        if (i < 0) {
+            j = ctx->n_outputs + i;
+            if (j < 0) {
+                throw std::runtime_error(format("negative index out of range [0, %d)", ctx->n_outputs));
+            }
+        } else if ((size_t) i >= ctx->output_ids.size()) {
+            throw std::runtime_error(format("out of range [0, %lu)", ctx->output_ids.size()));
+        } else {
+            j = ctx->output_ids[i];
+        }
+
+        if (j < 0) {
+            throw std::runtime_error(format("batch.logits[%d] != true", i));
+        }
+        if (j >= ctx->n_outputs) {
+            // This should not happen
+            throw std::runtime_error(format("corrupt output buffer (j=%d, n_outputs=%d)", j, ctx->n_outputs));
+        }
+
+        return ctx->embd + j*ctx->model.hparams.n_embd;
+    } catch (const std::exception & err) {
+        LLAMA_LOG_ERROR("%s: invalid embeddings id %d, reason: %s\n", __func__, i, err.what());
+#ifndef NDEBUG
+        GGML_ASSERT(false);
+#endif
+        return nullptr;
+    }
+}
+
+float * llama_get_embeddings_seq(struct llama_context * ctx, llama_seq_id seq_id) {
+    llama_synchronize(ctx);
+
+    auto it = ctx->embd_seq.find(seq_id);
+    if (it == ctx->embd_seq.end()) {
+        return nullptr;
+    }
+
+    return it->second.data();
+}
+
+//
+// vocab
+//
+
+const char * llama_token_get_text(const struct llama_model * model, llama_token token) {
+    return llama_token_get_text_impl(model->vocab, token);
+}
+
+float llama_token_get_score(const struct llama_model * model, llama_token token) {
+    return llama_token_get_score_impl(model->vocab, token);
+}
+
+enum llama_token_attr llama_token_get_attr(const struct llama_model * model, llama_token token) {
+    return llama_token_get_attr_impl(model->vocab, token);
+}
+
+bool llama_token_is_eog(const struct llama_model * model, llama_token token) {
+    return llama_token_is_eog_impl(model->vocab, token);
+}
+
+bool llama_token_is_control(const struct llama_model * model, llama_token token) {
+    return llama_token_is_control_impl(model->vocab, token);
+}
+
+llama_token llama_token_bos(const struct llama_model * model) {
+    return llama_token_bos_impl(model->vocab);
+}
+
+llama_token llama_token_eos(const struct llama_model * model) {
+    return llama_token_eos_impl(model->vocab);
+}
+
+llama_token llama_token_cls(const struct llama_model * model) {
+    return llama_token_cls_impl(model->vocab);
+}
+
+llama_token llama_token_sep(const struct llama_model * model) {
+    return llama_token_sep_impl(model->vocab);
+}
+
+llama_token llama_token_nl (const struct llama_model * model) {
+    return llama_token_nl_impl(model->vocab);
+}
+
+llama_token llama_token_pad(const struct llama_model * model) {
+    return llama_token_pad_impl(model->vocab);
+}
+
+int32_t llama_add_bos_token(const struct llama_model * model) {
+    return llama_add_bos_token_impl(model->vocab);
+}
+
+int32_t llama_add_eos_token(const struct llama_model * model) {
+    return llama_add_eos_token_impl(model->vocab);
+}
+
+llama_token llama_token_prefix(const struct llama_model * model) {
+    return llama_token_prefix_impl(model->vocab);
+}
+
+llama_token llama_token_middle(const struct llama_model * model) {
+    return llama_token_middle_impl(model->vocab);
+}
+
+llama_token llama_token_suffix(const struct llama_model * model) {
+    return llama_token_suffix_impl(model->vocab);
+}
+
+llama_token llama_token_eot(const struct llama_model * model) {
+    return llama_token_eot_impl(model->vocab);
+}
+
+//
+// tokenization
+//
+
+int32_t llama_tokenize(
+    const struct llama_model * model,
+                  const char * text,
+                     int32_t   text_len,
+                 llama_token * tokens,
+                     int32_t   n_tokens_max,
+                        bool   add_special,
+                        bool   parse_special) {
+    return llama_tokenize_impl(model->vocab, text, text_len, tokens, n_tokens_max, add_special, parse_special);
+}
+
+int32_t llama_token_to_piece(
+    const struct llama_model * model,
+                 llama_token   token,
+                        char * buf,
+                     int32_t   length,
+                     int32_t   lstrip,
+                        bool   special) {
+    return llama_token_to_piece_impl(model->vocab, token, buf, length, lstrip, special);
+}
+
+int32_t llama_detokenize(
+    const struct llama_model * model,
+           const llama_token * tokens,
+                     int32_t   n_tokens,
+                        char * text,
+                     int32_t   text_len_max,
+                        bool   remove_special,
+                        bool   unparse_special) {
+    return llama_detokenize_impl(model->vocab, tokens, n_tokens, text, text_len_max, remove_special, unparse_special);
+}
+
+//
+// chat templates
+//
+
+// Simple version of "llama_apply_chat_template" that only works with strings
+// This function uses heuristic checks to determine commonly used template. It is not a jinja parser.
+static int32_t llama_chat_apply_template_internal(
+    const std::string & tmpl,
+    const std::vector & chat,
+    std::string & dest, bool add_ass) {
+    // Taken from the research: https://github.com/ggerganov/llama.cpp/issues/5527
+    std::stringstream ss;
+    auto tmpl_contains = [&tmpl](std::string haystack) -> bool {
+        return tmpl.find(haystack) != std::string::npos;
+    };
+    if (tmpl == "chatml" || tmpl_contains("<|im_start|>")) {
+        // chatml template
+        for (auto message : chat) {
+            ss << "<|im_start|>" << message->role << "\n" << message->content << "<|im_end|>\n";
+        }
+        if (add_ass) {
+            ss << "<|im_start|>assistant\n";
+        }
+    } else if (tmpl == "llama2" || tmpl == "mistral" || tmpl_contains("[INST]")) {
+        // llama2 template and its variants
+        // [variant] support system message
+        bool support_system_message = tmpl_contains("<>") || tmpl == "mistral";
+        // [variant] space before + after response
+        bool space_around_response = tmpl_contains("' ' + eos_token");
+        // [variant] add BOS inside history
+        bool add_bos_inside_history = tmpl_contains("bos_token + '[INST]");
+        // [variant] trim spaces from the input message
+        bool strip_message = tmpl_contains("content.strip()");
+        // construct the prompt
+        bool is_inside_turn = true; // skip BOS at the beginning
+        ss << "[INST] ";
+        for (auto message : chat) {
+            std::string content = strip_message ? trim(message->content) : message->content;
+            std::string role(message->role);
+            if (!is_inside_turn) {
+                is_inside_turn = true;
+                ss << (add_bos_inside_history ? "[INST] " : "[INST] ");
+            }
+            if (role == "system") {
+                if (support_system_message) {
+                    ss << "<>\n" << content << "\n<>\n\n";
+                } else {
+                    // if the model does not support system message, we still include it in the first message, but without <>
+                    ss << content << "\n";
+                }
+            } else if (role == "user") {
+                ss << content << " [/INST]";
+            } else {
+                ss << (space_around_response ? " " : "") << content << (space_around_response ? " " : "") << "";
+                is_inside_turn = false;
+            }
+        }
+        // llama2 templates seem to not care about "add_generation_prompt"
+    } else if (tmpl == "phi3" || (tmpl_contains("<|assistant|>") && tmpl_contains("<|end|>"))) {
+        // Phi 3
+        for (auto message : chat) {
+            std::string role(message->role);
+            ss << "<|" << role << "|>\n" << message->content << "<|end|>\n";
+        }
+        if (add_ass) {
+            ss << "<|assistant|>\n";
+        }
+    } else if (tmpl == "zephyr" || tmpl_contains("<|user|>")) {
+        // zephyr template
+        for (auto message : chat) {
+            ss << "<|" << message->role << "|>" << "\n" << message->content << "<|endoftext|>\n";
+        }
+        if (add_ass) {
+            ss << "<|assistant|>\n";
+        }
+    } else if (tmpl == "monarch" || tmpl_contains("bos_token + message['role']")) {
+        // mlabonne/AlphaMonarch-7B template (the  is included inside history)
+        for (auto message : chat) {
+            std::string bos = (message == chat.front()) ? "" : ""; // skip BOS for first message
+            ss << bos << message->role << "\n" << message->content << "\n";
+        }
+        if (add_ass) {
+            ss << "assistant\n";
+        }
+    } else if (tmpl == "gemma" || tmpl == "gemma2" || tmpl_contains("")) {
+        // google/gemma-7b-it
+        std::string system_prompt = "";
+        for (auto message : chat) {
+            std::string role(message->role);
+            if (role == "system") {
+                // there is no system message for gemma, but we will merge it with user prompt, so nothing is broken
+                system_prompt = trim(message->content);
+                continue;
+            }
+            // in gemma, "assistant" is "model"
+            role = role == "assistant" ? "model" : message->role;
+            ss << "" << role << "\n";
+            if (!system_prompt.empty() && role != "model") {
+                ss << system_prompt << "\n\n";
+                system_prompt = "";
+            }
+            ss << trim(message->content) << "\n";
+        }
+        if (add_ass) {
+            ss << "model\n";
+        }
+    } else if (tmpl == "orion" || tmpl_contains("'\\n\\nAssistant: ' + eos_token")) {
+        // OrionStarAI/Orion-14B-Chat
+        std::string system_prompt = "";
+        for (auto message : chat) {
+            std::string role(message->role);
+            if (role == "system") {
+                // there is no system message support, we will merge it with user prompt
+                system_prompt = message->content;
+                continue;
+            } else if (role == "user") {
+                ss << "Human: ";
+                if (!system_prompt.empty()) {
+                    ss << system_prompt << "\n\n";
+                    system_prompt = "";
+                }
+                ss << message->content << "\n\nAssistant: ";
+            } else {
+                ss << message->content << "";
+            }
+        }
+    } else if (tmpl == "openchat" || tmpl_contains("GPT4 Correct ")) {
+        // openchat/openchat-3.5-0106,
+        for (auto message : chat) {
+            std::string role(message->role);
+            if (role == "system") {
+                ss << message->content << "<|end_of_turn|>";
+            } else {
+                role[0] = toupper(role[0]);
+                ss << "GPT4 Correct " << role << ": " << message->content << "<|end_of_turn|>";
+            }
+        }
+        if (add_ass) {
+            ss << "GPT4 Correct Assistant:";
+        }
+    } else if (tmpl == "vicuna" || tmpl == "vicuna-orca" || (tmpl_contains("USER: ") && tmpl_contains("ASSISTANT: "))) {
+        // eachadea/vicuna-13b-1.1 (and Orca variant)
+        for (auto message : chat) {
+            std::string role(message->role);
+            if (role == "system") {
+                // Orca-Vicuna variant uses a system prefix
+                if (tmpl == "vicuna-orca" || tmpl_contains("SYSTEM: ")) {
+                    ss << "SYSTEM: " << message->content << "\n";
+                } else {
+                    ss << message->content << "\n\n";
+                }
+            } else if (role == "user") {
+                ss << "USER: " << message->content << "\n";
+            } else if (role == "assistant") {
+                ss << "ASSISTANT: " << message->content << "\n";
+            }
+        }
+        if (add_ass) {
+            ss << "ASSISTANT:";
+        }
+    } else if (tmpl == "deepseek" || (tmpl_contains("### Instruction:") && tmpl_contains("<|EOT|>"))) {
+        // deepseek-ai/deepseek-coder-33b-instruct
+        for (auto message : chat) {
+            std::string role(message->role);
+            if (role == "system") {
+                ss << message->content;
+            } else if (role == "user") {
+                ss << "### Instruction:\n" << message->content << "\n";
+            } else if (role == "assistant") {
+                ss << "### Response:\n" << message->content << "\n<|EOT|>\n";
+            }
+        }
+        if (add_ass) {
+            ss << "### Response:\n";
+        }
+    } else if (tmpl == "command-r" || (tmpl_contains("<|START_OF_TURN_TOKEN|>") && tmpl_contains("<|USER_TOKEN|>"))) {
+        // CohereForAI/c4ai-command-r-plus
+        for (auto message : chat) {
+            std::string role(message->role);
+            if (role == "system") {
+                ss << "<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>" << trim(message->content) << "<|END_OF_TURN_TOKEN|>";
+            } else if (role == "user") {
+                ss << "<|START_OF_TURN_TOKEN|><|USER_TOKEN|>" << trim(message->content) << "<|END_OF_TURN_TOKEN|>";
+            } else if (role == "assistant") {
+                ss << "<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>" << trim(message->content) << "<|END_OF_TURN_TOKEN|>";
+            }
+        }
+        if (add_ass) {
+            ss << "<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>";
+        }
+    } else if (tmpl == "llama3" || (tmpl_contains("<|start_header_id|>") && tmpl_contains("<|end_header_id|>"))) {
+        // Llama 3
+        for (auto message : chat) {
+            std::string role(message->role);
+            ss << "<|start_header_id|>" << role << "<|end_header_id|>\n\n" << trim(message->content) << "<|eot_id|>";
+        }
+        if (add_ass) {
+            ss << "<|start_header_id|>assistant<|end_header_id|>\n\n";
+        }
+    } else if (tmpl == "chatglm3" || tmpl_contains("[gMASK]sop")) {
+        // chatglm3-6b
+        ss << "[gMASK]" << "sop";
+        for (auto message : chat) {
+            std::string role(message->role);
+            ss << "<|" << role << "|>" << "\n " << message->content;
+        }
+        if (add_ass) {
+            ss << "<|assistant|>";
+        }
+    } else if (tmpl == "chatglm4" || tmpl_contains("[gMASK]")) {
+        ss << "[gMASK]" << "";
+        for (auto message : chat) {
+            std::string role(message->role);
+            ss << "<|" << role << "|>" << "\n" << message->content;
+        }
+        if (add_ass) {
+            ss << "<|assistant|>";
+        }
+    } else if (tmpl == "minicpm" || tmpl_contains(LU8("<用户>"))) {
+        // MiniCPM-3B-OpenHermes-2.5-v2-GGUF
+        for (auto message : chat) {
+            std::string role(message->role);
+            if (role == "user") {
+                ss << LU8("<用户>");
+                ss << trim(message->content);
+                ss << "";
+            } else {
+                ss << trim(message->content);
+            }
+        }
+    } else if (tmpl == "deepseek2" || tmpl_contains("'Assistant: ' + message['content'] + eos_token")) {
+        // DeepSeek-V2
+        for (auto message : chat) {
+            std::string role(message->role);
+            if (role == "system") {
+                ss << message->content << "\n\n";
+            } else if (role == "user") {
+                ss << "User: " << message->content << "\n\n";
+            } else if (role == "assistant") {
+                ss << "Assistant: " << message->content << LU8("<|end▁of▁sentence|>");
+            }
+        }
+        if (add_ass) {
+            ss << "Assistant:";
+        }
+    } else {
+        // template not supported
+        return -1;
+    }
+    dest = ss.str();
+    return dest.size();
+}
+
+int32_t llama_chat_apply_template(
+                const struct llama_model * model,
+                              const char * tmpl,
+         const struct llama_chat_message * chat,
+                                  size_t   n_msg,
+                                    bool   add_ass,
+                                    char * buf,
+                                 int32_t   length) {
+    std::string curr_tmpl(tmpl == nullptr ? "" : tmpl);
+    if (tmpl == nullptr) {
+        GGML_ASSERT(model != nullptr);
+        // load template from model
+        std::vector model_template(2048, 0); // longest known template is about 1200 bytes
+        std::string template_key = "tokenizer.chat_template";
+        int32_t res = llama_model_meta_val_str(model, template_key.c_str(), model_template.data(), model_template.size());
+        if (res < 0) {
+            // worst case: there is no information about template, we will use chatml by default
+            curr_tmpl = "chatml"; // see llama_chat_apply_template_internal
+        } else {
+            curr_tmpl = std::string(model_template.data(), model_template.size());
+        }
+    }
+
+    // format the chat to string
+    std::vector chat_vec;
+    chat_vec.resize(n_msg);
+    for (size_t i = 0; i < n_msg; i++) {
+        chat_vec[i] = &chat[i];
+    }
+
+    std::string formatted_chat;
+    int32_t res = llama_chat_apply_template_internal(curr_tmpl, chat_vec, formatted_chat, add_ass);
+    if (res < 0) {
+        return res;
+    }
+    if (buf && length > 0) {
+        strncpy(buf, formatted_chat.c_str(), length);
+    }
+    return res;
+}
+
+//
+// grammar
+//
+
+struct llama_grammar * llama_grammar_init(
+        const llama_grammar_element ** rules,
+        size_t    n_rules,
+        size_t    start_rule_index) {
+    return llama_grammar_init_impl(rules, n_rules, start_rule_index);
+}
+
+void llama_grammar_free(struct llama_grammar * grammar) {
+    llama_grammar_free_impl(grammar);
+}
+
+struct llama_grammar * llama_grammar_copy(const struct llama_grammar * grammar) {
+    return llama_grammar_copy_impl(grammar);
+}
+
+void llama_grammar_sample(
+      const struct llama_grammar * grammar,
+      const struct llama_context * ctx,
+          llama_token_data_array * candidates) {
+    llama_grammar_sample_impl(grammar, &ctx->model.vocab, &ctx->sampling, candidates);
+}
+
+void llama_sample_grammar(
+            struct llama_context * ctx,
+          llama_token_data_array * candidates,
+      const struct llama_grammar * grammar) {
+    llama_grammar_sample(grammar, ctx, candidates);
+}
+
+void llama_grammar_accept_token(
+            struct llama_grammar * grammar,
+            struct llama_context * ctx,
+                     llama_token   token) {
+    llama_grammar_accept_token_impl(grammar, &ctx->model.vocab, &ctx->sampling, token);
+}
+
+//
+// sampling
+//
+
+void llama_set_rng_seed(struct llama_context * ctx, uint32_t seed) {
+    llama_set_rng_seed_impl(&ctx->sampling, seed);
+}
+
+void llama_sample_softmax(struct llama_context * ctx, llama_token_data_array * candidates) {
+    llama_sample_softmax_impl(ctx ? &ctx->sampling : nullptr, candidates);
+}
+
+void llama_sample_top_k(struct llama_context * ctx, llama_token_data_array * candidates, int32_t k, size_t min_keep) {
+    llama_sample_top_k_impl(ctx ? &ctx->sampling : nullptr, candidates, k, min_keep);
+}
+
+void llama_sample_top_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
+    llama_sample_top_p_impl(ctx ? &ctx->sampling : nullptr, candidates, p, min_keep);
+}
+
+void llama_sample_min_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
+    llama_sample_min_p_impl(ctx ? &ctx->sampling : nullptr, candidates, p, min_keep);
+}
+
+void llama_sample_tail_free(struct llama_context * ctx, llama_token_data_array * candidates, float z, size_t min_keep) {
+    llama_sample_tail_free_impl(ctx ? &ctx->sampling : nullptr, candidates, z, min_keep);
+}
+
+void llama_sample_typical(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
+    llama_sample_typical_impl(ctx ? &ctx->sampling : nullptr, candidates, p, min_keep);
+}
+
+void llama_sample_entropy(struct llama_context * ctx, llama_token_data_array * candidates_p, float min_temp, float max_temp, float exponent_val) {
+    llama_sample_entropy_impl(ctx ? &ctx->sampling : nullptr, candidates_p, min_temp, max_temp, exponent_val);
+}
+
+void llama_sample_temp(struct llama_context * ctx, llama_token_data_array * candidates_p, float temp) {
+    llama_sample_temp_impl(ctx ? &ctx->sampling : nullptr, candidates_p, temp);
+}
+
+void llama_sample_repetition_penalties(
+            struct llama_context * ctx,
+          llama_token_data_array * candidates,
+               const llama_token * last_tokens,
+                          size_t   penalty_last_n,
+                           float   penalty_repeat,
+                           float   penalty_freq,
+                           float   penalty_present) {
+    llama_sample_repetition_penalties_impl(ctx ? &ctx->sampling : nullptr, candidates, last_tokens, penalty_last_n, penalty_repeat, penalty_freq, penalty_present);
+}
+
+void llama_sample_apply_guidance(
+          struct llama_context * ctx,
+                         float * logits,
+                         float * logits_guidance,
+                         float   scale) {
+    llama_sample_apply_guidance_impl(&ctx->sampling, logits, logits_guidance, scale);
+}
+
+llama_token llama_sample_token_mirostat(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, int32_t m, float * mu) {
+    return llama_sample_token_mirostat_impl(&ctx->sampling, candidates, tau, eta, m, mu);
+}
+
+llama_token llama_sample_token_mirostat_v2(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, float * mu) {
+    return llama_sample_token_mirostat_v2_impl(ctx ? &ctx->sampling : nullptr, candidates, tau, eta, mu);
+}
+
+llama_token llama_sample_token_greedy(struct llama_context * ctx, llama_token_data_array * candidates) {
+    return llama_sample_token_greedy_impl(ctx ? &ctx->sampling : nullptr, candidates);
+}
+
+llama_token llama_sample_token_with_rng(struct llama_context * ctx, llama_token_data_array * candidates, std::mt19937 & rng) {
+    return llama_sample_token_with_rng_impl(&ctx->sampling, candidates, rng);
+}
+
+llama_token llama_sample_token(struct llama_context * ctx, llama_token_data_array * candidates) {
+    return llama_sample_token_with_rng_impl(&ctx->sampling, candidates, ctx->sampling.rng);
+}
+
+int llama_split_path(char * split_path, size_t maxlen, const char * path_prefix, int split_no, int split_count) {
+    static const char * const SPLIT_PATH_FORMAT = "%s-%05d-of-%05d.gguf";
+    if (snprintf(split_path, maxlen, SPLIT_PATH_FORMAT, path_prefix, split_no + 1, split_count)) {
+        return strlen(split_path);
+    }
+    return 0;
+}
+
+int llama_split_prefix(char * dest, size_t maxlen, const char * split_path, int split_no, int split_count) {
+    std::string str_split_path(split_path);
+    char postfix[32];
+    snprintf(postfix, 32, "-%05d-of-%05d.gguf", split_no + 1, split_count);
+    std::string str_postfix(postfix);
+
+    // check if dest ends with postfix
+    int size_prefix = str_split_path.size() - str_postfix.size();
+    if (size_prefix > 0 && str_split_path.find(str_postfix, size_prefix) != std::string::npos) {
+        snprintf(dest, std::min((size_t) size_prefix + 1, maxlen), "%s", split_path);
+        return size_prefix;
+    }
+
+    return 0;
+}
+
+struct llama_timings llama_get_timings(struct llama_context * ctx) {
+    struct llama_timings result = {
+        /*.t_start_ms  =*/ 1e-3 * ctx->t_start_us,
+        /*.t_end_ms    =*/ 1.00 * ggml_time_ms(),
+        /*.t_load_ms   =*/ 1e-3 * ctx->t_load_us,
+        /*.t_sample_ms =*/ 1e-3 * ctx->sampling.t_sample_us,
+        /*.t_p_eval_ms =*/ 1e-3 * ctx->t_p_eval_us,
+        /*.t_eval_ms   =*/ 1e-3 * ctx->t_eval_us,
+
+        /*.n_sample =*/ std::max(1, ctx->sampling.n_sample),
+        /*.n_p_eval =*/ std::max(0, ctx->n_p_eval),
+        /*.n_eval   =*/ std::max(1, ctx->n_eval),
+    };
+
+    return result;
+}
+
+void llama_print_timings(struct llama_context * ctx) {
+    const llama_timings timings = llama_get_timings(ctx);
+
+    LLAMA_LOG_INFO("\n");
+    LLAMA_LOG_INFO("%s:        load time = %10.2f ms\n", __func__, timings.t_load_ms);
+    LLAMA_LOG_INFO("%s:      sample time = %10.2f ms / %5d runs   (%8.2f ms per token, %8.2f tokens per second)\n",
+            __func__, timings.t_sample_ms, timings.n_sample, timings.t_sample_ms / timings.n_sample, 1e3 / timings.t_sample_ms * timings.n_sample);
+    LLAMA_LOG_INFO("%s: prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n",
+            __func__, timings.t_p_eval_ms, timings.n_p_eval, timings.t_p_eval_ms / timings.n_p_eval, 1e3 / timings.t_p_eval_ms * timings.n_p_eval);
+    LLAMA_LOG_INFO("%s:        eval time = %10.2f ms / %5d runs   (%8.2f ms per token, %8.2f tokens per second)\n",
+            __func__, timings.t_eval_ms, timings.n_eval, timings.t_eval_ms / timings.n_eval, 1e3 / timings.t_eval_ms * timings.n_eval);
+    LLAMA_LOG_INFO("%s:       total time = %10.2f ms / %5d tokens\n", __func__, (timings.t_end_ms - timings.t_start_ms), (timings.n_p_eval + timings.n_eval));
+}
+
+void llama_reset_timings(struct llama_context * ctx) {
+    ctx->t_start_us  = ggml_time_us();
+    ctx->t_eval_us   = ctx->n_eval   = 0;
+    ctx->t_p_eval_us = ctx->n_p_eval = 0;
+
+    ctx->sampling.reset_timings();
+}
+
+const char * llama_print_system_info(void) {
+    static std::string s;
+
+    s  = "";
+    s += "AVX = "         + std::to_string(ggml_cpu_has_avx())         + " | ";
+    s += "AVX_VNNI = "    + std::to_string(ggml_cpu_has_avx_vnni())    + " | ";
+    s += "AVX2 = "        + std::to_string(ggml_cpu_has_avx2())        + " | ";
+    s += "AVX512 = "      + std::to_string(ggml_cpu_has_avx512())      + " | ";
+    s += "AVX512_VBMI = " + std::to_string(ggml_cpu_has_avx512_vbmi()) + " | ";
+    s += "AVX512_VNNI = " + std::to_string(ggml_cpu_has_avx512_vnni()) + " | ";
+    s += "AVX512_BF16 = " + std::to_string(ggml_cpu_has_avx512_bf16()) + " | ";
+    s += "FMA = "         + std::to_string(ggml_cpu_has_fma())         + " | ";
+    s += "NEON = "        + std::to_string(ggml_cpu_has_neon())        + " | ";
+    s += "SVE = "         + std::to_string(ggml_cpu_has_sve())         + " | ";
+    s += "ARM_FMA = "     + std::to_string(ggml_cpu_has_arm_fma())     + " | ";
+    s += "F16C = "        + std::to_string(ggml_cpu_has_f16c())        + " | ";
+    s += "FP16_VA = "     + std::to_string(ggml_cpu_has_fp16_va())     + " | ";
+    s += "WASM_SIMD = "   + std::to_string(ggml_cpu_has_wasm_simd())   + " | ";
+    s += "BLAS = "        + std::to_string(ggml_cpu_has_blas())        + " | ";
+    s += "SSE3 = "        + std::to_string(ggml_cpu_has_sse3())        + " | ";
+    s += "SSSE3 = "       + std::to_string(ggml_cpu_has_ssse3())       + " | ";
+    s += "VSX = "         + std::to_string(ggml_cpu_has_vsx())         + " | ";
+    s += "MATMUL_INT8 = " + std::to_string(ggml_cpu_has_matmul_int8()) + " | ";
+    s += "LLAMAFILE = "   + std::to_string(ggml_cpu_has_llamafile())   + " | ";
+
+    return s.c_str();
+}
+
+void llama_dump_timing_info_yaml(FILE * stream, const llama_context * ctx) {
+    fprintf(stream, "\n");
+    fprintf(stream, "###########\n");
+    fprintf(stream, "# Timings #\n");
+    fprintf(stream, "###########\n");
+    fprintf(stream, "\n");
+
+    fprintf(stream, "mst_eval: %.2f  # ms / token during generation\n",
+            1.0e-3 * ctx->t_eval_us / ctx->n_eval);
+    fprintf(stream, "mst_p_eval: %.2f  # ms / token during prompt processing\n",
+            1.0e-3 * ctx->t_p_eval_us / ctx->n_p_eval);
+    fprintf(stream, "mst_sample: %.2f  # ms / token during sampling\n",
+            1.0e-3 * ctx->sampling.t_sample_us / ctx->sampling.n_sample);
+    fprintf(stream, "n_eval: %d  # number of tokens generated (excluding the first one)\n", ctx->n_eval);
+    fprintf(stream, "n_p_eval: %d  # number of tokens processed in batches at the beginning\n", ctx->n_p_eval);
+    fprintf(stream, "n_sample: %d  # number of sampled tokens\n", ctx->sampling.n_sample);
+    fprintf(stream, "t_eval_us: %" PRId64 "  # total microseconds spent generating tokens\n", ctx->t_eval_us);
+    fprintf(stream, "t_load_us: %" PRId64 "  # total microseconds spent loading the model\n", ctx->t_load_us);
+    fprintf(stream, "t_p_eval_us: %" PRId64 "  # total microseconds spent prompt processing\n", ctx->t_p_eval_us);
+    fprintf(stream, "t_sample_us: %" PRId64 "  # total microseconds spent sampling\n", ctx->sampling.t_sample_us);
+    fprintf(stream, "ts_eval: %.2f  # tokens / second during generation\n",
+            1.0e6 * ctx->n_eval / ctx->t_eval_us);
+    fprintf(stream, "ts_p_eval: %.2f  # tokens / second during prompt processing\n",
+            1.0e6 * ctx->n_p_eval / ctx->t_p_eval_us);
+    fprintf(stream, "ts_sample: %.2f  # tokens / second during sampling\n",
+            1.0e6 * ctx->sampling.n_sample / ctx->sampling.t_sample_us);
+}
+
+// For internal test use
+const std::vector> & llama_internal_get_tensor_map(
+    struct llama_context * ctx
+) {
+    return ctx->model.tensors_by_name;
+}
+
+void llama_log_set(ggml_log_callback log_callback, void * user_data) {
+    g_state.log_callback = log_callback ? log_callback : llama_log_callback_default;
+    g_state.log_callback_user_data = user_data;
+#ifdef GGML_USE_METAL
+    ggml_backend_metal_log_set_callback(g_state.log_callback, g_state.log_callback_user_data);
+#elif defined(GGML_USE_CUDA)
+    ggml_backend_cuda_log_set_callback(g_state.log_callback, g_state.log_callback_user_data);
+#elif defined(GGML_USE_CANN)
+    ggml_backend_cann_log_set_callback(g_state.log_callback, g_state.log_callback_user_data);
+#endif
+}
+
+static void llama_log_internal_v(ggml_log_level level, const char * format, va_list args) {
+    va_list args_copy;
+    va_copy(args_copy, args);
+    char buffer[128];
+    int len = vsnprintf(buffer, 128, format, args);
+    if (len < 128) {
+        g_state.log_callback(level, buffer, g_state.log_callback_user_data);
+    } else {
+        char* buffer2 = new char[len+1];
+        vsnprintf(buffer2, len+1, format, args_copy);
+        buffer2[len] = 0;
+        g_state.log_callback(level, buffer2, g_state.log_callback_user_data);
+        delete[] buffer2;
+    }
+    va_end(args_copy);
+}
+
+void llama_log_internal(ggml_log_level level, const char * format, ...) {
+    va_list args;
+    va_start(args, format);
+    llama_log_internal_v(level, format, args);
+    va_end(args);
+}
+
+void llama_log_callback_default(ggml_log_level level, const char * text, void * user_data) {
+    (void) level;
+    (void) user_data;
+    fputs(text, stderr);
+    fflush(stderr);
+}
-- 
cgit v1.2.3